In the Name of Allah, the Beneficent, the Merciful

JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY

ISLAMIC REPUBLIC OF IRAN

EXECUTIVE DIRECTOR

M. A. Sahari, Ph. D.

EDITOR-IN-CHIEF

K. Poustini, Ph. D.

EDITORIAL BOARD

A. S. Chaudhry, Ph. D. (Animal Science) School of Agriculture, Food and Development, Univ. of Newcastle Upon Tyne, U.K.

A. H. Chizari, Ph. D. (Agricultural Economics) Faculty of Agricultural Economics Development, Univ. of Tehran, I. R. Iran.

A. A. Enayati, Ph. D. (Wood Science) Faculty of Natural Resources, Univ. of Tehran, I. R. Iran.

Y. Fathipour, Ph. D. (Entomology) Faculty of Agriculture, Tarbiat Modares Univ.,

I. R. Iran.

K. Arzani, Ph. D. (Horticultural Science) Faculty of Agriculture. Tarbiat Modares Univ., I. R. Iran.

P. Hollington, Ph. D. (Agronomy) CAZS Natural Resources, Univ. of Wales,

U. S. A.

S. Kouchakzadeh, Ph. D. (Irrigation & Drainage) Faculty of Agricultural Engineering Technology, Univ. of Tehran, I. R. Iran.

S. R. Miraei-Ashtiani, Ph. D. (Animal Science) Faculty of Agricultural Science and Engineering, Univ. of Tehran. I. R. Iran.

K. Molnar, Ph. D. (Fisheries) Veterinary Medical Research Institute, Hungarian Academy of Science, Hungary.

B. Mojazi Amiri, Ph. D. (Fisheries) Faculty of Natural Resources, Univ. of Tehran, I. R. Iran.

V. Moron, Ph. D. (Climatology) Center of Researches of Climatology, Univ. of Bourgogne, France.

L. A. Mound, Ph. D. (Entomology) CSIRO Entomology, Australia.

M. R. Naghavi, Ph. D. (Plant Breeding) Faculty of Agricultural Science and Engineering, Univ. of Tehran, I. R. Iran.

B. D. Oomah, Ph. D. (Food Science and Technology) Agriculture and Agri-Food Canada, Pacific Agri-food Research Centre,

K. Poustini, Ph. D. (Agronomy) Faculty of Agricultural Science and Engineering, Univ. of Tehran, I. R. Iran.

C. O. Qualset, Ph. D. (Plant Breeding) Division of Agriculture and Natural Resources, Univ. of California, U. S. A.

M. H. Roozitalab, Ph. D. (Soil Science) Agricultural Research, Education and Extension Organization, Tehran, I. R. Iran.

S. H. R. Sadeghi, Ph. D. (Watershed Management) Faculty of Natural Resources, Tarbiat Univ., Modares I. R. Iran.

M. Shahedi, Ph. D. (Food Science and Technology) Faculty of Agriculture, Isfahan Univ. of Technology, I. R. Iran.

M. Shams-bakhsh, Ph. D. (Plant Pathology) Faculty of Agriculture, Tarbiat Modares Univ., I. R. Iran.

R. Swaminathan, Ph. D. (Plant Pathology) Dept. of Chemical Pathology, St. Thomas' Hospital, U.K.

A. Jafari, Ph. D. (Agricultural Machinery) Faculty of Agriculture, Univ. of Tehran, I. R. Iran.

Gh. H. Zamani, Ph. D. (Agricultural Extension and Education) College of Agriculture, Shiraz Univ., I. R. Iran.

EDITING CONSULTANT

H. Siadat, Ph. D.

MANAGERIAL ASSISTANT

A. Barsaei

Published bimonthly by Tarbiat Modares University.

Address: Journal of Agricultural Science and Technology, Tarbiat Modares University, Faculty of Agriculture, P. O. Box: 14115-336, Tehran, Islamic Republic of Iran, Tel: +98 21 48292287 Tel /Fax: +98 2144787485 www.jast.ir

E-mail: jastiran@modares.ac.ir

Indexing: CAB Abstract, CAB International Full Text Repository, DOAJ, EBSCO, FSTA, ISC, SCOPUS, SID Thomson Reuters (Formerly ISI) Services:

مجله علمی- پژوهشی

• Science Citation Index Expanded (SciSearch)

• Journal Citation Reports/Science Edition

شماره پروانه: 3/2910/765

JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY

ISLAMIC REPUBLIC OF IRAN

CONTENTS

Volume 27 Number 6 November 2025

ISSN 1680-7073

PLANT SCIENCE

1917) (Lepidoptera: Gelechiidae).

Burçin Çiçek, Mahmut Mete Karaca, and Kamil Karut

AGRICULTURAL ECONOMICS, EXTENSION AND RURAL DEVELOPMENT Analysis of the Factors Affecting Coffee Export in Cameroon: A Gravity Model Approach. Veli Anıl Çakan, Amadou Merleau Nsangou Pofoura, and Tolga Tipi 1217 An Extension Model Compatible with Drought Management in Iran. Jalal Mahmoodzadeh, Mohammad Sadeq Sabouri, Mehrdad Niknami, and Elham Danaei 1229 Assessment of Habitat Suitability of Carissa carandas in India Using Bio-Climatic Variables, GHG Scenarios, Land Use, and Land Cover Predictors. 1249 Manish Mathur, and Preet Mathur Explaining and Validating the Green Curriculum's Characteristics Based on the Critical Competencies of Education for the 21st Century. Maryam Hosseini Largani, Hossein Taimour, and Mahsa Saadvandi 1269 Identifying the Dimensions of Empowerment and Their Impacts on Food Security in Rural Women Kayvan Shoja Chaghervand, Alireza Poursaeed, and Maryam Omidi Najafabadi 1285 Investigating Agricultural Ecosystem Functions and Services in Northern Iran. Sareh Hosseini, and Fahimeh Karimpour 1299 Investigating the Effects of Microcredit on Food Security of Rural Households: Evidence from Zehak County, Iran. Alireza Sani Heidary, Mahmoud Daneshvar Kakhki, Mahmoud Sabouhi Sabouni, and Hosein Mohammadi 1321 Predicting Farmers' Behavioral Intentions towards Adoption of Essential Oil Extraction Practices Using Structural Equation Fouzia Anjum, Sher Muhammad, Badar Naseem Siddiqui, Farhat Ullah Khan, Muhammad Yaseen, and Muhammad Shahbaz 1337 Strategies for Enhancing Water Security in Iran's Agricultural Sector under Climate Change. Majid Gholami, Bahareh Heidary, Maryam Afkhami, and Mohammad Ali Kiani 1351 ANIMAL SCIENCE Effect of Dietary Energy Source and Level on the Performance, Antibody Titers and the Relative Expression of IL-2 and IL-6 Gene in Broilers under Heat Stress. Nematollah Dayani, Mohammad Chamani, Parvin Shawrang, Asa Ebrahimi, and Ali Asghar Sadeghi 1371

Continued on back cover

1383

Effectiveness of Bacillus thuringiensis (Shigetane) Commercial Products against Tomato Leaf Miner, Tuta absoluta (Meyrick,

Continued from front cover:	
PLANT SCIENCE Fitness Enhancement by Crosses between Two Populations of <i>Trissolcus vassilievi</i> (Hymes Shahzad Iranipour, Parisa Benamolaei, and Shahriar Asgari	noptera: Scelionidae).
Fruit Biochemical and Nutritional Properties of Some Asian and European Pears (F. Environmental Conditions. Somayeh Kadkhodaei, and Kazem Arzani	Pyrus spp.) Grown under Tehran.
Study on Hemogram and the Effect of Thermal Stress on Hemocytes and Development in <i>Dacu</i> Maryam Ajamhassani, Mohamed El Aalaoui, and Bita Valizadeh	s ciliatus (Diptera: Tephritidae).
Temperature-Dependent Development and Temperature Thresholds of total immature <i>Ceratitis capitata</i> (Wiedemann, 1824) (Diptera: Tephritidae) in Iran. <i>Najmeh Ebrahimi</i>	stage of Mediterranean fruit fly, 1443
Volatile Organic Compounds (VOC) Produced by <i>Paraconiothyrium archidendri</i> F1 <i>Ganoderma boninense. Anisa Lutfia, and Bedah Rupaedah</i>	0 as Biofungicidal Materials for 1459

Analysis of the Factors Affecting Coffee Export in Cameroon: A Gravity Model Approach

Veli Anıl Çakan¹*, Amadou Merleau Nsangou Pofoura¹, and Tolga Tipi¹

ABSTRACT

This study investigated the factors affecting coffee exports in Cameroon. For this purpose, we employed the gravity model. Considering the sample characteristics, the model was estimated with the Poisson Pseudo-Maximum Likelihood (PPML) method. The main material of the study was a panel data set covering the years 2001-2021 for ten countries, Cameroon's main coffee export partners. The findings show that the GDP of importing countries, coffee export prices, and Bilateral Investment Treaties (BITs) positively influence exports, whereas distance, exchange rates, and Cameroon's GDP have negative impacts. The results highlight Cameroon's logistics infrastructure deficiencies and the significance of stable, high-quality production. The Cameroonian government should implement policies to improve production quality and efficiency by expanding agricultural extension services and offering farmers input and investment incentives to address these challenges. Additionally, improving port efficiency will necessitate the digitalization of operations, implementation of data-driven planning, and strategic infrastructure investments.

Keywords: BITs, Exchange rate, Export price, FTAs, Gravity Model.

INTRODUCTION

Agricultural sector plays a crucial role in the economy of Sub-Saharan African countries (Senbet and Simbanegavi, 2017). It has a predominant place in the supply of food, employment for rural populations, raw materials, and foreign income, and mainly contributes to the formation of the Gross Domestic Product (GDP). The contribution of agriculture to Cameroon's GDP was approximately 16.97% in 2021. In the same year, it was the leading employer, employing 42.82% of the total workforce, and served as one of the primary sources of foreign currency, contributing 18.63% to merchandise exports. (World Bank, 2024).

Coffee, along with cocoa and cotton, has played a decisive role in Cameroon's national economy (Kufa, 2010; René *et al.*, 2023). The coffee industry in Cameroon is an essential source of income for many

households from various aspects, including production, marketing, and distribution. An historical analysis of coffee production in Cameroon reveals that the past decade marked the lowest levels of production. Between 2011 and 2021, coffee production amounted to 33,527 tons on average, with approximately 1.5% of the arable land allocated for cultivation. In contrast, the peak of coffee production was observed in the 1980s, with production reaching 137,900 tons in 1984. During this peak, 5.7% of the arable land was allocated to coffee, making it the fourth largest agricultural product by land area (FAOSTAT, 2024). Despite the decline in production, coffee continues to play a significant role in the Cameroonian economy due to its substantial contribution to exports. According to TRADEMAP (2024), coffee, tea, maté, and spices (Code: 09) were Cameroon's 8th major export commodity category in 2001-2021. Coffee

¹ Department of Agricultural Economics, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey. *Corresponding author; e-mail: velianilcakan@uludag.edu.tr

(Code: 0901) constitutes 99.66% of this category. Cameroon directs 93% of its total coffee exports to its top ten coffee importers. Figure 1 illustrates the share of these countries in Cameroon's coffee exports.

