1. Afrasayab, S., Faisal, M. and Hasnain, S. 2010. Comparative Study of Wild and Transformed Salt Tolerant Bacterial Strains on Triticum aestivum Growth under Salt Stress. Braz. J. Microbiol., 41: 946-955.
2. Ali, S., Charles, T. C. and Glick, B. R. 2014. Amelioration of Damages Caused by High Salinity Stress by Plant Growth-Promoting Bacterial Endophytes. Plant Physiol. Biochem., 80: 160-167.
3. Al-Khaliel, A. S. 2010. Effect of Salinity Stress on Mycorrhizal Association and Growth Response of Peanut Infected by Glomus Mosseae. Plant Soil Environ., 56(7): 318–324.
4. Arif, M. S., Akhtar, M. J., Asghar, H. N. and Ahmad, R. 2010. Isolation and Screening of Rhizobacteria Containing ACC-Daminase for Growth Promotion of Sunflower Seedlings under Axenic Conditions. Soil Environ., 29(2): 199-205.
5. Barnawal, D., Maji, D., Bharti, N., Chanotiya, CS. and Kalra, A. 2013. ACC Deaminase-containing Bacillus Subtilis Reduces Stress Ethylene-Induced Damage and Improves Mycorrhizal Colonization and Rhizobial Nodulation in Trigonella foenum-graecum Under Drought Stress. J. Plant Growth Regul., 32: 809-822.
6. Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I. and Davies, W. J. 2008. Rhizosphere Bacteria Containing 1-AminoCyclopropane-1-Carboxylate Deaminase Increase Yield of Plants Grown in Drying Soil via both Local and Systemic Hormone Signaling. New Phytologist., 181: 413–423.
7. Brisou, J., Courtois, D. and Denis, F. 1974. Microbiological Study of a Hypersaline Lake in French Somaliland. Appl. Microbiol., 27: 819-822.
8. Cheng, Z., Park, E. and Glick, B. R. 2007. 1-AminoCyclopropane-1-Carboxylate Deaminase from Pseudomonas Putida UW4 Facilitates the Growth of Canola in the Presence of Salt. Can. J. Microbiol., 53: 912-918.
9. Chookietwattana, K. and Maneewan, K. 2012. Selection of Efficient Salt-tolerant Bacteria Containing ACC Deaminase for Promotion of Tomato Growth under Salinity Stress. Soil Environ., 31(1): 30-36.
10. Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K. and Kannan, R. 2013. Isolation of Salt Tolerant Endophytic and Rhizospheric Bacteria by Natural Selection and Screening for Promising Plant Growth-Promoting Rhizobacteria (PGPR) and Growth Vigour in Tomato under Sodic Environment. Afr. J. Microbiol. Res., 7(44): 5082-5089.
11. Dey, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004. Growth Promotion and Yield Enhancement of Peanut (Arachis hypogaea L.) by Application of Plant Growth Promoting Rhizobacteria. Microbiol. Res., 159: 371-394.
12. FAO. 2008. Land and Plant Nutrition Management Service. htpp://www.fao.org/ ag/agl/agll/spush.
13. Fernandez-Aunión, C., Ben-Hamouda, T., Iglesias-Guerra, F., Argandona, M., Reina-Bueno, M., Nieto, J. J., Aouani, M. E. and Vargas, C. 2010. Biosynthesis of Compatible Solutes in Rhizobial Isolated from Phaseolus vulgaris Nodules in Tunisian Sields. BMC Microbiol., 10(192).
14. Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R. and Glick, B. R. 2003. Three Newly Isolated Plant Growth Promoting Bacilli Facilitate the Seedling Growth of Canola, Brassica campestris. Plant Physiol. Bioch., 41: 277–281.
15. Glick, B. R. 1995. The Enhancement of Plant Growth by Freeliving Bacteria. Can. J. Microbiol., 41: 109-117.
16. Grichko, V. P. and Glick, B. R. 2001. Amelioration of Flooding Stress by ACC Deaminase-containing Plant Growth-promoting Bacteria. Plant Physiol. Bioch., 39: 11-17.
17. Indiragandhi, P., Anandham, R., Kim, K., Yim, W., Madhaiyan, M. and Sa, T. M. 2008. Induction of Defense Responses in Tomato against Pseudomonas syringaepv. Tomato by Regulating the Stress Ethylene Level with Methylobacterium oryzae CBMB20 Containing 1-AminoCyclopropane-1-Carboxylate Deaminase. World J. Microbiol. Biotechnol., 24: 1037-1045.
18. Kang, S. M., Joo, G. J., Hamayun, M., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K. and Lee, I. J. 2009. Gibberellin Production and Phosphate Solubilization by Newly Isolated Strains of Acinetobacter calcoaceticus and Its Effect on Plant Growth. Biotechnol. Lett., 31: 277-281.
19. Larsen, H. 1986. Halophilic and Halotolerant Microorganismsan Overview and Historical Perspective. Fems. Microbiol. Rev., 39: 3-7.
20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein Measurement with Folin-phenol Reagent. J. Biol. Chem., 193: 265-275.
21. Madhaiyan, M., Poonguzhali, S., Ryu, J. and Sa, T. M. 2006. Regulation of Ethylene Levels in Canola (Brassica campestris) by 1-AminoCyclopropane-1-Carboxylate Deaminase-containing Methylobacterium fujisawaense. Planta, 224: 268-278.
22. Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant Growth-promoting Bacteria Confer Resistance in Tomato Plants to Salt Stress. Plant Physiol. Biochem., 42: 565-572.
