Transcriptome of Pigeonpea Roots under Water Deficit Analyzed by Suppression Subtractive Hybridization

Authors
1 Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur-813210, India
2 Institute of Biotechnology, Acharya N G Ranga Agricultural University, Hyderabad-500006, India.
3 Department of Biotechnology, Gulbarga University, Gulbarga-585106, India.
4 Department of Biological and Biomedical Sciences, Durham University, Durham, UK.
Abstract
Pigeonpea (Cajanus cajan (L) Millsp.) is a drought tolerant legume widely grown in the arid and semi-arid tropics of the world which possesses a deep and extensive root system that succors a number of important physiological and metabolic functions to cope with drought. Application of available functional genomics approaches to improve productivity under water deficit requires a better understanding of the mechanisms involved during pigeonpea’s response to water deficit stress. In order to identify the genes associated with water deficit in pigeonpea, Suppression Subtractive Hybridization cDNA library was constructed from polyethylene glycol-induced water deficit young root tissues from pigeonpea and 157 high quality ESTs were generated by sequencing of 300 random clones which resulted in 95 unigenes comprising 37 contigs and 58 singlets. The cluster analysis of ESTs revealed that the majority of the genes had significant similarity with known proteins available in the databases along with unique and hypothetical/uncharacterized proteins. These differential ESTs were characterized and genes relevant to the specific physiological processes were identified. Northern blot analysis revealed the up regulation of ornithine aminotransferase, cyclophilin, DREB and peroxidase. The differentially expressed sequences are conceived to serve as a potential source of stress inducible genes of the water deficit transcriptome and hence may provide useful information to understand the molecular mechanism of water deficit management in legumes.

Keywords


1. Bray, E. A., Bailey-Serres, J. and Weretilnyk, E. 2000. Responses to Abiotic Stress. In: “Biochemistry and Molecular Biology of Plants”, (Eds.): Buchanan, B., Gruissem, W. and Jones, R.. The American Society of Plant Physiologists, PP.1158–1203.
2. Bray, E. A. 2004. Genes Commonly Regulated by Water-deficit Stress in Arabidopsis thaliana. J. Exp. Bot., 55: 2331-2341.
3. Cortes, A. J., This, D., Chavarro, C., Madrinan. S. and Blair, M. W. 2012. Nucleotide Diversity Patterns at the Drought-related DREB2 Encoding Genes in Wild and Cultivated Common Bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 125: 1069–1085.
4. Das, A., Das, S. and Mondal, T. K. 2012. Identification of Differentially Expressed Gene Profiles in Young Roots of Tea [Camellia sinensis (L.) O. Kuntze] Subjected to Water Stress Using Suppression Subtractive Hybridization. Plant Mol. Biol. Rep., 30: 1088–1101.
5. Davletova, S., Schlauch, K., Coutu, J. and Mittler, R. 2005. The Zinc-Finger Protein (ZAT12) Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiol., 139: 847-856.
6. Deokar, A. A., Kondawar, V., Jain, P. K., Karuppayil, S. M., Raju, N. L., Vadez, V., Varshney, R. K. and Srinivasan R. 2011. Comparative Analysis of Expressed Sequence Tags (ESTs) between Water-tolerant and Susceptible Genotypes of Chickpea under Terminal Water Stress. BMC Plant Biol., 11: 70.
7. Emmerich, W. E. and Hardegree, S. P. 1990. Polyethylene Glycol Solution Contact Effects on Seed Germination. Argon. J., 82: 1103-1107.
8. Guo, P. G., Baum, M., Grando, S., Ceccarelli, S., Bai, G. H., Li, R. H., Korff, M. V., Varshney, R. K., Graner, A. and Valkoun, J. 2009. Differentially Expressed Genes between Water-Tolerant and Water-sensitive Barley Genotypes in Response to Water Stress during the Reproductive Stage. J. Exp. Bot., 60: 3531–3544.
9. Harrak, H., Azelmat, S. and Tabaeizadeh, Z. 2001. Isolation and Characterization of a Gene Encoding a Water-induced Cysteine Protease in Tomato (Lycopersicon esculentum). Genome, 44:368-374.
10. Kang, J., Xie, W., Sunm Y., Yangm Q. and Wu, M. 2010. Identification of Genes Induced by Salt Stress from Medicago truncatula L. Seedlings. Afric. J. Biotechnol., 9: 7589-7594.
