1. Box, G. E. P. and Jenkins, G. M. 1970. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, 199-201
2. Chen, X., Racine, J. and Swanson, R. N. 2001. Semiparametric ARX Neural Network Models with an Application to Forecasting Inflation. IEEE Transactions on. Neural Networks, 12 (4): 674-683.
3. Economic Time Series Database, Economic Research and Policy Department, Central Bank of Iran (CBI), 2005-2010.
4. Fahimifard, S. M. 2008. The Comparison of Artificial-neural and Auto-regressive Models for Forecasting Agricultural Product Price of Iran. Dissertation for MSc. Degree, Agricultural Economics Engineering, University of Zabol, Iran.
5. Fahimifard, S. M., Salarpour, M., Sabouhi, M. and Shirzady, S. 2009. Application of ANFIS to Agricultural Economic Variables Forecasting Case Study: Poultry Retail Price. J. Artificial Intelligence, 2(2): 65-72.
6. Gencay, R. 1999. Linear, Non-linear and Essential Foreign Exchange Rate Prediction with Simple Technical Trading Rules. J. Int. Econ., 47: 91–107.
7. Haofei, Z., Guoping, X., Fagting, Y. and Han, Y. 2007. A Neural Network Model Based on the Multi-Stage Optimization Approach for Short-Term Food Price Forecasting in China. Expert Syst. Appl., 33: 347-356.
8. Hann, T. H. and Steurer, E. 1996. Much Ado about Nothing? Exchange Rate Forecasting: Neural Networks vs. Linear Models Using Monthly and Weekly Data. Neurocomputing, 10: 323–339.
9. Ho, S. L. and Xie, M. 1998. The Use of ARIMA Models for Reliability and Analysis. Computers Industrial Engineering, 35: 213–216.
10. Ince, H. and Trafalis, T. B. 2005. A Hybrid Model for Exchange Rate Prediction. Online at: [20 May 2008].
11. Iran Agribusiness Report Q2. 2010. New Market Analysis Released. Pr-inside.com. 2010-03-29. http://www.pr-inside.com/iran-agribusiness-report-q-r1801810.htm. Retrieved 2011-09-22.
12. Jang, J. S. R. 1993. ANFIS: Adaptive-network-based Fuzzy Inference Systems. IEEE Transact. Syst. Man Cybernetics, 23(3): 665–685.
13. Kalogirou, S. A. 2003. Artificial Intelligence for the Modeling and Control of Combustion Processes: A Review. Progress Energy Combustion Sci., 29: 515–566.
14. Kamwa, I. Grondin, R. Sood, V. K. Gagnon, C. Nguyen, V. T. and Mereb, J. 1996. Recurrent Neural Networks for Phasor Detection and Adaptive Identification in Power System Control and Protection. IEEE Transact. Instrumentation Measurement, 45(2): PP: 657–664.
15. Makridakis, S. Wheelwright, S. C. and Hyndman, R. J. 1998. Forecasting: Methods and Applications. John Wiley and Sons, New York, 89-103.
16. Racine, J. S. 2001. On the Nonlinear Predictability of Stock Returns Using Financial and Economic Variables, forthcoming. J. Business Econ. Statistics, 19(3): 80-382.
17. Sugeno, M. 1985. Industrial Applications of Fuzzy Control. Elsevier Science Publisher Co, Elsevier Science Ltd; First edition (December 1985), PP: 201-202.
18. Wang, Y. M. and Elhag, T. 2008. An Adaptive Neuro-fuzzy Inference System for Bridge Risk Assessment. Expert Syst. Appl., 34(4): 3099-3106.
19. Wu, B. 1995. Model-free Forecasting for Non-linear Time Series (With Application to Exchange Rates). Computational Statistics Data Analysis, 19: 433–459.
20. Zhang, G. and Hu, M. Y. 1998. Neural Network Forecasting of the British Pound/US Dollar Exchange Rate. Int. J. Manage. Sci., 26(4): 495–506.