Genetic Diversity in Saffron (Crocus sativus L.) Cultivars Grown in Iran Using SSR and SNP Markers

Authors
Department of Plant Production, Faculty of Agriculture, University of Torbat Heydarieh, Torbat Heydarieh, Islamic Republic of Iran.
Abstract
Saffron (Crocus sativus L.), one of the most expensive spices in the world, is used mainly as food coloring and flavoring in food industry and its effective components are also used in medicine. A collection of twenty-two cultivars of saffron grown in different regions of Iran was screened with 25 SSR and 5 SNP primers in order to determine genetic identities and genetic diversity in these cultivars. On an average, 50 alleles were amplified using SSR primers with scorable fragment sizes ranging from approximately 160 to 400 bp. Among these, 33 alleles were polymorphic thus revealing 72% of polymorphism. The genetic similarity estimated according to SSR data was scaled between 9.5 and 87.8%. In determination of genetic diversity, five polymorphic SNP markers were used. Since SNP markers are mainly bi-allelic, all SNPs showed two alleles only, suggesting the potential of SSR and SNP markers in discriminating among plants of distant genetic backgrounds. Un-weighted pair group method with arithmetic mean clustering grouped the cultivars into four groups. In this study, we tried to expand the genetic diversity of C. sativus in Iran despite their asexual reproduction. Due to the similarity of climatic conditions in Iran, a certain genetic variation was observed in saffron plants. For saffron cultivation and production of high quality crop around the world, research on genetic diversity among the large family of C. sativus adds value this product.

