Adeboye, O.B., Schultz, B., Adekalu, K.O. and Prasad, K., 2015. Crop water productivity and economic evaluation of drip-irrigated soybeans (Glyxine max L. Merr.). Agric. Food Security, 4(1): 10.
Ahmadzadeh, H., Morid, S., Delavar, M. and Srinivasan, R., 2016. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agric. Water Manage., 175: 15-28.
Ali, M. and Talukder, M., 2008. Increasing water productivity in crop production—a synthesis. Agric. Water Manage., 95(11): 1201-1213.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9): D05109.
Andarzian, B. et al., 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric. Water Manage., 100(1): 1-8.
Barati, K., Abedi Kou, J., Darvishi, E., Arzani, A. and Yousefi, A., 2020. Crop Pattern Optimization using System Dynamics Approach and Multi-Objective Mathematical Programming. J. Agr. Sci. Tech., 22(5): 1-12.
Bastiaanssen, W.G. and Steduto, P., 2017. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ., 575: 595-611.
Bullock, J.M. et al., 2017. Resilience and food security: rethinking an ecological concept. J. Ecol., 105(4): 880-884.
Debaeke, P. and Aboudrare, A., 2004. Adaptation of crop management to water-limited environments. Eur J Agron., 21(4): 433-446.
Farahani, H.J., Izzi, G. and Oweis, T.Y., 2009. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron. J., 101(3): 469-476.
Faraji, A., Latifi, N., Soltani, A. and Rad, A.H.S., 2009. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric. Water Manage., 96(1): 132-140.
García-Vila, M. and Fereres, E., 2012. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur J Agron., 36(1): 21-31.
García-Vila, M., Fereres, E., Mateos, L., Orgaz, F. and Steduto, P., 2009. Deficit irrigation optimization of cotton with AquaCrop. Agron. J., 101(3): 477-487.
Geerts, S., Raes, D. and Garcia, M., 2010. Using AquaCrop to derive deficit irrigation schedules. Agric. Water Manage., 98(1): 213-216.
Goldhamer, D.A. and Fereres, E., 2017. Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrig. Sci., 35(3): 169-179.
Hoogenboom, G., 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agr. Forest. Meteorol., 103(1): 137-157.
Horemans, J.A., Van Gaelen, H., Raes, D., Zenone, T. and Ceulemans, R., 2017. Can the agricultural AquaCrop model simulate water use and yield of a poplar short‐rotation coppice? GCB Bioenergy, 9(6): 1151-1164.
Hsiao, T.C. et al., 2009. AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J., 101(3): 448-459.
Ibragimov, N. et al., 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agric. Water Manage., 90(1): 112-120.
Izadfard, A., Jahansouz, M.R., Sarmadian, F., Peykani, G.R. and Chaichi, M.R., 2017. Optimum sowing date determination based on historical climate data using AquaCrop growth simulator model in Moghan plain Ardabil province Iran. IJFCS., 48(3): 799-810.
Kang, S., Gu, B., Du, T. and Zhang, J., 2003. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manage., 59(3): 239-254.
Katerji, N., Campi, P. and Mastrorilli, M., 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manage., 130: 14-26.
Legates, D.R. and McCabe, G.J., 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1): 233-241.
Liu, C., Zhang, X. and Zhang, Y., 2002. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agr. Forest. Meteorol., 111(2): 109-120.
Marek, G. et al., 2017. Modeling long-term water use of irrigated cropping rotations in the Texas High Plains using SWAT. Irrig. Sci., 35(2): 111-123.
Mehri, M., Eshraghi , F. and Keramatzadeh, A., 2020. An Analysis of the Determinants of Wheat Production Risk in Gorgan County. J. Agr. Sci. Tech., 22(5): 1-12.
Mekonnen, M.M. and Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Sci. Adv., 2(2): e1500323.
Mkhabela, M.S. and Bullock, P.R., 2012. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agric. Water Manage., 110: 16-24.
