1. Akhyani, M., Chegini, V. and Aliakbari Bidokhi, A. 2015. An Appraisal of the Power Density of Current Profile in the Persian Gulf and the Gulf of Oman Using Numerical Simulation. Renew. Energ., 74: 307-317.
2. Assi, A. H., Al-Shamisi, M. H., Hejase, H. A. N. and Haddad, A. 2013. Prediction of Global Solar Radiation in UAE Using Artificial Neural Networks. International Conference on Renewable Energy Research and Applications (ICRERA), DOI.10.1109/ICRERA.2013.6749750.
3. Bektas Ekici, B. and Aksoy, U. T. 2011. Prediction of Building Energy Needs in Early Stage of Design by Using ANFIS. Expert Syst. Appl., 38: 5352–5358.
4. Hernandez, J.A., Rivera, W., Colorado, D. and Moreno-Quintanar, G. 2012. Optimal COP Prediction of a Solar Intermittent Refrigeration System for Ice Production by Means of Direct and Inverse Artificial Neural Networks. Sol. Energ., 86: 1108–1117.
5. Islamic Republic of Iran Meteorological Office (IRIMO) Data Center. 2015. Meteorological Data of 1994–2014. Isfahan, Iran.
6. Jiang, Y. 2009. Computation of Monthly Mean Daily Global Solar Radiation in China Using Artificial Neural Network and Comparison with Other Empirical Models. Energy, 34: 1276–1283.
7. Katsikopoulos, K. V., Durbachm, I. N. and Stewart, T. J. 2017. When Should We Use Simple Decision Models? A Synthesis of Various Research Strands. Omega, 81: 17-25
8. Khoshnevisan, B., Rafiee, S., Iqbal, J., Shamshirband, Sh., Omid, M., Badrul Anuar, N. and Abdul Wahab, A. W. 2015. A Comparative Study between Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production: A Case Study in Isfahan Province. J. Agr. Sci. Tech., 17: 49-62.
9. Klessmann, C., Rathmann, M., de Jager, D., Gazzo, A., Resch, G. and Busch, S. 2013. Policy Options for Reducing the Costs of Reaching the European Renewables Target. Renew. Energ., 57: 390-403.
10. Kumar, R., Aggarwal, R. K. and Sharma, J. D. 2013a. New Regression Model to Estimate Global Solar Radiation Using Artificial Neural Network. Adv. Energ. Eng., 1(3): 66-73.
11. Kumar, R., Aggarwal, R. K. and Sharma, J. D. 2013b. Energy Analysis of a Building Using Artificial Neural Network: A Review. Energ. Build., 65: 352-358.
12. Lee, Ch. and Zhong, J. 2015. Financing and Risk Management of Renewable Energy Projects with a Hybrid Bond. Renew. Energ., 75: 779-787.
13. Mellit, A. and Pavan, M.A. 2010. A 24-h Forecast of Solar Irradiance Using Artificial Neural Networks: Application for Performance Prediction of a Grid-Connected PV Plant at Trieste, Italy. Sol. Energ., 84(5): 807–821.
14. Mollazade, K., Omid, M. and Arefi, A. 2012. Comparing Data Mining Classifiers for Grading Raisins Based on Visual Features. Comput. Electron. Agr., 84: 124–131.
15. Mostafavi, E. S., Saeidi Ramiyani, S., Sarvar, R., Izadi Moud, H. and Mousavi, S. M. 2013. A Hybrid Computational Approach to Estimate Solar Global Radiation: An Empirical Evidence from Iran. Energy, 49: 204-210.
16. Mubiru, J. and Banda, E. J. K. B. 2008. Estimation of Monthly Average Daily Global Solar Irradiation Using Artificial Neural Networks. Sol. Energ., 82(2): 181–187.
17. Omid, M., Mahmoudi, A. and Omid, M. H. 2010. Development of Pistachio Sorting System Using Principal Component Analysis (PCA) Assisted Artificial Neural Network (ANN) of Impact Acoustics. Expert Syst. Appl., 37: 7205–7212.
18. Osorio, G. J., Matias, J. C. O. and Catalao, J. P. S. 2015. Short-Term Wind Power Forecasting Using Adaptive Neuro-Fuzzy Inference System Combined with Evolutionary Particle Swarm Optimization, Wavelet Transform and Mutual Information. Renew. Energ., 75: 301-307.
19. Pahlavan, R., Omid, M. and Akram, A. 2012. Application of Data Envelopment Analysis for Performance Assessment and Energy Efficiency Improvement Opportunities in Greenhouses Cucumber Production. J. Agr. Sci. Tech., 14: 1465-1475.
20. Pahlavan, R., Omid, M. and Akram, A. 2012. Energy Input-Output Analysis and Application of Artificial Neural Networks for Predicting Greenhouse Basil Production. Energy, 37: 171-176.
21. Pahlavan, R., Omid, M. and Akram, A. 2012. The Relationship between Energy Inputs and Crop Yield in Greenhouse Basil Production. J. Agr. Sci. Tech., 14: 1243-1253.
22. Ramedani, Z., Omid, M. and Keyhani, A. 2013. Modeling Solar Energy Potential in Tehran Province Using Artificial Neural Networks. Int. J. Green Energ., 10(4): 427-441.
23. Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, Sh. and Khoshnevisan, B. 2014. Potential of Radial Basis Function Based Support Vector Regression for Global Solar Radiation Prediction. Renew. Sustain. Energ. Rev., 39: 1005–1011.
24. Rashidi, M., Rameshat, M. A. and Gharib, H. 2012. Air Pollution and Death Due to Cardiovascular Diseases: A Case Study of Isfahan Province of Iran. In: “Air Pollution : A Comprehensive Perspective”, (Ed.): Haryanto, B. Available from: http://www.intechopen.com/books
25. Richard, G., Allen, L. S., Pereira, D. R. and Martin, S. 2006. FAO Irrigation and Drainage. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Paper No. 56, Food and Agriculture Organization. www.fao.org.
26. Soltani, F., Kerachian, R. and Shirangi, E. 2010. Developing Operating Rules for Reservoirs Considering the Water Quality Issues: Application of ANFIS-Based Surrogate Models. Expert Syst. Appl., 37: 6639–6645.
27. Taghadomi-Saberi, S., Omid, M. and Emam-Djomeh, Z. 2014a. Estimating Some Physical Properties of Sour and Sweet Cherries Based on Combined Image Processing and AI Techniques. Int. J. Food Eng., 10(3): 403–415.
28. Taghadomi-Saberi, S., Omid, M., Emam-Djomeh, Z. and Ahmadi, H. 2014b. Evaluating the Potential of Artificial Neural Network and Neuro-Fuzzy Techniques for Estimating Antioxidant Activity and Anthocyanin Content of Sweet Cherry during Ripening by Using Image Processing. J. Sci. Food Agr., 94: 95–101.
29. Weitemeyer, S., Kleinhans, D., Vogt, T. and Agert, C. 2015. Integration of Renewable Energy Sources in Future Power Systems: The Role of Storage. Renew. Energ., 75: 14-20.
30. Yalcin, H., Ozturk, I., Karaman, S., Kisi, O., Sagdic, O. and Kayacier, A. 2011. Prediction of Effect of Natural Antioxidant Compounds on Hazelnut Oil Oxidation by Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network. J. Food Sci., 76: 1112-1120.