A Comparative Evaluation of Total Polyphenolic Content and Antioxidant Potential of Thirty Medicinal Halophytes from the Mediterranean Region

Authors
1 Department of Biology, University of Sciences of Bizerte, Zarzouna, Tunisia.
2 Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia.
3 Laboratory of extremophiles Plants, Center of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia.
Abstract
In the last decades, an increasing interest has been granted to halophytes due to their high phenolic content, which have therapeutic potential in the treatment and/or management of human health. Therefore, it is important to measure the halophyte total polyphenol content correctly and to valorize their antioxidant capacity. Ethanol extracts from thirty halophytes were analyzed to evaluate the Total Phenol Content (TPC). We employed three testing methods to prove their antioxidant potentialities, including DPPH(1-DiPhenyl-2-PicrylHydrazyl), ABTS•+ (2,20-Azino-Bis-3-ethylbenzoThiazoline-6-Sulfonic acid) and IRP (Iron Reducing Power) assays. Results showed that plants exhibited different TPC, which varied significantly from 411.5 mg GAE g-1 DW in Cynomorium coccineum to 6.02 mg GAE g-1 DW in Ammophila arenaria. Concerning antioxidant activities, data revealed that Cynomorium coccineum (IC50= 3.82 µg ml-1 versus ABTS•+) and Euphorbia paralias had the highest antiradical capacity (IC50= 0.12 µg ml-1 against DPPH) and exhibited the best efficient concentration with an EC50 value= 9.57 µg mL-1 for the IRP. Considering correlation between phenols and antioxidant tests, three groups were distinguished with a higher correlation coefficient between 0.78 and 0.98 for the first group. These data suggest the promising potentialities of the Mediterranean medicinal halophytes as valuable source of powerful antioxidants of industries, especially for Cynomorium coccineum, Carpobrotus edulis, Reaumuria vermiculata, Tamarix gallica, and Euphorbia paralias regarding their strong phenol content.

Keywords

Subjects


1. Al-humaidi, J. 2016. Phytochemical Screening, Total Phenolic and Antioxidant Activity of Crude and Fractionated Extracts of Cynomorium coccineum Growing in Saudi Arabia. Euro. J. Med. Pl., 11: 1-9.
2. Antonella, R., Mariella, N., Alessandra, P., Angela, A., Danilo, P. and Antonio, R. 2015. Maltese Mushroom (Cynomorium coccineum L.) as Source of Oil with Potential Antica. Act. Nut., 7: 849-864.
3. Besbes Hlila, M., Majouli, K., Harzallah Skhiri, F., Ben Jannet, H., Aouni, M., Mastouri, M. and Selmi, B. 2016. Total Phenolic Compounds, Antioxidant Potential and α-Glucosidase Inhibition by Tunisian Euphorbia paralias L. J. Coast. L. Med., 4: 628-633.
4. Bouftira, I., Abdelly, C. and Sfar, S. 2008. Characterization of Cosmetic Cream with Mesembryanthemum crystallinum Plant Extract: Influence of Formulation Composition on Physical Stability and Anti-Oxidant Activity. Inter. J. Cos. Sci, 30: 443-452.
5. Bouftira, I., Hizem, H., Mahmoud, A., Abdelly, C. and Sfar, S. 2012. Effect of Mesembryanthemum crystallinum Extract against DMH-Induced Colon Carcinogenesis in Experimental Animals. Int. J. R. Pharma. Bio. Sci., 3: 1038- 1043.
6. Boulaaba, M., Snoussi, M., Saada, M., Mkadmini, K., Smaoui, A., Abdelly, C. and Ksouri, R. 2015. Antimicrobial Activities and Phytochemical Analysis of Tamarix gallica Extracts. Ind. Cro. Prod., 76: 1114–1122.
7. Bruneton, J. 2006. Pharmacognosie, Phytochimie, Plantes Medicinales. 3eme Edition, Editions Tec and Doc, Lavoisier, Paris, 1120 PP.
8. Buhmann, A. and Papenbrock, J. 2013. An Economic Point of View of Secondary Compounds in Halophytes. Func. Plant Bio., 40: 952-967 https://doi.org/10.1071/FP12342.
9. Chaouch, T. M., Haddouchi, F., Ksouri, R. and Atik-Bekkara, F. 2014. Evaluation of Antioxidant Activity of Hydromethanolic Extracts of Some Medicinal Species from South Algeria. J. Chin. Med. Asso., xx: 1-6.
10. Chaturvedi, S., Drabu, S. and Sharma, M.. 2012. M. Anti-Inflammatory and Analgesic Activity of Tamarix gallica. Int. J. Pharm. Sci., 4: 653-658.