Monaghan, J.M. et al., 2013. More ‘crop per drop’: constraints and opportunities for precision irrigation in European agriculture. J. Sci. Food Agric., 93(5): 977-980.
Montazar, A. and Rahimikhob, A., 2008. Optimal water productivity of irrigation networks in arid and semi‐arid regions. IRRIG DRAIN., 57(4): 411-423.
Motiee, H., Monouchehri, G. and Tabatabai, M., 2001. Water crisis in Iran, codification and strategies in urban water, Proceedings of the Workshops held at the UNESCO Symposium, Tech. Hydro., pp. 55-62.
Mysiak, J., Giupponi, C. and Rosato, P., 2005. Towards the development of a decision support system for water resource management. Environ. Model. Software, 20(2): 203-214.
Nasseri, A., Latifi-Mamaghan, S. and Pourabbas, F., 2006. Climate Change in Moghan Plain. HUMAN AND ECONOMIC RESOURCES PROCEEDINGS BOOK: 116.
Poff, N.L. et al., 2016. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change, 6(1): 25.
Raes, D. and Munoz, G., 2009. The ETo Calculator. Reference Manual Version, 3.
Rankine, D.R. et al., 2015. Parameterizing the FAO AquaCrop model for rainfed and irrigated field-grown sweet potato. Agron. J., 107(1): 375-387.
Rockström, J., Lannerstad, M. and Falkenmark, M., 2007. Assessing the water challenge of a new green revolution in developing countries. P. NATL. ACAD. SCI., 104(15): 6253-6260.
Salemi, H. et al., 2011. Irrigated Silage Maize Yield and Water Productivity Response to Deficit Irrigation in an Arid Region. Polish Journal of Environmental Studies, 20(5).
Santos, C., Lorite, I., Tasumi, M., Allen, R. and Fereres, E., 2008. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irri. Sci., 26(3): 277-288.
Sepulcre-Cantó, G. et al., 2007. Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER. Remote Sens. Environ., 107(3): 455-470.
Sethi, L.N., Kumar, D.N., Panda, S.N. and Mal, B.C., 2002. Optimal crop planning and conjunctive use of water resources in a coastal river basin. Water Resour. Manage., 16(2): 145-169.
Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A.A., Ghorbani, M.A. and Shahbazi, F., 2018. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310: 178-190.
Shiklomanov, I.A., 2000. Appraisal and assessment of world water resources. Water int, 25(1): 11-32.
Simonovic, S.P., 2002. World water dynamics: global modeling of water resources. J. Environ. Manage., 66(3): 249-267.
Steduto, P. and Albrizio, R., 2005. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agri.Forest Meteo., 130(3): 269-281.
Steduto, P., Hsiao, T.C. and Fereres, E., 2007. On the conservative behavior of biomass water productivity. Irri. Sci., 25(3): 189-207.
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E., 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J., 101(3): 426-437.
Todorovic, M. et al., 2009. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J., 101(3): 509-521.
Vanuytrecht, E. et al., 2014. AquaCrop: FAO's crop water productivity and yield response model. Environ. Model. Software, 62: 351-360.
Wellens, J. et al., 2013. Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment. Agric. Water Manage., 127: 40-47.
Willmott, C.J. and Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res., 30(1): 79-82.
Yang, G., Liu, L., Guo, P. and Li, M., 2017. A flexible decision support system for irrigation scheduling in an irrigation district in China. Agric. Water Manage., 179: 378-389.
Zeleke, K.T., Luckett, D. and Cowley, R., 2011. Calibration and testing of the FAO AquaCrop model for canola. Agron. J., 103(6): 1610-1618.
Zhao, J., Li, M., Guo, P., Zhang, C. and Tan, Q., 2017. Agricultural Water Productivity Oriented Water Resources Allocation Based on the Coordination of Multiple Factors. Water, 9(7): 490.
Zwart, S.J. and Bastiaanssen, W.G., 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manage., 69(2): 115-133.