11. Kassa, M. T., Penmetsa, R. V., Carrasquilla-Garcia, N., Sarma, B. K. and Datta, S., Upadhyaya, H.D., von Wettberg, E. J. B. and Cook, D. R. 2012. Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives. PLoS ONE, 7: e39563. doi:10.1371/journal.pone.0039563.
12. Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Sri Laxmi, P., Naidu, K. R., Rao, S. S., Rao, S., Reddy, K. J., Theriappan, P. and Sreenivasulu, N. 2005. Regulation of Proline Biosynthesis, Degradation, Uptake and Transport in Higher Plants: Its Implications in Plant Growth and Abiotic Stress Tolerance. Current Sci., 88: 424-438.
13. Kaydan, D. and Yagmur, M. 2008. Germination, Seedling Growth and Relative Water Content of Shoot in Different Seed Sizes of Triticale under Osmotic Stress of Water and NaCl. Afric. J. Biotech., 7: 2862-2868.
14. Kumar, R. R., Karajol, K. and Naik, G. R. 2011. Effect of Polyethylene Glycol Induced Water Stress on Physiological and Biochemical Responses in Pigeonpea (Cajanus cajan L. Millsp.). Recent Res. Sci. Tech., 3: 148-152.
15. Lata, C., Sahu, P. P. and Prasad, M. 2010. Comparative Transcriptome Analysis of Differentially Expressed Genes in Foxtail Millet (Setaria italic L.) during Water Stress. Biochem. Biophysic. Res. Com., 393: 720–727.
16. Lata, C. and Prasad, M. 2011. Role of DREBs in Regulation of Abiotic Stress Responses in Plants. J. Exp. Bot., 62: 1-18.
17. Li, D., Deng, Z., Chen, C., Xia, Z., Wu, M., He, P. and Chen, S. 2010. Identification and Characterization of Genes Associated with Tapping Panel Dryness from Hevea brasiliensis Latex Using Suppression Subtractive Hybridization. BMC Plant Biol., 10: 140.
18. Liu, S. and Jiang, Y. 2010. Identification of Differentially Expressed Genes under Water Stress in Perennial Ryegrass. Physiologia Plantarum, 139: 375–387.
19. Martre, P., Morillon, R., Barrieu, F., North, G. B., Nobel, P. S. and Chrispeels, M. J. 2002. Plasma Membrane Aquaporins Play a Significant Role during Recovery from Water Deficit. Plant Physiol., 130: 2101–2110.
20. Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. Comprehensive Analysis of Rice DREB2-type Genes that Encode Transcription Factors Involved in the Expression of Abiotic Stress-responsive Genes. Mol. Genet. Genomic., 283:185–196.
21. Maurel, C., Verdoucq, L., Liu, D. T. and Santoni, V. 2008. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annu. Rev. Plant Biol., 59: 595–624.
22. Michel, B. E. and Kaufmann, M. R. 1973. The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiol., 51: 914-916.
23. Nene, Y. L. and Shiela, V. K. 1990. Pigeon Pea: Geography and Importance. In: “The Pigeon Pea”, (Eds.): Nene, Y. L., Hall, S. H. and Sheila, V. K.. CAB International, Wellingford, UK. PP. 1-14.
24. Priyanka, B., Sekhar, K., Reddy, V. D. and Rao, K. V. 2010a. Expression of Pigeonpea Hybrid-Proline-Rich Protein Encoding Gene (CcHyPRP) in Yeast and Arabidopsis Affords Multiple Abiotic Stress Tolerance. Plant Biotech. J., 8: 76–87.
25. Priyanka, B., Sekhar, K., Sunita, T., Reddy, V. D. and Rao, K. V. 2010b. Characterization of Expressed Sequence Tags (ESTs) of Pigeonpea (Cajanus cajan L.) and Functional Validation of Selected Genes for Abiotic Stress Tolerance in Arabidopsis thaliana. Mol. Genet. Genomics., 283: 273–287.
26. Rabello, A. R., Guimaraes, C. M., Rangel, P. H. N., Silva, F. R., Seixas, D., Souza, E., Brasileiro, A. C. M., Spehar, C. R., Ferreira, M. E. and Mehta, A. 2008. Identification of Water-responsive Genes in Roots of Upland Rice (Oryza sativa L). BMC Genomic., 9: 485.