23. Nascimento, F.X., McConkey, B.J and Glick, B.R. 2014. New Insights into ACC Deaminase Phylogeny, Evolution and Evolutionary Significance. PLOS ONE, 9(6): e99168.
24. Page, A.L., Miller, R.H. and Keenney, D.R. 1982. Methods of Soil Analysis. Part2. Chemical and Microbiological Properties American Society of Agronomy, Madison, pp 831–871.
25. Penrose, D. M. and Glick. B. R. 2003. Methods for Isolating and Characterizing ACC Deaminase-containing Plant Growth Promoting Rhizobacteria. Physiol. Plant., 118: 10-15.
26. Penrose, D. M. and Glick, B. R. 2001. Levels of 1-AminoCyclopropane-1-Carboxylic Acid (ACC) in Exudates and Extracts of Canola Seeds Treated with Plant Growth-promoting Bacteria. Can. J. Microbiol., 47: 368-372.
27. Qurashi, A. W. and Sabri, A. N. 2011. Osmoadaptation and Plant Growth Promotion by Salt Tolerant Bacteria under Salt Stress. Afr. J. Microbiol. Res., 5(21): 3546-3554.
28. Ramadoss, D., Vithal, K.L., Pranita, B., Sajad, A. and Kannepalli, A. 2013. Mitigation of Salt Stress in Wheat sSeedlings by Halotolerant Bacteria Isolated from Saline Habitats. SpringerPlus, 2: 6.
29. Ryan, M. A., Christian, R. S. and Wohlrabe, J. 2001. Handwashing and Respiratory Illness among Young Adults in Military Training. Am. J. Prev. Med., 21(2): 79-83.
30. Sairam R. K. and Srivastava, G. C. 2001. Water Stress Tolerance of Wheat (Triticum aestivum L.): Variations in Hydrogen Peroxide Accumulation and Antioxidant Activity in Tolerant and Susceptible Genotypes. J. Agron. Crop Sci., 186: 63-70.
31. Shaharoona, B., Arshad, M. and Zahir, Z. A. 2006. Effect of Plant Growth-promoting Rhizobacteria Containing ACC Deaminase on Maize (Zea mays L.) Growth under Axenic Conditions and on Nodulation in Mung Bean (Vigna radiate L.). Lett. Appl. Microbiol., 42: 155-159.
32. Shahroona, B., Arshad, M., Zahir, Z. and Khalid, A. 2006. A Performance of Pseudomonas spp. Containing ACC-Deaminase for Improving Growth and Yield of Maize (Zea mays L) in the Presence of Nitrogenous Fertilizer. Soil Biol. Biochem., 38: 2971-2975.
33. Shahzad, S. M., Khalid, A., Arshad, M. and Kalil, R. 2010. Screening Rhizobacteria Containing ACC Deaminase for Growth Promotion of Chickpea Seedlings under Axenic Conditions. Soil Environ., 29(1): 38-46.
34. Sharma, P., Khanna, V. and Kumari, P. 2013 Efficacy of AminoCyclopropane-1-Carboxylic Acid (ACC)-Deaminase-producing Rhizobacteria in Ameliorating Water Stress in Chickpea under Axenic Conditions. Afr. J. Microbiol. Res., 7(50): 5749-5757.
35. Shetty, K. G., Hetrick, B. A. D. and Schwab, A. P. 1995. Effects of Mycorrhizae and Fertilizer Amendments on Zinc Tolerance of Plants. Environ. Pollut., 88: 307–314.
36. Siddikee, M. A., Chauhan, P. S., Anandham, R., Gwang-Hyun, H. and Tongmin, S. 2010. Isolation, Characterization, and Use for Plant Growth Promotion under Salt Stress, of ACC Deamainase-Producing Halotolerant Bacteria Derived from Coastal Soil. J. Microbiol. Biotechnol., 20(11): 1577–1584.
37. Siddikee, M. A., Glick, B. R., Chauhan, P.S., Yim, W. J. and Sa, T. 2011. Enhancement of Growth and Salt Tolerance of Red Pepper Seedlings (Capsicum annuum L.) by Regulating Stress Ethylene Synthesis with Halotolerant Bacteria Containing 1-AminoCyclopropane-1-Carboxylic Acid Deaminase Activity. Plant Physiol. Biochem., 49: 427-434.
38. Songsria, P., Jogloya, S., Holbrookb, C. C., Kesmalaa, T., Vorasoota, N., Akkasaenga, C. and Patanothaia, A. 2009. Association of Root, Specific Leaf Area and SPAD Chlorophyll Meter Reading to Water Use Efficiency of Peanut under Different Available Soil Water. Agr. Water Manage., 96(5): 790–798.
39. Sturz, A. V., Christie, B. R. and Nowak, J. 2000. Bacterial Endophytes: A Critical Component of Sustainable Crop Production.. Crit. Rev. Plant sci., 19(1): 1-30.
40. Swain, M. R., Ray, R. C. and Nautiyal, C. S. 2008. Biocontrol Efficacy of Bacillus subtilisstrains Isolated from Cow Dung against Postharvest Yam (Dioscorea rotundata L.) Pathogens. Curr. Microbiol., 57: 407-411.
41. Uddin, M. D. K. and Juraimi, A. S. 2013. Salinity Tolerance Turfgrass: History and Prospects. Scientific World J., PP.409-413, http://dx.doi.org/10.1155/2013/409413
42. Zahir, A. Z., Ghani, U., Naveed, M., Nadeem, S. M. and Asghar, H. N. 2009. Comparative Effectiveness of Pseudomonasand Serratia sp. Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum L.) under Salt-stressed Conditions. Arch. Microbiol., 191: 415-424.