Figure 2 presents the data for Cameroon's coffee production, exports, and export-to-production ratio spanning from 2001 to 2021. The figure illustrates that Cameroon's ratio of production to exports was generally above 80% during this period. Nevertheless, there is a noticeable decrease in both the ratio of coffee exports to production and the amount of coffee exports.

The simultaneous decline in production and exports can be attributed to a combination of many structural and cyclical problems. One of the most important is that coffee provides lower returns than substitute crops, such as cocoa, for the farmers. A significant factor contributing to the decline in farmers' revenue is the decrease in coffee export prices. Cameroon's real coffee export price has declined by 24.53% over the past five years (2016-2021) compared with the preceding sixteen-year period. Moreover, Cameroon's real coffee export price was 30% below the world price in 2001-2021 (FAOSTAT, 2024; original calculations). The loss of income leads producers to switch from coffee to cocoa cultivation or to forego

the renewal of their aging coffee trees (Shillie and Egwu, 2020). This change in production patterns may seem suitable, given that opting for a more profitable alternative is likely to result in a favorable impact on the total agricultural production value. Nonetheless, limiting the diversity within a country's production and export portfolio raises risks due to factors such as plant diseases and sector-specific global crises. Moreover, it renders investments made in established industries ineffective for processing abandoned products. The income loss in coffee production stems from exportrelated issues. Factors such as the limited popularity of Cameroonian origin in the international market, the absence of a strategic marketing approach, fluctuating production, concerns about product quality, high export taxes, and the insufficiency of dynamic promotional initiatives collectively erode the competitiveness in exports (MINADER, 2009; GCP, 2016). The low survival rate of export relationships could also be included among these factors. In Cameroon, the probability of new exporters continuing their activities stands at 30% for following year, decreasing approximately 12 % by the third year (World Bank, 2016).

To alleviate the prevailing crisis within the

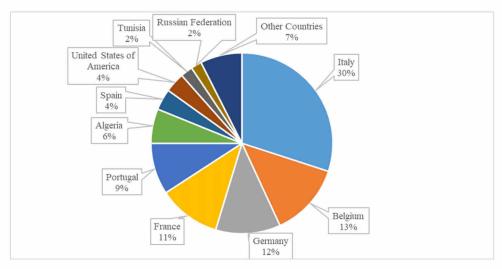
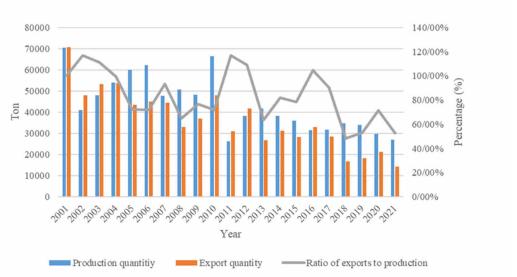



Figure 1. Main coffee export partners of Cameroon in 2001-2021 (TRADEMAP, 2024).

Figure 2. Cameroon's coffee production, export, and export-to-production ratio, between 2001 to 2021 (FAOSTAT, 2024).

coffee sector, the Cameroonian government is concentrating its efforts on increasing consumption domestic (VOA, Improving local consumption is crucial, not only to ensure access to essential consumer goods within society but also to safeguard producers against potential export crises. Although enhancing local consumption might boost supply through increased demand, the main driver of Cameroon's industry development is prioritization of exports. This is primarily because the price level incentivizing producers to engage in coffee production can be attained through exports. Besides, international trade is essential for economic growth (Karambakuwa and Newadi, 2020). It enhances productivity by driving firms to improve efficiency, while supporting economic development through expansion of exports and imports (Kircicek and Ozparlak, 2023).

Exports play a critical role in propelling the development of developing countries (Sanjuán-López and Dawson, 2010). Therefore, it is crucial to undertake more studies to identify the determinants exports in developing countries and to provide recommendations within this framework. The gravity model has been widely used in

trade economics to elucidate the bilateral trade flows between countries. This model has been refined over the years, and scholars across the globe have extensively explored the various factors affecting the export of commodities. Among these factors, the exchange rate is frequently mentioned. Studies have shown that the impact of exchange rates on agricultural export flows can vary significantly depending on the country and sector in question (Abdullahi et al., 2021; Abdullahi et al., 2022; Yadav and Chattopadhyay, 2024). The effects of free trade agreements on exports have also been discussed in the literature, demonstrating that Free Trade Agreements (FTAs) facilitate increased export volumes by reducing trade barriers and fostering market access (Nsabimana and Tirkaso, 2020; Jagdambe and Kannan, 2020). Price is one of the key factors that shape demand for goods within a country. A decline in export prices typically leads to increased demand in importing countries, stimulating higher export volumes. Multiple works in the literature have reached similar conclusions (Yusiana et al., 2022, Phung and Nguyen, 2022). Recent researches have investigated effects of Bilateral Investment Agreements (BITs) on exports,

demonstrating that these agreements significantly boost exports (Heid and Vozzo, 2020; Xiong, 2022).

Despite the growing body of literature, research on sub-Saharan Africa remains limited. Further research is needed to understand the factors driving strategic product exports and develop strategies in this area. This study assists in filling this gap by employing the gravity model to analyze affecting coffee factors exports Cameroon. In its basic form, the gravity model provides ideas about the impact of transportation costs and trade partners' income on exports. However, this research extends the model by incorporating variables related to the impact of international agreements and export price elasticity. These factors have received limited attention in the literature regarding their impact on exports, particularly in developing countries. This versatile framework enables us to conduct a comprehensive foreign trade analysis for Cameroon, providing actionable findings to support policymakers in crafting and refining strategies for more effective trade planning and development.

MATERIALS AND METHODS

Material

The main material of this study consisted of data obtained from international bodies. The data set covers the period 2001-2021 and includes the ten countries to which Cameroon exports the most in the relevant period. These countries are Italy, Belgium, Germany France, Portugal, Algeria, Spain, the USA, Tunisia and Russian Federation, respectively. Information on the variables included in the model is given in Table 1.

Table 1. Description of the Variables.

Variable ^a	Description ^a	Unit	Source	Expected Sign
EX_{ij}	The value of coffee ^{b} exports from Cameroon to country j	US\$, in 2015 Prices	TRADEMAP (2024), original calculations	N/A
GDP_i	Gross domestic product of Cameroon	US\$ per capita, in 2015 Prices	FAOSTAT (2024)	+
GDP_{j}	Gross domestic product of importing country <i>j</i>	US\$ per capita, in 2015 Prices	FAOSTAT (2024)	-/+
$DIST_{ij}$	The geographical distance between Cameroon and the importing country <i>j</i>	km	CEPII (2024)	-
RXP_i	The coffee export price of Cameroon	US\$, in 2015 Prices	TRADEMAP (2024), original calculations	-
ER_{ij}	Exchange rate: This indicates how much of the Central African CFA Franc is required to purchase one unit importing countries' own money.	Central African CFA franc	FXTOP (2024)	-/+
FTA_{ij}	Free Trade Agreements between Cameroon and the importing country j	Dummy	CEPII (2024)	+
BIT_{ij}	Bilateral Investment Treaties between Cameroon and the importing country j	Dummy	UNCTAD (2024)	+

^a Here i represents Cameroon and j represents one of Cameroon's top ten trading partners.

^b "Product: 0901 Coffee, whether or not roasted or decaffeinated; coffee husks and skins; coffee substitutes containing coffee in any proportion" (TRADEMAP, 2024).

Methods

This study analyzes the factors affecting coffee export in Cameroon. The gravity model is used for this purpose. In recent decades, this model has become a widely used tool for elucidating international trade determinants (Sharma et al., 2023). The primary reason for this is the model's ability to offer a comprehensive analysis of the revealed trade data (Jadhav and Ghosh, 2023). The gravity model of international trade elucidates bilateral trade flows by incorporating the economic scale of the trading partners and the geographical distance that separates them (Golovko and Sahin, 2021). Tinbergen's (1962) pioneering work established the framework for this model and, subsequently, early studies further developed and applied its principles.

The gravity model in the logarithmic transformation of the variables, as commonly used in the literature, can be expressed as follows:

$$lnEX_{ij} = \beta_0 + \beta_1 lnGDP_i + \beta_2 lnGDP_j + \beta_3 DIST_{ij} + e_{ij}$$

Where, i represents Cameroon, j represents trading partners, EX_{ij} represents the value of bilateral coffee Exports from Cameroon to its trading partners, GDP_i represents the Gross Domestic Product of the country i, GDP_j represents the Gross Domestic Product of the country j, and $DIST_{ij}$ represents the geographical Distance between Cameroon and its trading partners.

The basic structure of the gravity model has evolved in multiple ways to accommodate the needs of researchers (Nawrot, 2023). In country- and product-specific studies, such modifications yield empirical insights that not only enrich the literature but also assist policymakers in formulating effective strategies. Therefore, we modified our model by integrating variables linked to the primary factors behind the decline in Cameroon's coffee exports, as outlined in the introduction. We tackled the problem of low export prices by including variables such as the real export

price and exchange rates. To address the issue of low survival rates in export relationships, we included dummy variables related to free trade agreements and bilateral investment treaties. The modified model is formulated as follows:

$$\begin{split} lnEX_{ij} &= \beta_0 + \beta_1 lnGDP_i + \beta_2 lnGDP_j + \\ \beta_3 DIST_{ij} &+ \beta_4 lnRXP_i + \beta_5 lnER_{ij} + \\ \beta_6 FTA_{ij} &+ \beta_7 BIT_{ij} + e_{ij} \end{split}$$

Where, RXP_i is the coffee Export Price of Cameroon, ER_j is the Exchange Rate between Cameroon and its trading partners, FTA_{ij} is the Free Trade Agreements between Cameroon and its trading partners, and BIT_{ij} is the Bilateral Investment Treaties between Cameroon and its trading partners.

Estimation of the gravity model is a problematic issue in most cases and has long been debated by researchers. The primary cause behind this is the fluctuating nature of the bilateral trade flows. Economic and political circumstances have the potential to either excessively boost trade or entirely impede its occurrence. This phenomenon is especially evident in developing economies or emerging sectors of a country. An example of this is Cameroon, which has not traded with major coffee export partners for some years.

Zero trade flows create substantial econometric challenges, as the loss of observations in log-linear transformations leads to information loss and biased results (Gómez-Herrera, 2013; Borojo et al., 2022). To simply solve the zero-trade problem, removing these observations from the data set (Bikker, 1987) and formulating the variable as ln(Export+1) dependent (Eichengreen and Irwin, 1995; Guo, 2004) are commonly used. However, Santos Silva and Tenreyro (2006) showed that these traditional methods lead to inconsistent estimates, especially in cases where the heteroscedasticity problem exists, and suggested the Poisson Pseudo-Maximum Likelihood (PPML) model for estimating gravity models. The use of the PPML estimator in the gravity model has been criticized on the grounds that it may yield biased results in situations where zero trade

Cakan et al.

flows predominate and there is overdispersion (Burger *et al.*, 2009; Martínez-Zarzoso, 2013). Nevertheless, a substantial amount of research has shown that PPML maintains its robustness, even in situations of frequent zero trade flows or overdispersion (Santos Silva and Tenreyro, 2011, 2022; Ghazalian, 2019).