27. Raju, N. L., Gnanesh, B. N., Lekha, P. Jayashree, B., Pande, S., Hiremath, P. J., Byregowda M., Singh, N. K. and Varshney, R. K. 2010. The First Set of EST Resource for Gene Discovery and Marker Development in Pigeonpea (Cajanus cajan L.). BMC Plant Biol., 10: 45.
28. Recchia, G. H., Caldas, D. G. G., Beraldo, A. L. A., Da Silva, M. J. and Tsai, S. M. 2013 Transcriptional Analysis of Drought-induced Genes in the Roots of a Tolerant Genotype of the Common Bean (Phaseolus vulgaris L.). Int. J. Mol. Sci., 14:7155-7179
29. Sambrook, J., Russell, D. 2001. Molecular Cloning: A Laboratory Manual.Cold Spring Harbor Laboratory Press. 3.
30. Sekhar, K., Priyanka, B., Reddy, V. D. and Rao, K. V. 2010. Isolation and Characterization of a Pigeonpea Cyclophilin (CcCYP) Gene, and Its Over-expression in Arabidopsis Confers Multiple Abiotic Stress Tolerance. Plant Cell Environ., 33: 1324–1338,
31. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the Expression Profiles of 7000 Arabidopsis Genes under Water-, Cold- and High-salinity Stresses Using a Full-length cDNA Microarray. Plant J., 31: 279–92.
32. Sharma, A. D. and Kaur, P. 2009. Combined Effect of Water Stress and Heat Shock on Cyclophilin Protein Expression in Triticum aestivum. Gen. Appl. Physiol., 35: 88–92.
33. Varshney, R. K., Penmetsa, R. V., Dutta, S. Sharma, T.R., Rosen, B., Carrasquilla-Garcia, N., Farmer, A. D., Dubey, A., Saxena, K. B., Gao, J., Fakrudin, B., Singh, M. N., Singh, B. P., Wanjari, K. B., Yuan, M., Srivastava, R. K., Kilian, A., Upadhyaya, H. D., Mallikarjuna, N., Town, C. D., Bruening, G. E., He, G., May, G. D., McCombie, R., Jackson, S. A., Singh, N. K. and Cook D. R., 2010. Pigeonpea Genomics Initiative (PGI): An International Effort to Improve Crop Productivity of Pigeonpea (Cajanus cajan L.). Mol. Breed., 26:393–408.
34. Wang, D. L., Ye, W.W., Wang, J.J., Song, L.Y., Fan W. L. and Cui, Y. P. 2010. Constructing SSH Library of Cotton under Drought Stress and Analysis of Drought Associated Genes. Acta Agronomica Sinica, 36: 2035-2044.
35. Wang, J., Wang, H., Hao, P., Xue, Li., Wei, S., Zhang, Y. and Chen, Y. 2011. Inhibition of Aldehyde Dehydrogenase 2 by Oxidative Stress Is Associated with Cardiac Dysfunction in Diabetic Rats. Mol. Med., 17: 172-179.
36. Wang, P. and Heitman, J. 2005. The Cyclophilins. Genome Biol., 6: 226.
37. Yong, S. Y. C., Choong, C. Y., Cheong, P. L., Pang, S. L., Amalina, R. N., Harikrishna, J. A., Matisa, M. N., Hedley, P., Milne, L., Vaillancourt, R. and Wickneswari, R. 2011. Analysis of ESTs Generated from Inner Bark Tissue of an Acacia auriculiformis×Acacia mangium Hybrid. Tree Genet. Genom., 7: 143–152.
38. Zeng, Y. L., Zhang, D. Q., Ming, F. H., Song, Z. D., Han, X. and Jiang, P. 2010. Key Differentially Expressed cDNAs in Cold-stressed SSH Library of Ceratoides lanata, In 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Chengdu, PP. 1-3.
39. Zhang, L., Li, F. G., Liu, C. L., Zhang, C. J. and Zhang, X. Y. 2009. Construction and Analysis of Cotton (Gossypium arboreum L.) Water-related cDNA Library. BMC Research Note., 2: 120.
40. Zheng, J., Zhao, J., Tao, Y., Wang, J., Liu, Y., Fu, J., Jin, Y., Gao, P., Zhang, J., Bai, Y. and Wang, G. 2004. Isolation and Analysis of Water Stress Induced Genes in Maize Seedlings by Subtractive PCR and cDNA Macroarray. Plant Mol. Biol., 55: 807–823.