11. Custódio, L., Ferreira, A. C., Pereira, H., Silvestre, L., Vizetto-Duarte, C., Barreira, L., Rauter, P. A., Alberício, F. and Varela, J. 2012. The Marine Halophytes Carpobrotus edulis L. and Arthrocnemum macrostachyum L. Are Potential Sources of Nutritionally Important PUFAs and Metabolites with Antioxidant, Metal Chelating and Anticholinesterase Inhibitory Activities. Bota. Mari., 55: 281–288.
12. Dewanto, V., Wu X., Adom, K. K. and Liu, R. H. 2002. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem., 50:3010-4.
13. Dolek, U., Gunes, M., Genc, N. and Elmastas, M. 2018. Total Phenolic Compound and Antioxidant Activity Changes in Rosehip (Rosa sp.) during Ripening. J. Agr. Sci. Tech., 20: 817-828.
14. Elmastas, M., Telci, İ., Akşit, H. and Erenler, R. 2015. Comparison of Total Phenolic Contents and Antioxidant Capacities in Mint Genotypes Used as Spices. Turk. J. Bioch., 40: 456-462.
15. Falleh, H., Ksouri, R., Oueslati, S., Guyot, S., Magne, C. and Abdelly, C. 2009. Interspecific Variability of Antioxidant Activities and Phenolic Composition in Mesembryanthemum Genus. Food Chem. Toxico., 47(9): 2308–2313.
16. Falleh, H., Ksouri, R., Medini, F., Guyot, S., Abdelly, C. and Mange, C. 2011. Antioxidant Activity and Phenolic Composition of the Medicinal and Edible Halophyte Mesembryanthemum edule L. Ind. Crop Prod., 34: 1066-1071.
17. Hanato, T., Kagawa, H., Yasuhara, T. and Okuda, T. 1988. Two New Flavonoids and Other Constituents in Licorice Root Their Relative Astringency and Radical Scavenging Effect. Chem. Pharm. Bull., 36: 1090–1097.
18. Hussain, A., Zia, M. and Mirza, B. 2007. Cytotoxic and Antitumor Potential of Fagonia cretica L. Turk. J. Bio., 31: 19-24.
19. Jahala, O. A. M., Musa Izzeldin, O. and Eltayeb Abdalla, R. 2014. Effect of Fagonia cretica linn Ethanolic Extract on Different Hematological Parameters in Albino Rats in Sudan. Pharma. Inno. J., 3: 89-93.
20. IUCN. 2005. A Guide to Medicinal Plants in North Africa, p 113.
21. Jin, D. and Mumper, R. J. 2010. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Mol., 15: 7313-7352.
22. Karker, M., Falleh, H., Msaada, K., Smaoui, A., Abdelly, C., Legault, J. and Ksouri, R. 2016. Antioxidant, Anti-Inflammatory and Anticancer Activities of the Medicinal Halophyte Reaumuria vermiculata. Excli. J., 15: 297-307.
23. Ksouri, R., Megdiche, W., Falleh, H., Trabelsi, N., Boulaaba, M. and Smaoui, A. 2008. Influence of Biological, Environmental and Technical Factors on Phenolic Content and Antioxidant Activities of Tunisian Halophytes. C. R. Biol., 331: 865 e73.
24. Ksouri, R., Falleh, H., Megdiche, W., Trabelsi, N., Mhamdi, B., Chaieb, K., Bakrouf, A., Magne, C. and Abdelly C. 2009. Antioxidant and Antimicrobial Activities of the Edible Medicinal Halophyte Tamarix gallica L. and Related Polyphenolic Constituents. Food Chem. Tox., 47: 2083–2091.
25. Ksouri, R., Ksouri Megdiche, W., Jallali, I., Debez, A., Magne, C., Hiroko, I. and Abdelly, C. 2012. Medicinal Halophytes: Potent Source of Health Promoting Biomolecules with Medical, Nutraceutical and Food Applications. Crit. Rev. Biotechnol., 32: 289–326. http://dx.doi.org/10.3109/073885512011.630647.
26. Lebling, R.W. 2003. The Treasure of Tarthuth. Saudi Aramco World, 54: 1-6.
27. Liu X., Kim J., Li Y., Li J., Liu F. Chen X. 2005. Tannic Acid Stimulates Glucose Transport and Inhibits Adipocyte Differentiation in 3T3-L1 Cells. Biochem. Mol. Nutr., 135: 165–171.
28. Mahomoodally, M. F. 2013.Traditional Medicines in Africa: An Appraisal of Ten Potent African Medicinal Plants. Hindawi Publishing Corporation, Evidence-Based Complementary and Alternative Medicine, 2013: 1-14 http://dx.doi.org/10.1155/2013/617459
29. Mobin, M. N., Khan, M., Khorshid Abbas, Z., and Abbas, Z. 2015. Ecotype Difference in Bioactive Constituents and In Vitro Antioxidant Activities of Some Saudi Medicinal Plants. EJMP, 7: 125-136.