Due to its advantages, we used the PPML method for estimation. This model can be estimated only when the dependent variable consists of integer count data. Hence, we rounded the data in our dependent variable, which included fractional observations to integer values. Our gravity model to be estimated with PPML can be formulated as an exponential function as follows:

$$\begin{split} EX_{ij} &= exp \big[\beta_0 + \beta_1 lnGDP_i + \beta_2 lnGDP_j \\ &+ \beta_3 DIST_{ij} + \beta_4 lnRXP_i \\ &+ \beta_5 lnER_{ij} + \beta_6 FTA_{ij} \\ &+ \beta_7 BIT_{ij} \big] + e_{ij} \end{split}$$

Given that the model is in exponential form, dummy variables are interpreted similarly to semi-logarithmic models. In this study, the approach proposed by Halvorsen and Palmquist (1980) was employed for interpreting dummy variables. Accordingly, whereas g represents the relative effect, percentage effect is calculated using the following formula:

$$100 * g = 100 * (e^{\beta} - 1)$$

To test the robustness of the estimation methodology, we employed alternative commonly used estimators. These are the Negative Binomial Maximum Likelihood (NBML) model proposed by Burger et al. (2009) and the OLS with ln(Export+1) modification. Since the negative binomial model is categorized as an integer count model, we used the same rounding modification as the PPML for the dependent variable. In the findings section, we presented the outcomes derived from these estimators along with PPML.

RESULTS AND DISCUSSION

Table 2 presents descriptive statistics of the variables included in the model. As FTA and BIT are dummy variables, their means reflect their respective frequencies. FTAs, for instance, account for 20% of the observations. Cameroon's sole FTA with the countries in the dataset is the agreement with the EU, which came into effect on August 14, 2014. However, as the CEPII database registers agreements that take effect after July 1st in the following year, FTAs are recorded from 2015 onwards. BITs account for 39% of the observations. Cameroon has BIT agreements only with Italy, the USA, Belgium, and Germany, among the countries included in the dataset for this study. Of these, only the BIT with Italy occurred during the observation period, on April 1, 2004. The agreements with other countries came into force prior to the observation period.

Table 3 shows the estimation results of the gravity model. Here, the PPML model is employed as the base model interpretation, while NBML and OLS (Ordinary Least Squares) models are added for robustness check. Examination of the estimation results indicates that estimators produce largely consistent outcomes regarding both the direction and significance levels of the relationships. The only difference is that the OLS method yields statistically significant results for the FTA_{ij}.

The estimation results for our base model show that all variables, with the exception of FTA, are statistically significant. The GDP of importing countries has the highest positive impact of 1.50%, followed by Cameroon's real coffee export price at 0.63%. Additionally, the percentage impact of BITs is measured at 54%. The variable with the most substantial negative effect is Cameroon's GDP, with -5.62%. This is followed by distance and exchange rates with -3.99 and -0.35%, respectively.

Table 2. Descriptive statistics.

Variables	Mean	Std. Dev.	Maximum	Minimum
EX_{ij}	5857.27	7658.47	52590.00	0.00
$lnGDP_i$	7.18	0.07	7.28	7.05
$lnGDP_{j}$	9.85	0.95	11.03	7.91
$lnDIST_{ij}$	8.51	0.27	9.17	8.20
$lnRXP_i$	0.52	0.20	0.91	0.17
$lnER_{ij}$	5.55	1.69	6.60	1.41
FTA_{ij}	0.20	0.40	1.00	0.00
BIT_{ij}	0.39	0.49	1.00	0.00

Table 3. Estimation results for Gravity Model.

Variables	$PPML^a$	NBML^a	OLS $ln(EX_{ij} + 1)$
Cometant	69.41878***	58.74402***	75.23906***
Constant	(11.59736)	(10.81458)	(15.07565)
L. CDD	-5.624733***	-4.627639***	-10.56881***
$lnGDP_i$	(1.430220)	(1.523776)	(2.059889)
In C D D	1.497604***	1.191910***	2.016000***
$lnGDP_{j}$	(0.260985)	(0.152143)	(0.239863)
lm D I CT	-3.994570***	-3.325517***	-4.170305***
$lnDIST_{ij}$	(0.542036)	(0.359847)	(0.585373)
l D.V.D	0.629975*	1.087721***	2.429299***
$lnRXP_i$	(0.337856)	(0.379283)	(0.606308)
les E.D.	-0.355475***	-0.241735***	-0.568053***
$lnER_{ij}$	(0.098317)	(0.065761)	(0.104096)
ET A	-0.170373	-0.029155	0.826028**
FTA_{ij}	(0.228515)	(0.259557)	(0.405091)
חות	0.430819***	0.416284***	0.605192**
BIT_{ij}	(0.145855)	(0.131776)	(0.291410)
Adjusted R ²	0.61	0.50	0.43
N	210	210	210

^a Robust standard errors are in parenthesis, *, **, ***: P< 0.1, P< 0.05, and P< 0.01, respectively.

The negative correlation between Cameroon's GDP per capita growth and coffee exports can be attributed to the increase in domestic purchasing power. This growth enables higher internal consumption, potentially reducing the volume of coffee available for export. Concrete signs of this relationship are evident in Cameroon. The per capita GDP increased by 24% during the study period, indicating growing domestic demand. This is further supported by the rise in coffee processing facilities, with 104 active plants reported by the National Cocoa and Coffee Board (NCCB, 2022). Since 99% of Cameroon's coffee exports are unroasted and only 5% of production is processed domestically (AFCA, 2024), these facilities predominantly serve the local market. Moreover, the negative relationship between income growth and agricultural product exports has also been previously documented (Abdullahi et al., 2022). This shift in demand aligns with the broader mechanism of income elasticity, which suggests that, as incomes grow, domestic consumption can compete with exports. If managed well, this mechanism can produce positive results for coffee exports in the long term. Because sustainable production is a prerequisite for sustainable exports, and sustainable production is possible with alternative sales channels. Establishing a vibrant domestic market is essential. enabling producers to engage in sales even when confronted with conditions detrimental to exports, such as international crises. Therefore, to safeguard against a potential decline in exports due to increased demand, it is essential to support producers with productivity-enhancing policies, such as

facilitating access to agricultural credit, offering incentives for input use, and promoting mechanization.

Another variable that has a negative effect is distance. Each 1% increase in distance reduces export value by 3.99%. Although past studies reached results consistent with ours regarding the direction of the distanceexport relationship, they differ in the magnitude of the effect. In the majority of the studies surveyed, the distance elasticity for coffee exports falls below the level estimated for Cameroon (Sadeghi et al., 2019; Abafita and Tadesse, 2021; Nguyen, 2022). Considering that the distance variable reflects the costs and risks in transportation, this finding may indicate Cameroon's logistical inefficiency in coffee. inefficiency in the port of Douala, Cameroon's largest port, confirms our explanation. Douala's average dwell time for containers (19 days) differs negatively from other African ports such as Dar es Salam (12 days), Mombasa (11 days), and Durban (4 days) (Raballand et al., 2012; Diarra and Tchapa, 2014; World Bank, 2016). Even more concerning, recent studies have demonstrated that Douala's container dwell time has exceeded 21 days (Awah et al., 2021), placing it 340th out of 370 ports in the 2021 Container Port Performance Index (Worldbank, 2022). The World Bank (2016) pointed to the sector's lack of proper regulation as the explanation for this situation. Furthermore, if we accept that this variable also indirectly expresses cultural distances like language differences and varying institutional frameworks between countries (Van Bergeijk and Brakman, 2010; Golovko and Sahin, 2021), the obtained coefficient can also be associated with marketing failure. The Cameroonian government must invest in intercity transportation infrastructure and enhance port efficiency to address logistics shortcomings. This requires digitalizing port data-driven planning, operations, infrastructure upgrades. Additionally, expanding the network of asphalt roads is essential, not only to increase the efficiency

of coffee transport but also to enhance the movement of goods and improve domestic mobility across the country.

Our estimation results show that every 1% decrease in the value of the Central African CFA franc reduces coffee exports by 0.35%. The effect of exchange rates on exports is quite controversial, both theoretically and empirically. The appreciation of a country's currency can weaken that country's competitiveness in the international market. Generally, an increase in the exchange rate reduces the comparative price of exports and increases foreign demand by reducing the prices of domestic goods (Nugroho and Lakner, 2022). In reality, various factors tied to both the country and the sector play a role in determining the correlation between the exchange rate and export dynamics. Examining the case of Cameroon, we that its export price observe approximately half of the global price, as previously noted. Given Cameroon's already highly competitive pricing, an appreciation of its currency may still yield a positive impact on the value of its exports. The literature also reflects on the relative nature of this situation. While a substantial body of evidence supports our study's conclusions (Irshad et al., 2018; Yaday Chattopadhyay, 2024; Eshetu, 2024), there is also a significant volume of evidence with contradictory outcomes (Abdullahi et al., 2021; Abafita and Tadesse, 2021; Nugroho and Lakner, 2022). The estimation results further indicate a positive and significant relationship between coffee export prices and export value. While this finding diverges from the literature (Phung and Nguyen, 2022), it aligns with our results for the exchange rate. Similar to the exchange rate, the general assumption is that competitive pricing boosts total exports. However, this no longer holds for Cameroon, which already offers highly competitive prices compared to the global Cameroonian Therefore, market. policymakers should prioritize qualityenhancing production policies that increase prices rather than focusing on selling more products at competitive prices to boost income from coffee exports. This can be achieved by expanding agricultural extension and advisory services. In this way, the necessary technical support is provided to help traditional producers improve the quality of their products. Additionally, producers are informed about certified production techniques, such as organic farming, which offers high-price premiums. In this context, it is crucial to financially support and motivate producers who engage in certified production.

Our estimation results for international agreements revealed that FTAs had no statistically significant effect on coffee exports, whereas BITs have shown a positive effect. This finding is consistent with the literature, which provides evidence of positive relationships between exports and BITs (Heid and Vozzo, 2020; Xiong, 2022). However, this study represents the first documented case in the context of a developing country. It is not surprising that, irrespective of the development level of the countries, BITs and exports display similar effects. One of the most significant advantages of BITs is their capacity to facilitate foreign direct investment, which, as studies have demonstrated (Samantha and Haiyun, 2018; Sahoo and Dash, 2022), enhances exports in both developing and developed countries. Furthermore, BITs offer several additional benefits that can boost export volumes, including promoting trade in specialized intermediate inputs and mitigating risks through enhanced legal protections (Heid and Vozzo, 2020). Contrary to the widely held assumption that FTAs boost exports, recent research on coffee by Abafita and Tadesse (2021) has found no statistically significant relationship, as in our study. They explain this by noting that coffee trade primarily flows from the least developed countries to more developed countries, while most regional trade agreements (RTAs) in their study are intra-regional, which may diminish the impact of inter-regional RTAs on coffee trade. In the Cameroonian case, the most

plausible explanation for the lack of a significant relationship is the steady decline in coffee production since the FTAs came into force. Despite the facilitation of bilateral trade, the continuous drop in production has prevented the Cameroonian coffee sector from benefiting from these agreements. These findings imply that the cornerstone of increasing Cameroon's exports through international agreements is ensuring a steady and consistent production Additionally, the Cameroonian government should analyze the existing and agreements suggest strategic adjustments explicitly tailored to the coffee sector to maximize the impact of FTAs.