Keywords

Subjects


1. Ahmad, M., Zaffar, G., Mir, S. D., Razvi, S. M., Rather, M. A. and Mir, M. R. 2011. Saffron (Crocus sativus L.) Strategies for Enhancing Productivity. Res. J. Med. Plant, 5: 630–649.
2. Ahrazem, O., Rubio-Moraga, Á. and Gomez Gomez, L. 2010. The Expression of Chromoplast Specific Beta Lycopene Cyclase Gene is Involved in the High Production of Saffron Precursors. J. Exp. Bot., 61: 105–119.
3. Alavi-Kia, S. S., Mohammadi, S. A., Aharizad, S. and Moghadam, M. 2008. Analysis of Genetic Diversity and Phylogenetic Relationships in Crocus Genus of Iran Using Inter-Retrotransposon Amplified Polymorphism. Biotechnol., 22: 795–800.
4. Batley, J., Barker, G., O’Sullivan, H., Edwards, K. J. and Edwards, D. 2003. Mining for Single Nucleotide Polymorphisms and Insertions/Deletions in Maize Expressed Sequence Tag Data. Plant Physiol., 132(1): 84–91.
5. Beiki, A.H., Keifi, F. and Mozafari, J. 2010. Genetic Differentiation of Crocus Species by Random Amplified Polymorphic DNA. Genet. Eng. Biotechnol. J.,18: 1–10.
6. Bjarne, L., Jihad, O., Carsten, P.,Marian, Ø. 2015. Large Intraspecific Genetic Variation Within the Saffron-Crocus Group (Crocus L., Series Crocus; Iridaceae), Plant Sys. Evol., 301:425-437.
7. Capper, R. L., Jin Y. K., Lundgren P. B., Peplow L.M., Matz M. V. and Van Oppen, M. J. H. 2015. Quantitative High Resolution Melting: Two Methods to Determine SNP Allele Frequencies from Pooled Samples. BMC Genet., 16(62): 1–13.
8. Caiola, M.G., Leonardi, D. and Canini, A. 2010. Seed Structure in Crocus sativus L. × C. cartwrightianus Herb., C. thomasii Ten., and C. hadriaticus Herb. at SEM. Plant Syst. Evol., 285(1): 111–120.
9. Ching, A., Jung, M., Dolan, M., Smith, O. S., Tingey, S., Morgante, M. and Rafalski, A. J. 2001. SNP Frequency, Haplotype Structure and Linkage Disequilibrium in Elite Maize Inbred Lines. BMC Genet., 3(19): 3–19.
10. Clark, L.V., Jasieniuk , M. 2011. Polysat: an R Package for Polyploid Microsatellite Analysis. Mol. Ecol. Res., 11: 562-566.
11. D`Agostino, N., Pizzichini, D., Chiusano, M. L. and Giuliano, G. 2007. An EST Database from Saffron Stigmas. BMC Plant Biol., 7: 53–53.
12. Eckert, C. G., Samis, K. E. and Lougheed, C. 2008. Genetic Variation Across Species Geographical Ranges: The Central Marginal Hypothesis and Beyond. Mol. Ecol., 17: 1170–1188.
13. Frizzi, G., Miranda, M., Pantani, C. and Tammaro, F. 2007. Allozyme Differentiation in Four Species of the Crocus cartwrightianus Group and in Cultivated Saffron (Crocus sativus L). Biochem. Syst. Ecol., 35: 859–868.
14. Garritano, S. , Gemignani, F., Voegele, C., Nguyen-Dumont, T., Le Calvez-Kelm, F., De Silva, D., Lesueur, F., Landi, S., Tavtigian, S.V. 2009. Determining the Effectiveness of High Resolution Melting Analysis for SNP Genotyping and Mutation Scanning at the TP53 Locus. BMC Genet. 10(5): 5. doi.org/10.1186/1471-2156
15. Golmohammadi, F. 2014. Saffron and its Farming, Economic Importance, Export, Medicinal characteristics and Various Uses in South Khorasan Province- East of Iran. Int. J. Farm. Allied Sci., 3-5: 566–596
16. Grilli Caiola, M., Di Somma, D. and Lauretti, P. 2001. Comparative Study on Pollen and Pistil of Crocus sativus L. (Iridaceae) and Its Allied Species. Ann. Bot. Roma., 1: 93–103.
17. Grilli-Caiola, M. and Canini, A. 2004. Ultrastructure of Chromoplasts and Other Plastids in Crocus sativus L. (Iridiaceae). Plant Biosyst., 138: 43–52.
18. Harpke, D., Meng, S., Kerndorff, H., Rutten, T. and Blattner, F. R. 2013. Phylogeny of Crocus (Iridaceae) Based on one Chloroplast and Two Nuclear Loci: Ancient Hybridization and Chromosome Number Evolution. Mol. Phylogenet Evol., 66: 617–627.
19. Kanakis, C. D., Daferera, D. J., Tarantilis, P. A. and Polissiou, M. G. 2004. Qualitative Determination of Volatile Compounds and Quantitative Evaluation of Safranal and 4-Hydroxy-2, 6, 6-Trimethyl-1 Cyclohexene-1-Carboxaldehyde (HTCC) in Greek Saffron. J. Agr. Food Chem., 52: 4515–4521.
20. Larsen, B., Orabi, J., Pedersen, C. and Qrgaard, M. 2015. Large Intraspecific Genetic Variation within the Saffron-Crocus Group (Crocus L., Series Crocus; Iridaceae). Plant Syst. Evol., 301(1): 425–437.
21. Lefebvre, V., Goffinet, B., Chauvet, J. C., Caromel, B., Signoret, P., Brand, R. and Palloix, A. 2001. Evaluation of Genetic Distances between Pepper Inbred Lines for Cultivar Protection Purposes: Comparison of AFLP, RAPD and Phenotypic Data. Theor. Appl. Genet., 102: 741-750.
22. Malentacchi, F., Forni, G., Vinci, S., and Orlando, C. 2009. Quantitative Evaluation of DNA Methylation by Optimization of a Differential-high Resolution Melt Analysis Protocol. Nucleic Acids Research, 37(12): e86.
23. Mir, J. I., Ahmed, N., Mudasir Khan, H., Mokhdomi, T.A., Wani, S. H., Bukhari, S., Amin, A. and Qadri R. A. 2015. Molecular Characterization of Saffron-Potential Candidates for Crop Improvement. Not. Sci Biol., 7(1): 81–89.
24. Moretzsohn, M. C., Hopkins, M. S., Mitchell, S. E., Kresovich, S., Valls, J. F. M. and Ferreira, M. E. 2004. Genetic Diversity of Peanut (Arachis hypogaea L.) and Its Wild Relatives Based on the Analysis of Hyper Variable Regions of the Genome. BMC Plant Biol., 4: 11–17.
25. Namayandeh, A., Nemati, Z., Kamelmanesh, M. M., Mokhtari, M. and Mardi, M. 2013. Genetic Relationships among Species of Iranian Crocus (Crocus spp.). Crop Breed. J., 3(1): 61–67.
26. Nemati, Z., Mardi, M., Majidian, P., Zeinalabedini, M., Pirseyedi, S. M. and Bahadori, M. 2014. Saffron (Crocus sativus L.), a Monomorphic or Polymorphic Species?. Spanish J. Agric. Res., 12(3): 753–762.
27. Petersen, G., Seberg, O., Thorsøe, S., Jørgensen, T., Mathew, B. 2008. A Phylogeny of The genus Crocus (Iridaceae) Based on Sequence Data from Five Plastid Regions. Taxon, 57: 487–499.
28. Pritesh, P., Vishal, P., Oza, V., Chauhan, A. D. and Patel, K. B. 2010. Kathiria Subramanian R.B. Genetic Diversity and DNA Fingerprint Study of Tomato Discerned by SSR Markers. Int. J. Biotechnol. Biochem., 6(5): 657–666.
29. Rodriguez, S., Visedo, G. and Zapata, C. 2001. Detection of Errors in Dinucleotide Repeats Typing by Non-Denaturating Electrophoresis. Electrophoresis, 22: 2656–2664.
30. Rohlf, F. J. 2000. NTSYS-PC Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, New York.
31. Rubio-Moraga, Á., Castillo-López, R., Gómez-Gómez, L. and Ahrazem, O. 2009. Saffron is a Monomorphic Species as Revealed by RAPD, ISSR and Microsatellite Analyses. BMC Res. Notes, 2: 189.
32. Sarikamiş, G., Yanmaz, R., Ermis, S. and Bakir, M. 2010. Genetic Characterization of Pea (Pisum sativum) Germplasm from Turkey Using Morphological and SSR Markers. Genet. Mol. Res., 9: 591–600.
33. Singer, T. and Burke, E. 2003. High-throughput TAIL-PCR as a Tool to Identify DNA Flanking Insertions. Methods Mol. Biol., 236: 241–272.
34. Syvanen, A. C. 2001. Genotyping Single Nucleotide Polymorphisms. Nat. Rev. Genet., 2: 930–942.
35. Vavrek M. J. 2016. A Comparison of Clustering Methods for Biogeography with Fossil Datasets. Peer J., 8–19. doi: 10.7717/peerj.1720
36. Wang, J. R, Wei, Y. M., Yan, Z. H. and Zheng, Y. L. 2005. Detection of Single Nucleotide Polymorphisms in 24 kDa Dimeric Aamylase Inhibitors from Cultivated Wheat and Its Diploid Putative Progenitors. Biochimica et Biophysica Acta, 1723(1-3): 309–320.
37. Zubor, Á. A., Surányi, G., Gyóri, Z., Borbély, G., Prokisch, J. 2004. Molecular Biological Approach of the Systematics of Crocus Sativus L. and Its Allies. Acta Hort., 650: 85–93.