30. Meot-Duros, L., Le Floch, G. and Magne, C. 2008. Radical Scavenging, Antioxidant and Antimicrobial Activities of Halophytic Species. J. Ethnophar., 116: 258- 262.
31. Mollica, A., Zengin, G., Locatelli, M., Picot-Allain M. N., Fawzi Mahomoodally, M. 2018. Multidirectional Investigations on Different Parts of Allium scorodoprasum L. subsp. Rotundum (L.) Stearn: Phenolic Components, In Vitro Biological, and In Silico Propensities. Food Res. Inter., 108: 641-649.
32. Nagaraj S. 2013. Antihyerlipidemic Activity of Fagonia cretica L. Whole Plant Int. J. Pharmaco., 3: 52-54.
33. Nawwar, M. A., Ayoub, N. A., El-Rai, M. A., Bassyouny, F., Mostafa, E. S. and Al-Abd, A. M. 2012. Cytotoxic Ellagitannins from Reaumuria vermiculata. Fitotera., 83:1256-66.
34. Oszmianski, J., Wojdylo, A., Lamer-Zarawska, E. and Swiader, K. 2007. Antioxidant Tannins from Rosaceae Plant Roots. Food Chem., 100:579e83.
35. Oyaizu, M. 1986. Studies on Products of the Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44: 307e15.
36. Özbilgin, S. and Citoğlu S. G. 2012. Uses of Some Euphorbia Species in Traditional Medicine in Turkey and Their Biological Activities. Turk. J. Pharm. Sci., 9: 241-256.
37. Phoboo, S. 2015. In Vitro Assays of Anti-diabetic and Antihypertensive Potential of Some Traditional Edible Plants of Qatar. J. Medic. Active Plants, 4:3-4.
38. Rached, W., Benammar, H., Bennaceur, M. And Marouf, A. 2010. Screening of Antioxidant Potential of Some Algerian Indegenous Plants. J. Biolo. Scien., 10: 316-324.
39. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant Activity Applying an Improved ABTS Radical Decolorization Assay. Free Radic. Biol. Med., 26: 1231e7.
40. Schlesier, K., Harwat, M., Böhm, V., Bitsch 2002. Assessment of Antioxidant Activity by Using Different In Vitro Methods. Free Radic. Res., 36(2):177-187.
41. Stefanucci, A., Zengin, G., Locatelli M., Macedonio, G., Wang, C. K., Novellino, E., Mahomoodally, M. F. and Mollica, A. 2018. Impact of Different Geographical Locations on Varying Profile of Bioactives and Associated Functionalities of Caper (Capparis spinosa L.). Food Chem. Toxicol., 118: 181-189.
42. Slesak, I. and Miszalski, Z. 2003. Superoxide Dismutase-Like Protein from Roots of the Intermediate C3-CAM Plant Mesembryanthemum crystallinum L. In Vitro Culture. Plant Sci., 164: 497–505.
43. Sulaiman, S. F., Md Yusoff, N. A., Eldeen, I. M., Seow, E. M., Sajak, A. A. B., Supriatno Ooi, K. L. 2011. Correlation between Total Phenolic and Mineral Contents with Antioxidant Activity of Eight Malaysian Banana (Musa sp.). J. Food Comp. Analy., 24: 1-10.
44. Tang, Q., Su, Z., Han, Z., Ma, X., Xu, D., Liang, Y., Cao, H., Wang, X., Qu, X., Hoffman, A., Liu, H., Gu, D. and Qiu, D. 2012. LC-MS Method for Detecting Prostratin in Plant Extracts and Identification of a High Yielding Population of Euphorbia fischeriana. Phytochem. Lett., 5: 214-218.
45. Tepe, B., Sokmen, M., Akpulat, H.A. et al., 2005. In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey [J]. Food Chem., 90: 685-689.
46. Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Abdullah Yilmaz, M. and Fawzi Mahomoodally, M. 2017. In Vitro and In Silico Perspectives on Biological and Phytochemical Profile of Three Halophyte Species-A. Sour. Innov. Phytopharma. Nat., 38: 35-44.
47. Zengin, G., Senkardes, I., Mollica, A., Picot-Allain M. N., Bulut, G., Dogan, A. and Mahomoodally, M. F. 2018. New Insights into the In Vitro Biological Effects, In Silico Docking and Chemical Profile of Clary Sage - Salvia sclarea L. Comput. Bio. Chem., 75: 111-119.