CONCLUSIONS

Our study uncovered key insights into the underlying dynamics of Cameroon's coffee exports. The most significant challenge is the negative impact of rising domestic demand for coffee, driven by income growth on export levels. However, if adequately managed through policies aimed at increasing productivity, such as better access to credit and mechanization, this demand could support domestic consumption and sustainable exports. Cameroon's logistical inefficiencies, particularly when compared to its competitors, further constrain exports. the positive side, international On agreements and focus on quality rather than price competition can influence exports positively. To fully realize its potential, Cameroonian government must provide technical and financial support to producers, enhance efficiency at the Douala port, and critically assess its international agreements to develop strategies that maximize their benefits.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to the anonymous reviewers whose constructive comments and guidance

- Cakan et al.

significantly improved the early version of the paper.

REFERENCES

- Abafita, J. and Tadesse, T. 2021. Determinants of Global Coffee Trade: Do RTAs Matter? Gravity Model Analysis. Cogent Econ. Financ., 9(1): 1892925.
- Abdullahi, N. M., Shahriar, S., Kea, A. M., Abdullahi, Zhang, Q. and Huo, X. 2021. Nigeria's Cocoa Exports: A Gravity Model Approach. *Cienc. Rural*, 51(11): e20201043.
- 3. Abdullahi, N. M., Zhang, Q., Shahriar, S., Irshad, M. S., Ado, A. B. and Huo, X. 2022. Examining the Determinants and Efficiency of China's Agricultural Exports Using a Stochastic Frontier Gravity Model. *PLoS ONE*, **17(9)**: e0274187.
- 4. AFCA 2024. *African Fine Coffee Association (AFCA)*. About Cameroon. https://afca.coffee/portfolio-item/cameroon/Accessed 25.01.2024.
- Awah, P. C., Nam, H. and Kim, S. 2021. Short Term Forecast of Container throughput: New Variables Application for the Port of Douala. *J. Mar. Sci. Eng.*, 9(7): 1-20.
- 6. Bikker, J. A. 1987. An International Trade Flow Model with Substitution: An Extension of the Gravity Model. *Kyklos*, **40(3)**: 315-337.
- 7. Borojo, D. G., Yushi, J. and Miao, M. 2022. The Impacts of Economic Policy Uncertainty on Trade Flow. *Emerg. Mark. Financ. Tr.*, **58(8)**: 2258-2272.
- 8. Burger, M., Van Oort, F. and Linders, G. J. 2009. On the Specification of the Gravity Model of Trade: Zeros, Excess Zeros and Zero-Inflated Estimation. *Spat. Econ. Anal.*, 4(2): 167-190.
- CEPII 2024. The CEPII Gravity Database. https://www.cepii.fr/CEPII/en/bdd_modele/ bdd_modele_item.asp?id=8 Accessed 28.08.2024
- Diarra, G. and Tchapa, T. 2014. Data Collection for Cargo Delays at the Port of Douala. Mission Report, World Bank.
- 11. Eichengreen, B. and Irwin, D. A. 1995. Trade Blocs, Currency Blocs and the Reorientation of World Trade in the 1930s. *J. Int. Econ.*, **38(1-2)**: 1-24.

- 12. Eshetu, F. 2024. Determinants of Ethiopian Sesame and Coffee Exports to Its Major Trade Partners: Application of the Gravity Model. *Cogent Soc. Sci.*, **10(1)**: 2334114.
- 13. FAOSTAT. 2024. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home. Accessed 28.08.2024.
- 14. FXTOP. 2024. *Currency converter. Real Time Exchange Rates.* https://fxtop.com/. Accessed 28.08.2024.
- 15. GCP. 2016. African Coffee Sector: Addressing National Investment Agendas on a Continental Scale Cameroon Case Study. Global Coffee Platform (GCP). https://www.globalcoffeeplatform.org/ Accessed 24.01.2024.
- Ghazalian, P. L. 2019. Canada's Beef Exports: Border Effects and Prospects for Market Access. Can. J. Agric. Econ., 67(1): 53-74.
- Golovko, A. and Sahin, H. 2021. Analysis of International Trade Integration of Eurasian Countries: Gravity Model Approach. *Eurasian Econ. Rev.*, 11(3): 519-548.
- 18. Gómez-Herrera, E. 2013. Comparing Alternative Methods to Estimate Gravity Models of Bilateral Trade. *Empir. Econ.*, **44(3)**: 1087-1111.
- 19. Guo, R. 2004. How Culture Influences Foreign Trade: Evidence from the US and China. *J. Socio-Econ.*, **33(6)**: 785-812.
- 20. Halvorsen, R. and Palmquist, R. 1980. The Interpretation of Dummy Variables in Semilogarithmic Equations. *Am. Econ. Rev.*, **70(3)**: 474-475.
- Heid, B. and Vozzo, I. 2020. The International Trade Effects of Bilateral Investment Treaties. Econ. Lett., 196: 109569.
- Irshad, M. S., Xin, Q. and Arshad, H. 2018. Competitiveness of Pakistani Rice in International Market and Export Potential with Global World: A Panel Gravity Approach. Cogent Econ. Financ., 6(1): 1486690.
- 23. Jadhav, S. and Ghosh, I. 2023. Future Prospects of the Gravity Model of Trade: A Bibliometric Review (1993–2021). *Foreign Trade Rev.*, **59(1):** 26-61
- 24. Jagdambe, S. and Kannan, E. 2020. Effects of ASEAN-India Free Trade Agreement on Agricultural Trade: The Gravity Model

- Approach. World Dev. Perspect., 19: 100212.
- Kufa, T. 2010. Environmental Sustainability and Coffee Diversity in Africa. Paper Presented in International Coffee Organization (ICO) World Coffee Conference, February 2010, Guatemala City. PP.26-2. Available online at ttp://dev.ico.org/event_pdfs/wcc2010/presentations//wcc2010-kufa.pdf
- Kircicek, T. and Özparlak, G. 2023. The Essential Role of International Trade on Economic Growth. J. Econ. Financ. Account., 10(4): 191-202.
- Karambakuwa, R. T. and Ncwadi, R. 2020. Trade Structure as an Enabler of Economic Growth in Africa. *Bus. Manag. Rev.*, 11(1): 120-130.
- Martínez-Zarzoso, I. 2013. The Log of Gravity Revisited. Appl. Econ., 45(3): 311-327.
- MINADER. 2009. Cameroon Coffee Sector Development Strategy 2010-2015. Ministry of Agriculture and Rural Development of Cameroon (MINADER). Yaoundé, Cameroon.
- Nawrot, K. A. 2023. Assessing the Effects of Trade Regionalism in East Asia– Evidence from Augmented Gravity Models. Appl. Econ., 55(12): 1285-1297.
- 31. NCCB. 2022. *National Cocoa and Coffee Board*. Available Online: www.oncc.cm. Accessed 09.12.2022.
- 32. Nguyen, D. D. 2022. Determinants of Vietnam's Rice and Coffee Exports: Using Stochastic Frontier Gravity Model. *J. Asian Bus. Econ. Stud.*, **29(1)**: 19-34.
- Nsabimana, A. and Tirkaso, W. T. 2020. Examining Coffee Export Performance in Eastern and Southern African Countries: Do Bilateral Trade Relations Matter? Agrekon, 59(1): 46-64.
- 34. Nugroho, A. D. and Lakner, Z. 2022. Effect of Globalization on Coffee Exports in Producing Countries: A Dynamic Panel Data Analysis. *J. Asian Financ. Econ. Bus.*, **9(4)**: 419-429.
- Phung, Q. D. and Nguyen, T. C. 2022. An Analysis of Factors Impacting Vietnam's Coffee Exports: An Approach from the Gravity Model. J. Asian Financ. Econ. Bus., 9(8): 1-6.
- Raballand, G., Refas, S., Beuran, M. and Isik, G. 2012. Why Does Cargo Spend

- Weeks in Africa: Lessons from Six Countries. World Bank.
- René, N., Luc, N. N., Bergaly, K. C. and Daniel, G. 2023. Economic Performance of Certified Cocoa-Based Agroforestry Systems in Cameroon. *Environ. Dev.* Sustain., 25(5): 3843-3865.
- 38. Sadeghi, P., Hosseini, S. S. and Moghaddasi, R. 2019. Analyzing Iran's Export Market Potential Using Gravity Model: Evidence from Date Market. *J. Agric. Sci. Technol.*, **21(4):** 773-783.
- Sahoo, P. and Dash, R. K. 2022. Does FDI Have Differential Impacts on Exports? Evidence from Developing Countries. *Int. Econ.*, 172: 227-237.
- Sanjuán-López, A. I. and Dawson, P. J. 2010. Agricultural Exports and Economic growth in Developing Countries: A Panel Cointegration Approach. J. Agric. Econ., 61(3): 565-583.
- 41. Santos Silva, J. M. C. and Tenreyro, S. 2006. The Log of Gravity. *Rev. Econ. Stat.*, **88(4)**: 641-658.
- 42. Santos Silva, J. M. C. and Tenreyro, S. 2011. Further Simulation Evidence on the Performance of the Poisson Pseudo-Maximum Likelihood Estimator. *Econ. Lett.*, **112(2)**: 220-222.
- 43. Santos Silva, J. M. C. and Tenreyro, S. 2022. The Log of Gravity at 15. *Port. Econ. J.*, **21**(3): 423-437.
- 44. Samantha, N. P. G. and Haiyun, L. 2018. Does Inward Foreign Direct Investment Promote Export? Empirical Evidence from Sri Lanka. *Bus. Econ. Res.*, 8(3): 1-18.
- Senbet, L. W. and Simbanegavi, W. 2017. Agriculture and Structural Transformation in Africa: An Overview. J. Afr. Econ., 26(Suppl 1): 3-10.
- Sharma, P., Rohatgi, S. and Jasuja, D. 2023. Scientific Mapping of Gravity Model of International Trade Literature: A Bibliometric Analysis. J. Scientometr. Res., 11(3): 447-57.
- 47. Shillie, P. N. and Egwu, M. J. B. 2020. Value Added Agriculture: An Analysis of Economic Relations in the Coffee Value Chain in the North West Region of Cameroon. *Ulus. Ekon. İşlet. Polit. Derg.*, 4(2): 281-296.
- 48. Tinbergen, J. 1962. Shaping the World Economy. Suggestions for an International Economic Policy. New York: Twentieth Century Fund.

_ Cakan et al.

- 49. TRADEMAP. 2024, Trade Statistics for International Business Development. https://www.trademap.org. Accessed 28.08.2024
- Van Bergeijk, P. A. and Brakman, S. 2010.
 The Comeback of the Gravity Model, the Gravity Model in International Trade: Advances and Applications. Cambridge University Press.
- VOA. 2019. Cameroon Aims to Drink, Produce More Coffee. VOANEWS AFRICA. https://www.voanews.com/a/cameroonaims-to-drink-produce-morecoffee/4881136.html
- World Bank. 2016. Cameroon Country Economic Memorandum Markets, Government, and Growth. Report No: 110907-CM.
- 53. World Bank. 2022. The Container Port Performance Index 2021: A Comparable Assessment of Container Port Performance.

- World Bank, Washington, DC. License: Creative Commons Attribution CC BY 3.0 IGO.
- World Bank. 2024. World Development Indicators. https://databank.worldbank.org/source/worl d-development-indicators. Accessed 28.08.2024.
- 55. Xiong, T. 2022. The Effect of Bilateral Investment Treaties (BITs) on the Extensive and Intensive Margins of Exports. Q. Rev. Econ. Financ., 84: 68-79.
- Yadav, A. K. and Chattopadhyay, U. 2024.
 Determinants of India's Cotton Export Performance: An Empirical Analysis. *Int. Econ.*, 179: 100521.
- Yusiana, E., Hakim, D. B., Syaukat, Y. and Novianti, T. 2022. Analysis of Factors Influencing Thai Rice Trade Based on Gravity Model. *IOP Conf. Ser.: Earth Environ. Sci.*, 951: 012039.

تحلیل عوامل مؤثر بر صادرات قهوه در کامرون: رویکرد مدل جاذبه

ولي آنيل چاکان، آمادو مرلو نسانگو پوفورا، و تولگا تيپي

چکیده

این مطالعه عوامل مؤثر بر صادرات قهوه در کامرون را بررسی کرد. برای این منظور، از مدل جاذبه استفاده کردیم. با توجه به ویژگیهای نمونه مورد نظر، مدل با روش پواسون (Poisson) یعنی درست نمایی شبه حداکثر (PPML) تخمین زده شد. ماده اصلی این مطالعه، مجموعهای از دادههای پانلی بود که سالهای 2001 تا 2021 را برای ده کشور، شرکای اصلی صادرات قهوه کامرون، پوشش میداد. یافتهها نشان میدهد که تولید ناخالص داخلی کشورهای واردکننده، قیمت صادرات قهوه و معاهدات سرمایه گذاری دوجانبه (BIT) تأثیر مثبتی بر صادرات دارند، در حالی که مسافت، نرخ ارز و تولید ناخالص داخلی کامرون تأثیرات منفی دارند.این نتایج، کاستیهای زیرساختهای لجستیکی کامرون و اهمیت تولید پایدار و با کیفیت بالا را برجسته می کند. دولت کامرون باید با گسترش خدمات ترویج کشاورزی و ارائه مشوقهای سرمایه گذاری و مشارکت با کشاورزان، سیاستهایی را برای بهبود کیفیت و بهره وری تولید اجرا کند تا به این چالشها رسیدگی شود. علاوه بر این، بهبود کارایی در بندر مستلزم دیجیتالی شدن عملیات، اجرای برنامه ریزی مبتنی بر داده و سرمایه گذاریهای استراتژیک در زیرساختها خواهد بود.

An Extension Model Compatible with Drought Management in Iran

Jalal Mahmoodzadeh¹, Mohammad Sadeq Sabouri^{1*}, Mehrdad Niknami¹, and Elham Danaei²

ABSTRACT

The main purpose of this research was to design an extension model compatible with drought management in Iran. The research utilized a mixed research approach, combining both qualitative and quantitative methods. In the qualitative section, data was collected through semi-structured interviews, observation, and review of relevant sources. The participants in this section were 15 of extension experts with significant experience in drought management, selected through purposeful and snowball sampling methods. The data was analyzed using the systematic grounded theory approach with MAXQUDA10 software, following Strauss and Corbin's (1998) approach. In the quantitative section, the statistical population included experts, trainers, and professors whose field or organizational post was related to water resources, irrigation and drainage, agricultural extension and development, and drought, working full-time in the Ministry of Agricultural Jihad (N= 6018). The sample size was determined using Cochran's formula, with a total of 372 participants. Structural Equation Modeling (SEM) and PLS software were used for data analysis. The results showed that the main components of the model were the detailed requirements of drought management (coefficient of coefficient 0.013), extensional methods of drought management (0.033), contextual conditions (0.1011), supporting conditions (0.166), conditions and causes (0.102), and consequences of drought management (0.065). Finally, an extension model compatible with drought management in Iran was presented.

Keywords: Contextual conditions, Drought adaptation, Supporting conditions.

INTRODUCTION

Drought is an extreme climatic phenomenon that occurs throughout the world with different intensities, especially in arid and semi-arid regions, and leaves harmful effects on the surface and groundwater resources, agriculture, economy, and generally all aspects of life. Given Iran's location in the arid and semiarid belt of the world, it is crucial to study drought as a widespread natural disaster with long-term effects in different sectors (Mousavi & Niknami (2021). It can be said that drought is a climatic reality in Iran, considering that 27 droughts have occurred

in this country over the last 40 years (Zarafshani et al., 2016). Drought and its undesirable consequences for natural resources, agricultural production, and economic and social development are some of the fundamental challenges of Iran and drought-prone regions. Considering the frequency and significant extent of its occurrence, it is essential to implement directional mechanisms to counteract it (Savari and Skandari Damaneh, 2025; Solh and Van Ginkel, 2014). According to a UN report, 18 countries in the world will face water shortages in the near future, and it is predicted that more than two-thirds of the world's population will be in severe water

¹ Department of Agricultural Extension and Education, Ga. C., Islamic Azad University, Garmsar, Islamic Republic of Iran.

² Department of Horticulture, Ga.C., Islamic Azad University, Garmsar, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: Ms.sabouri@iau.ac.ir

shortage conditions by 2025 (Pozzi et al., 2013; Shabanali Fami et al., 2020). These disasters are partially caused by climate change (Rahman and Alam, 2016), and developing countries are more strongly affected by their risks than other regions due to deficient knowledge and adaptation to this phenomenon (Xenarios et al., 2016). The main climatic problem in dry areas is not the drought itself but the attitude toward it as an ordinary natural phenomenon and the lack of regulation of various water programs and uses based on that attitude (Khorambakht et al., 2013). Due to its biological nature and strong dependence on nature, agriculture is the largest consumer of water resources in most countries. In Iran, approximately 88% of water resources are used in agriculture (Pouralimoghaddam et al., 2022). Rural communities always face many effects of drought, including economic and social problems. which should not he underestimated, comprehensive and a approach is required to mitigate these impacts and achieve successful adaption (Kiem and Austin, 2013).

Various factors contribute to the occurrence of drought and it is beyond human capabilities to make changes or interventions in these factors. Nevertheless, measures can be taken in different dimensions to cope with and reduce the negative consequences of drought. Waterintensive agriculture has suffered significant damage, resulting in the losses and degradation of rangelands and pastures and the decline in livestock numbers and productivity (FAO, 2017). Economically, drought imposes an average annual loss of 6-8 billion USD globally, with adverse effects on farmers' revenue (production quantity and quality) being the most significant risk (Mardy et al., 2018). Consequently, it can be inferred that drought substantially threatens agriculture-based communities (Campbell et al., 2011; Fanni et al., 2016), impacting the productive, economic, social, and environmental sectors (Naderi and Karami Dehkordi, 2019). Various studies have indicated that drought

has numerous social effects, including reduced social welfare, physical and mental health decline, increased social isolation, heightened conflicts, decreased trust and cohesion, lowered social capital, increased suspicion toward governmental institutions, longer working hours, decreased leisure increased divorce time. rates, destabilized family systems, posing a challenge fundamental to farmers' livelihood stability (Keshavarz and Karami, 2010; Keshavarz et al., 2013). Therefore, communities exposed to drought are vulnerable to a lower standard of living (De Silva and Kawasaki, 2018). In this regard, improving farmers' capacity in areas like adaptation and resilience in climatic conditions is necessary to sustain livelihoods (Alam et al., 2016), along with strategies for adapting to water scarcity and drought conditions (Yazdanpanah et al., 2015). In this context, the overall objective of this research was to design a model of extension compatible with drought management in Iran.

and environmental changes Climate significantly impact the livelihoods of communities, especially in rural areas, and affect agricultural activities in different ways (Shakouri and Merseli, 2018). Therefore, farmers need to adopt behaviors compatible with the impacts of climate change to protect their livelihoods (Savari and Eskandari Damaneh, 2019) and minimize the adverse effects of these changes (Nilsen et al., 2012). Adaptation strategies mainly consist of medium- and long-term measures that farmers employ to improve the resilience of their farming units to drought-induced stresses (Ghambarali *et al.*, 2012). Adaptation strategies are defined in risk management and crisis management (Kheyri et al., 2021; Tavakoli et al., 2015). In general, they encompass individual, social, environmental, economic, institutional dimensions, which directly and indirectly affect agricultural production in both predictable and unpredictable ways (Smit and Pilifosova, 2003; Deressa, 2010; Ommani, 2011; FAO, 2012; Gomez and Blanco, 2012; Feola *et al.*, 2015). Therefore, in agricultural and rural areas, it is impossible to rely solely on agriculture to maintain production or improve people's lives. Instead, a wide range of drought adaptation strategies must be chosen (Thieme, 2006).

In order to face the effects of drought, farmers need to be empowered in various economic, social and technical dimensions. In this regard, it seems that educational and extensional activities can be implemented to improve drought management by farmers. Agricultural extension services not only provide information on various aspects of mentioned. but help items secure agricultural related services from banks, organizations and companies. The most important functions of agriculture extension however, transfer services, are technologies and agricultural education of farmers to equip them with sufficient and suitable alternatives and solutions and place them in a decision making (Al-Zahrani et al., 2016). Optimal management, extension, and appropriate use of water in agriculture is essential. Agricultural education experts should implement extensional programs to combat water scarcity at the national and provincial levels. These programs should cover producers of agricultural and horticultural products, as well as the implementing agents. By increasing knowledge and skills among producers and implementing agents, we can increase the efficiency of water resources and improve the quantity and quality of production in farms and orchards (Rahimian, 2015). One of the main challenges faced by water experts is the lack of conservation in improvement water management, particularly in irrigation, as well as the absence of proper organizations for farmers to promote their use of water. This is due to the farmers' lack of awareness about the water crisis and their disregard for it, as well as the insufficient knowledge of extension experts in providing effective plans. The low efficiency of irrigation in agricultural lands is also a result of the lack of timely and

effective extension, leading to the loss of Furthermore. the absence of integrated water resource management plans in the watershed, and the lack of appropriate farming patterns in accordance with the sustainable capacity of water resources in the region, are also attributed to the lack of extension experts' knowledge. Additionally, the lack of awareness among beneficiaries about modern methods and the absence of specialized and knowledgeable experts in this field are also major issues. Therefore, an extensional model for irrigation management and better coping with the drought in Iran leads to improved irrigation management, increased irrigation efficiency, and improved agricultural development, which is of great importance. Table 1 provides a summary of studies regarding extension and drought management.

MATERIALS AND METHODS

This study used cross-sectional methodology and a survey to gather descriptive data for a practical goal. Employing a mixed approach, incorporating both quantitative and qualitative methods (Johnson and Onwuegbuzie, 2004). In the initial stage of this research, data collection included semi-structured methods interviews, observation, and review of relevant sources. The systematic grounded theory with MAXQUDA10 software was used for data analysis and using Strauss and Corbin (1998) approach. Coding includes three stages: open coding, axial coding and selective coding (Lee, 2001; Creswell and Creswell, 2017). The qualitative section of the study included a sample of 15 senior experts and academic members with practical and scientific experience in drought (Table 2). They were selected using purposeful and snowball sampling methods.

For the second stage, confirmatory factor analysis, structural equation modeling, and Smart-PLS software were employed. For

Table 1. A summary of influential variables in a model of extension compatible with drought crisis management.

Research Title	Author	Method	Findings
Investigating the social consequences of drought on rural areas (Case study: Shosef District, Nehbandan City)	Fal Suleiman et al. (2013)	Survey	In the environmental dimension, drought causes the drying up of surface water, the destruction of vegetation, and an increase in dust. In the economic aspect, the income level has decreased, the unemployment rate has increased, and agricultural and livestock production has decreased.
Extension pattern compatible with drought management in Khorasan Razavi Province, Iran	Mousavi <i>et al.</i> (2021)	Qualitative	Extension compatible with drought management requires cooperation and coordination between different institutions and organizations, and educational and extensional programs can significantly improve drought management.
Extension pattern compatible with drought management in Alborz Province, Iran	Firouzjani (2018)	Qualitative	Planning, development, and implementation of water resources and drought management plans for each region should be based on the conditions and resources available in that region. It is also essential to educate and promote concepts related to drought management.
Development of extension pattern for drought management in Iran	Rahimi <i>et al.</i> (2019)	Qualitative	Drought management requires the development of suitable extension models. Improving the awareness and capability of the society and water users in the field of drought management is one of the main success factors in the implementation of extensional models.
extension management using new media	Azari <i>et al.</i> (2017)	Qualitative	Teaching and extension the concepts related to drought management helps improve the awareness of society and farmers, improving drought management in Iran.
The perception of soil erosion and its social and economic factors in different regions of Sri Lanka.	Udayakumara et al. (2010)	Survey	agricultural workforce, household size, literacy rate, property security, conservation costs, promotional education, membership in local organizations, professional skills, financial capital, distance to land, and farm income are all important factors in understanding soil erosion in the studied region.
Drought management planning policy: from Europe to Spain	Hervás-Gámez & Delgado- Ramos (2019)	Qualitative	A key milestone in terms of European drought-risk management was set by the 2007 EC Communication "Addressing the Challenge of Water Scarcity and Droughts in the European Union". This presented an initial set of seven policy instruments for tackling water scarcity and drought issues at European, national, and regional levels. These included options in relation to 'putting the right price tag on water', 'allocating water more efficiently', and 'fostering water efficient technologies and practices'. The Communication also recommended the development of DMPs.
The Impacts of Drought and the Adaptive Strategies of Small- Scale Farmers in uMsinga, KwaZuluNatal, South Africa	Lottering et al.(2021)	Survey	Farmers adopted various adaptive strategies to adapt to drought such as the use of early-maturing crops, mixed cropping systems and drought-tolerant crops. With regard to mitigation, a majority of farmers did not prepare for drought, and those who did utilized indigenous methods of conserving water such as rainwater harvesting, the use of wells, and migrating for alternative employment.
Assessing agricultural drought management strategies in the Northern Murray-Darling Basin	Aitkenhead et al.(2021)	Qualitative	Government Assistance is the most used ADMS for Paroo Shire, the Maranoa Region and Murweh Shire, Whereas the MDB Plan is mainly used in the Goondiwindi Region.

Table 2. Frequency distribution of demographic and professional characteristics of the studied people.

Characteristic	Strata	Abundance
	< 30	1
Age	40-31	3
Average= 48.36	50-41	6
	60-51	5
C 1	Man	12
Gender	Female	3
	Master's	4
Educational level	degree	
	PhD	11
	Water and	5
	irrigation	
Field of atudy	Agriculture	7
Field of study	extension	
	agricultural	3
	development	

this analysis, the statistical population consisted of 6018. They were experts, trainers, and faculty members whose field or organizational post was related to water resources, irrigation and drainage, drought, agricultural extension and development sciences and were employed full-time in the Ministry of Agricultural Jihad in Iran. The statistical sample was determined using Cochran's formula. The number of samples

was determined to be 372 experts (Table 3). Sampling method was stratified.

Validity and Reliability

Guba, and Lincoln (1985) method was used to check reliability and validity. The indexes used were Dependability and Transferability. Based on this, re-coding was done in two different time periods and two other researchers were used. Based on the results, the dependability index was 74% and the transferability index was 71%. Considering that they were more than 60%, it can be said that the indicators had a favorable condition.

Confirmatory factor analysis was used within the SEM framework to assess the proposed model's validity (Hosseinizare 2017). To examine the reliability of the questionnaire, a pilot study was conducted with non-sampled respondents to make necessary revisions. The reliability or confidence level of the variables was estimated by Cronbach's Alpha coefficient (Table 4).

Table 3. The number of samples in each of the three fields.

Category	Statistical population	Sample size
Experts	4390	271
Trainers and researches	930	57
faculty members	698	43
total	6018	372

Table 4. Cronbach's Alpha coefficient for questionnaire factors.

Row	Variables	Number of items	Cronbach's Alpha coefficients
1	Management before drought	15	0/691
2	Management after drought	11	0/701
3	Management during drought	11	0/630
4	Extension system adapted to drought	13	0/941
5	Supportive policies	9	0/832
6	Consequences of drought	17	0/852
7	Disseminational and educational methods	12	0/754
8		14	0/775
	Causal conditions		
9	Contextual conditions of drought	12	0/811

Table 5.	Frequency	distribution	of	demographic	and	professional	characteristics	of	the	studied	
people.											

Characteristic	Strata	Abundance	Percent	Cumulative
				percentage
A	20-30	79	3.21	3.21
Age n= 372	40-31	93	25	3.46
	50-41	134	36	3.82
Average= 40.46	60-51	66	7.17	100
Gender	Man	284	3.76	Mode= Man
n= 372	Female	88	7.23	
Educational laval	Bachelor's degree	60	1.16	1.16
Educational level Mode= Master's degree	Master's degree	194	2.52	3.68
	Ph.D.	118	7.31	100
	Science	55	8.14	
Field of stude.	Agricultural	165	3.44	
Field of study n= 218	engineering			Mode= Agriculture
11-218	Humanities	73	6.19	
	Other	33	9.8	
	5-1	6	1.6	1.6
337 - 1	6-10	75	20.2	21.8
Work experience	11-15	136	36.5	58.3
n= 218	16-20	123	33.1	91.4
Average= 12.99	21-25	14	3.8	95.2
	26-30	15	4.8	100

RESULTS

Examining the age of the responders showed that the highest frequency (36%) was related to the age group of 41-50 years. Also, 284 (76.3%) of the responders were male (the highest frequency), and 88 (23.7%) were female. In terms of the educational level, the highest frequency was related to the MSc degree with a frequency of 194 (52.2%). Among the study fields, agricultural engineering had the highest frequency of 165 people (44.3%). Regarding experience, the highest frequency was related to 11-15 years with a frequency of 136 (36.5%). (Table 5).

In the structural equation model methodology, it is first necessary to study the validity of the structure in order to determine whether the indicators selected to measure the desired structures have the necessary accuracy i.e., the questions is to check whether the variables were chosen correctly or not? For this purpose, Confirmatory Factor Analysis (CFA) was used. In this method, the factor load of each

indicator with its structure must be higher than 0.4.Factor loadings were calculated by measuring the correlation between indicator and connected construct. This suggests acceptable reliability regarding the measurement model (Table 6).

After ensuring the existence or non-existence of a causal relationship between the research variables and checking the appropriateness of the observed data with the conceptual model, the research hypotheses were also tested using SEM (the PLS approach). Tables 7 and 8 depict the results of running the model, and Tables 11 presents the results of testing the hypotheses.

Table 7 shows the values of R² that represent the explained variance. Based on this, supporting conditions with a coefficient of 0.16 has the greatest effect, and consequences of drought with a coefficient of 0.06 has the least effect of drought management. The total variables have explained 0.15 of the variance of the dependent variable.

The values listed in Table 8 shows the T values. For each factor to be significant, the

Table 6. Factor loadings under the modified components of the extension drought management model.

Factors	Manifesting variable	Factor loading
Contextual	The presence of weather and climate information centers	0.731
conditions	Information capacity of agricultural service centers	0.525
	The existence of agricultural and irrigation cooperatives	0.498
	The existence of training centers in the field of drought management	0.494
	Agriculture to financial resources	0.493
	Insensitivity of people and social networks	0.802
	Unauthorized exploitation of water resources	0.462
	The government's insensitivity to the issue	0.460
Causal conditions	Low level of education	0.455
	Weak financial base of farmers	0.447
	Weakness of water infrastructure	0.408
Intervening	Crop insurance coverage	0.675
conditions	Guaranteed purchase of agricultural products	0.671
	Investing in the infrastructure of irrigation networks	0.569
	Water pricing and sale	0.536
	Granting loans and free facilities	0.448
	Effective monitoring of the license of agricultural wells	0.447
	Supporting organizations and cooperative companies in the water sector	0.424
Dissemination variables	Considering and measuring the educational- dissemination needs of farmers	0.612
	Using radio and television agricultural programs (mass media)	0.583
	Holding educational workshops	0.569
	Using dissemination personal messengers	0.558
	Using the Internet and virtual networks	0.516
	Visiting new irrigation systems	0.506
Consequences	Increase in fake jobs	0.905
1	Reduction of cultivated area	0.903
	Decrease in income	0.808
	Insecurity	0.795
	Increase in input prices	0.790
	Reducing the price of agricultural land	0.730
	Decrease in production	0.713
	Decreased quality of life	0.707
	Decrease in welfare	0.598
	Reduction of local communication among people	0.591
	Increase in unemployment rate and immigration	0.582
Requirements for	Assessing the educational- dissemination needs of farmers	0.842
extension drought	Providing extension specialist human resources	0.652
management	Reforming the organizational structures of extension	0.591
	Reforming the financial structures of extension organizations	0.462
	Increasing the professional qualifications of extension agents	0.411

Table 7. The measurement of the main model and the results of the hypotheses in the standard mode. Please check the numbers in this Table with the above text.

Variable	R^2	Path coefficient
Drought management (the dependent variable)	0.155	-
Detailed requirements of drought management	0.00	0.013
Extensional methods of drought management	0.00	0.033
Contextual conditions	0.00	0.1011
Supporting conditions	0.00	0.166
Conditions and causes	0.00	0.102
Consequences of drought	0.00	0.065

Table 8. The measurement of the original model and the results of the hypotheses in the standard mode.

Variable	T values
Drought crisis management (The dependent variable)	-
Detailed requirements of drought crisis management	4.874
Extensional methods of drought crisis management	2.207
Contextual conditions	2.094
Supporting conditions	4.661
Conditions and causes	4.812
Consequences of drought	2.029

value of T should be significant at the error level of 0.05, that is, if its value is outside the range (1.96 and -1.96), the effect of this component is significant. Based on the listed results, all paths are significant (Table 8).

Table 9 shows the factor loading values to answer the question of whether the questions to measure the variables are chosen correctly or not. To have the appropriate accuracy, the factor loading should be higher than 0.4. Based on the results listed in Table 9, most factor loadings are greater than 0.4.

Table 10 shows the T values of the indicators used for the structures. For each indicator to be significant, the value of T is significant at the error level of 0.05, that is, its value is outside the range (1.96 and -1.96), and thus, this indicator correctly measures the desired component. Based on the results shown in Table 10, all the indicators used are significant.

The effect of the independent variable on the dependent variables is depicted in Table 11. The significance coefficient (t-statistic) of the output model of SEM was used to test the research hypotheses. If the t-statistic was more than 1.96 or less than -1.96 (with a 5% error level), the hypotheses would be confirmed, and the significant effect of the variable would be achieved. It can also be seen in the measurement model that the factor coefficient for each variable is higher than the value of 0.50%. Table 11 presents a summary of the results of hypothesis testing.

Table 12 presents Composite Reliability (CR), coefficient of determination (R²), Cronbach's Alpha, communality values, and communal reliability (AVE) for the main components of the research.

To check the model's fit in PLS, we used the global quality criterion proposed by Amato *et al.* (2004).

GOF =
$$\sqrt{communality} \times \overline{R^2}$$

The index of Fit Of the General model (Goodness-of-Fit Index for PLS Structural Equation Modeling (GOF) was 0.568%, so, it can be accepted that the general model of the research has a good fit. The high fit of the model shows that this model is well explained (Table 13).

DISCUSSION

Agricultural sector requires specific adaptation to cope with water scarcity and drought (Yazdanpanah *et al.*, 2015; Delphian, 2016). To address this challenge, an extension model should be designed based on local needs, culture, local language, and appropriate communication methods in each region to mitigate the negative impacts of these changes (Ifeanyi-obi *et al.*, 2012; Engle, 2011).

Due to the level of knowledge and low adaptation to the phenomenon of drought, developing countries are more affected by the risks associated with it than other regions (Xenarios *et al.*, 2016). There are many reasons for this, including the lack of access to water and extension specialists, lack of practical solutions for drought management and lack of extensional recommendations in drought management Also, the results of studies indicate an increase in the number of droughts in Iran (Firoozi *et al.*, 2019) In this

Table 9. The measurement of the final model in the standard mode.

Correlation coefficient 0.560 0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.170
0.167
0.10 /
0.440
0.110

Table 9 continued...

Continued of Table 9

Variable	Sign	Factor loading	Correlation coefficient
Drought management (The dependent variable)	Critical	1.00	
Consequences	CH1	0.808	0.001
-	CH2	0.906	
	CH3	0.591	
	CH4	0.571	
	CH5	0.795	
	CH6	0.707	
	CH7	0.490	
	CH8	0.682	
	CH9	0.733	
	CH10	0.598	
	CH11	0.713	
	CH12	0.903	
	CH13	0.510	
	CH14	0.833	
	CH15	0.742	
	CH16	0.601	

Table 10. The measurement of the final model and the results of the hypotheses in the significant state.

Variable	Sign	T value	Correlation coefficient
Drought management (Dependent variable)	Critical	1.00	
Extensional methods of drought management	M1	3.463	2.428
	M2	3.552	
	M3	3.877	
	M4	3.285	
	M5	2.485	
	M6	2.270	
	M7	2.706	
	M8	2.592	
	M9	2.272	
	M10	2.928	
	M11	3.862	
	M12	0.588	
Contextual conditions	AR1	2.681	2.248
	AR2	2.329	
	AR3	4.399	
	AR4	2.270	
	AR5	2.168	
	AR6	3.043	
	AR7	3.359	
	AR8	2.866	
	AR9	2.678	
	AR10	2.176	
	AR11	3.327	
	AR12	2.027	
Supporting conditions	MD1	3.523	2.931
	MD2	2.329	
	MD3	3.983	
	MD4	3.399	
	MD5	2.844	
	MD6	2.206	
	MD7	3.305	
	MD8	4.597	
	MD9	2.346	

Table 10 continued...

Variable	Sign	T value	Correlation coefficient
Drought management (Dependent variable)	Critical	1.00	
Causal conditions	F1	3.038	3.719
	F2	3.141	
	F3	2.211	
	F4	3.997	
	F5	2.010	
	F6	3.933	
	F7	2.160	
	F8	4.757	
	F9	2.960	
	F10	3.951	
	F11	2.110	
	F12	2.160	
	F13	1.035	
	F14	2.138	
Consequences	CH1	4.044	2.008
	CH2	3.634	
	CH3	3.107	
	CH4	2.760	
	CH5	3.137	
	CH6	2.682	
	CH7	2.161	
	CH8	2.935	
	CH9	2.751	
	CH10	2.557	
	CH11	3.358	
	CH12	3.747	
	CH13	2.213	
	CH14	4.112	
	CH15	3.512	
	CH16	2.811	

Table 11. A summary of hypotheses testing results.

Hypotheses	Path coefficient	Significance coefficient	Result
Main hypothesis: Drought-adapted extension	0.113	4.874	Confirmed
requirements affect agricultural drought management.			
The first hypothesis: Extension methods affect the	0.550	2.428	Confirmed
management of agricultural drought.			
The second hypothesis: Contextual conditions affect	0.170	2.248	Confirmed
the management of agricultural drought.			
The third hypothesis: Causal conditions affect the	0.440	3.719	Confirmed
management of agricultural drought.			
The fourth hypothesis: The consequences of drought	0.001	2.008	Confirmed
affect the management of agricultural drought.			
The fifth hypothesis: Management policies affect the	0.167	2.931	Confirmed
management of agricultural drought.			

case, there is a need for adaptation and drought management by farmers. The decision-making process around adaptation is complex (Bunham and Ma, 2016; Harmer and Rahman, 2014) and includes a wide and

interconnected range of socio-political, social and environmental factors. Weather, its intensity and the level of confidence of farmers about receiving yield due to adaptation are closely related (Tucker *et al.*,

Table 12. The general model's quality criteria.

Research components	Composite	Coefficient of	Cronbach's	Communal	Shared
	Reliability	determination	Alpha	values	reliability
	(CR)	(R^2)		(Communality)	(AVE)
Methods of extension	0.76	0.58	0.84	0.49	0.43
drought management					
Support policies	0.80	0.54	0.82	0.41	0.46
Contextual conditions	0.59	0.74	0.75	0.45	0.49
Causal conditions	0.71	0.83	0.88	0.31	0.54
Consequences	0.64	0.55	0.90	0.42	0.52
Background conditions	0.75	0.71	0.79	0.27	0.48
Drought management	1		1	1	1

Table 13. The final model's fit.

Index name	R^2	Communality
Methods of extension drought management	0.58	0.49
Consequences	0.63	0.52
Drought support policies	0.54	0.41
Background conditions	0.74	0.45
Causal conditions	0.83	0.31

2011; Anik et al., 2012). People's participation in the adaptation of drought management is one of the necessary things in the success of programs in this field (Wani et al., 2013). Publication of magazines, brochures, books, guidelines and extension books about new methods of irrigation with traditional and old methods and comparing them in a demonstration for a group of farmers. Holding extension meetings in the presence of water and extension experts, extension exhibitions (new irrigation tools and methods) and extension films and videos about new irrigation methods, farmers visits to the office of the Agricultural Extension Service, visit of agricultural extension workers to the farmers, interaction with consulting service companies and extension organizations (Al-Zahrani et al., 2016). These activities are aimed at addressing informational and educational needs related to drought management (Harvey et al., 2014; Singh et al., 2017; Tripathi and Mishra, 2017). Such as to create these conditions need to Existence of extension specialists and access to them, Expansion of social networks and local networks to disseminate information.

Also, formation of agricultural cooperatives and water bodies in order to create irrigation groups, providing facilities in the field of extension services, supportive policies in low water consumption (Cheng and Tao, 2010; Eriksen and Silva, 2009; Keshavarz and Karami, 2013). It can help a lot to establish an extension model that is compatible with the management of drought. In the end, it can be said that the establishment of this extension model can include the followings:

- Increasing the resilience of farmers in dealing with drought,
- -Access to meteorological and drought information,
- Access to drought management information,
- Increasing participation of farmers in drought management.

Figure 1 shows extension model compatible with drought management in Iran.

Based on the results, it is recommended to involve knowledgeable agricultural extension experts in providing the necessary training and technical advice to farmers. It will be helpful to establish constructive communication between farmers and extension agents through social networks to

address the existing water-related issues and convey them to the relevant authorities for appropriate solutions. Also, the importance of water and the impact of water scarcity challenges on economic, social, and security sectors should be recognized. Additionally, it is necessary to prioritize this issue as a

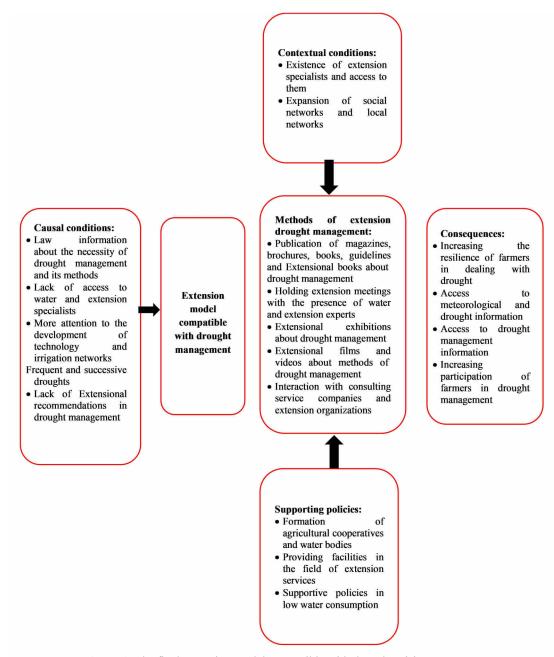


Figure 1. The final extension model compatible with drought crisis management.

fundamental strategy in the annual budget and Iran's Seventh Development Plan. Last but not least, it is recommended that the government supports farmers through facilities such as low-interest loans and subsidies to assist in implementing adaptation strategies drought and management.

REFERENCES

- Abedi Sarvestani, A., Ghorbani, Kh., and Khaksar Moghadam, G. 2017. Investigating Methods of Coping with Drought by Farmers (Case Study: Shirvan city, North Khorasan Province). J. Geogr. Environ. Sustain., 8(3): 13-31.
- ACC (American Commodity Company).
 2016. Facts About California Rice Production. As reported in the October 2016 Environmental Sustainability Report prepared by the California Rice Commission. https://www.accrice.com/facts-aboutcalifornia-rice-production
- Aitkenhead, I., Kuleshov, Y., Watkins, A. B., Bhardwaj, J. and Asghari, A. 2021.
 Assessing Agricultural Drought Management Strategies in the Northern Murray–Darling Basin. Natural Hazards, 109(2): 1425-1455.
- Alam, G. M., Alam, K. and Mushtaq, S. 2016. Influence of Institutional Access and Social Capital on Adaptation Decision: Empirical Evidence from Hazard-Prone Rural Households in Bangladesh. Ecol. Econ., 130: 243-251.
- Al-Zahrani, K. H., Aldosari, F. O., Baig, M. B., Shalaby, M. Y. and Straquadine, G. S. 2016. Role of Agricultural Extension Service in Creating Decision Making Environment for the Farmers to Realize Sustainable Agriculture in Al-Qassim and Al-Kharj Regions -Saudi Arabia. *J. Anim. Plant Sci.*, 26(4): 1063-1071
- Amato, P. R. 2004. Tension between Institutional and Individual Views of Marriage. J. Marriage Fam., 66(4): 959-965.

- Anik, S. I., Khan, M. A. S. A. 2012. Climate Change Adaptation Through Local Knowledge in the North Eastern Region of Bangladesh. Mitig Adapt Strateg Glob Change 17, 879–896. https://doi.org/10.1007/s11027-011-9350-6
- 8. Azadi, H., Verheijke, G. and Witlox, F. 2011. Pollute First, Clean up Later? *Glob. Planet. Change*, **78(3-4):** 77-82.
- 9. Azari, H, Talebi, M. and Abri, M. 2017. Promoting Concepts Related to Drought Management Using New Media. *J. Foreign. Lang. Dev. Learn.*, **9(5):** 101-112.
- Bagheri, M., Nik Nami, M. and Shabanali Femi, H. 2017. The Role of Agricultural Extension in the Application of Drought Management Operations (Case Study: Tafarsh City). J. Desert Manage., 9: 46-57.
- 11. Burnham, M., and Ma, Z. 2016. Linking Smallholder Farmer Climate Change Adaptation Decisions to Development. *Climate and Development*, **8(4)**: 289-311.
- Campbell, D., Barker, D. and McGregor, D. 2011. Dealing with Drought: Small Farmers and Environmental Hazards in Southern St. Elizabeth, Jamaica. *Appl. Geogr.*, 31(1): 146-158.
- Carey, C. 2008. E051 Governmental Use of Voluntary Standards Case Study 6: Kenya and the KenyaGAP Standard for Good Agricultural Practice. ISEAL Alliance.
- 14. Chen, D., Wang, S., Cao, B., Cao, D., Leng, G., Li, H. and Deng, X. 2016. Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings. J. Front. Plant Sci., 6: 1-15.
- 15. Cheng, J. and Tao, J. P. 2010. Fuzzy Comprehensive Evaluation of Drought Vulnerability Based on the Analytic Hierarchy Process: An Empirical study from Xiaogan City in Hubei Province. Agric. Agric. Sci. Procedia, 1: 126-135.
- Chipatu, L. 2017. Environmental Learning for Coping with Drought Among Small Scale Farmers of Luangwa District, Zambia (Doctoral dissertation, The University of Zambia).
- 17. Creswell, J. W. and Creswell, J. D. 2017. *Research Design: Qualitative, Quantitative,*

- and Mixed Methods Approaches. 4th Edition, Sage Publication, Newbury Park.
- De Silva, M. M. G. T. and Kawasaki, A. 2018. Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community. Ecol. Econ., 152: 131-140.
- Delphian, F., Yazdanpanah, M., Forozani, M. and Yaghoubi, J. 2016. Investigating Farmers' Management Behaviors during Drought as Preventive Responses (Case Study: Dehloran City). J. Spatial Anal. Environ. Hazards, 4(4): 79-92. (in Persian)
- Deressa, T. T. 2010. Assessment of the Vulnerability of Ethiopian Agriculture to Climate Change and Farmers' Adaptation Strategies. Doctoral Dissertation, University of Pretoria.
- Desalegn, C. E., Babel, M. S., Gupta, A. D., Seleshi, B. A. and Merrey, D. 2006. Farmers' Perception of Water Management under Drought Conditions in the upper Awash Basin, Ethiopia. *Int. J. Water Resour. Dev.*, 22(4): 589-602.
- 22. Engle, N. L. 2011. Adaptive Capacity and Its Assessment. *Glob. Environ. Change*, **21(2)**: 647-656.
- Eriksen, S. and Silva, J. A. 2009. The Vulnerability Context of a Savanna Area in Mozambique: Household Drought Coping Strategies and Responses to Economic Change. *Environ. Sci. Policy*, 12 (1): 33-52.
- 24. Fal Suleiman, M., Mekaniki, J. and Senjeri, H. 2013. The Inspection of Social Consequences of Drought in Rural Regions Case Study: Shoosf District of Nehbandan County. Khorasan Soc. Cult. Stud., 8(4): 111-127. (in Persian).
- 25. Fanni, Z; Khalilulallahi, H. A., Sajjadi, J. and Fall Soleiman, M. 2016. Analysis of the Causes and Consequences of Drought in South Khorasan Province and Birjand. J. Plan. Space Design, 20(4): 175-200. (in Persian)
- 26. FAO, IFAD, UNICEF, WFP and WHO. 2017. The State of Food Security and Nutrition in the World 2017. Building Resilience for Peace and Food Security. Rome, FAO. https://openknowledge.fao.org/server/api/co

- re/bitstreams/5bc8dad9-a192-439f-827b-354acc9653de/content
- 27. FAO. 2012. Citrus Fruit Fresh and Processed Annual Statistics. https://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Citrus/Documents/CITRUS_BULLETIN_2012. pdf
- 28. Fatahi, M. H. and Behrouzi, M. 2016. The Application of Water Governance Management Model in Urban Wastewater Use Planning by Farmers. *J. Urban Plan. Dev.*, **8(31):** 299-319.
- Feola, G., Lerner, A. M., Jain, M., Montefrio, M. J. F. and Nicholas, K. A.
 Researching Farmer Behaviour in Climate Change Adaptation and Sustainable Agriculture: Lessons Learned from Five Case Studies. J. Rural Stud., 39: 74-84.
- Firoozi F, Malakinezhad H, Nikpur N. 2023. Evaluation of Soil Salinity, Actual Evapotranspiration and Soil Moisture Using Remote Sensing (Case study: Herat Dry Region). Water Resources Engineering Journal. 15(55): 35-52
- 31. Firozjani, I. 2018. The Extension Model Compatible with Drought Management in Alborz Province; Iran. *Water Resour. Manag.*, **15(2):** 229-251.
- 32. Ghambarali, R: Popzan, A. and Afsharzadeh, N. 2012. Analysis of Farmers' Perception of Climate Changes and Adaptation Strategies. *J. Rural Res.*, **3(11):** 192-213. (in Persian)
- 33. Gomez, C. M. G. and Blanco, C. D. P. 2012. Do Drought Management Plans Reduce Drought Risk? A Risk Assessment Model for a Mediterranean River Basin. *Ecol. Econ.*, **76:** 42-48.
- 34. Harmer, N., and Rahman, S. 2014. Climate Change Response at the Farm Level: A Review of Farmers' Awareness and Adaptation Strategies in Developing Countries. *Geography Compass*, **8(11)**: 808-822.
- 35. Harvey, C. A., Rakotobe, Z. L., Rao, N. S., Dave, R., Razafimahatratra, H., Rabarijohn, R. H. and MacKinnon, J. L. 2014. Extreme Vulnerability of Smallholder Farmers to Agricultural Risks and Climate Change in

- Madagascar. *Phil. Trans. R. Soc. B*, **369:** 1-12.
- Hayati, D., Ranjbar, Z. and Karami, E.
 Measuring Agricultural Sustainability. In: "Biodiversity, Biofuels, Agroforestry and Conservation Agriculture", (Ed.): Lichtfouse, E., Springer, PP. 73-100.
- 37. Heydari Sarban, V. 2011. Investigating the Social and Economic Factors Affecting the Knowledge of Wheat Farmers about Agricultural Water Management (Case Study: Meshkinshahr City). J. Agric. Ext. Educ. Res., 4(4): 96-111. (in Persian)
- 38. Hosseinizare, N. and Saadati, N. 2017. Quantitative and Qualitative Monitoring of Gregar River in Drought 87-86 in Khuzestan Province. First international Conference on Water Crisis, Hamoon International Wetland Research Institute, Zabul University, Zabul, 12 PP.
- Hosseinzad, J. Kazimieh, F. Javadi, A. and Ghafouri, H. 2012. Agricultural Water Management Basis and Mechanisms in Tabriz Plain. J. Soil Water Knowl., 23(2): 85-98. (in Persian).Ifeanyi-Obi, C. C., Etuk, U. R. and Jike-Wai, O. 2012. Climate Change, Effects and Adaptation Strategies; Implication for Agricultural Extension System in Nigeria. Green. J. Agric. Sci., 2(2): 53-60.
- 40. IPCC (The Intergovernmental Panel on Climate Change). 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change: 582. Cambridge University Press.
- 41. Johnson, R. B. and Onwuegbuzie, A. J. 2004. Mixed Methods Research: A Research Paradigm Whose Time Has Come. *Educ. Res.*, **33(7)**: 14-26.
- Keshavarz, M. and Karami, E. 2010. Structures Affecting Farmers' Drought Management and Its Consequences (Use of Structural Equation Modeling). J. Agric. Sci. Technol., 43(12): 267-283
- Keshavarz, M. and Karami, E. 2013. Institutional Adaptation to Drought: The Case of Fars Agricultural Organization. *J. Environ. Manage.*, 127: 61-68.

- 44. Keshavarz, M., Karami, E. and Vanclay, F. 2013. Social Experience of Drought in Rural Iran. *Land Use Policy*, **30(1):** 120-129.
- Kheyri, R., Mojarrad, F., Masompour, J. and Farhadi, B. 2021. Evaluation of Drought Changes in Iran Using SPEI and SC-PDSI. J. Spat. Plan. Geomat., 25(1): 143-174. (in Persian)
- Khorambakht, A. A., Moshiri, R. and Mahdavi, M. 2013. Evaluation of Climatic Drought Characteristics in Larestan Region. *J. Region. Plan.* 4(13): 103-120. (in Persian)
- Kiem, A. S. and Austin, E. K. 2013.
 Drought and the Future of Rural Communities: Opportunities and Challenges for Climate Change Adaptation in Regional Victoria, Australia. Glob. Environ. Change, 23(5): 1307-1316.
- Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M. and Scardigno, A. 2014. Improving Water-Efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag., 146: 84-94.
- 49. Li, G., Long, Z., Jiang, Y., Huang, Y., Wang, P. and Huang, Z. 2022. Entrepreneurship Education, Entrepreneurship Policy and Entrepreneurial Competence: Mediating Effect of Entrepreneurship Competition in China. Educ. Train., 65(4): 607-629.
- Lottering, S. J., Mafongoya, P. and Lottering, R. 2021. The Impacts of Drought and the Adaptive Strategies of Small-Scale Farmers in uMsinga, KwaZulu-Natal, South Africa. J. Asian Afr. Stud., 56(2): 267-289.
- 51. Mahboubi, M. R., Esmaili I, M. and Yaqoubi, J. 2011. Impeding and Facilitating Factors Influencing on Using New Irrigation Methods by Farmers: Case of West Boshroyeh Township in Southern Khorasan. *Water Irrig. Manag.*, **1(1):** 87-98. (in Persian)
- 52. Mardy, T. Uddin, M. N. Sarker, M. A. Roy, D. and Dunn, E. S. 2018, Assessing Coping Strategies in Response to Drought: A Micro-Level Study in the NorthWest Region of Bangladesh, Climate, 6(2): 1-18.

- Mfitumukiza, D., Barasa, B., Kiggundu, N., Nyarwaya, A. and Muzei, J. P. 2020. Smallholder Farmers' Perceived Evaluation of Agricultural Drought Adaptation Technologies Used in Uganda: Constraints and Opportunities. J. Arid Environ., 177: 104137.
- 54. Mousavi, S. and Niknami, M., 2021. Explaining the Driving Policies of Drought Management: the Case Study of Tehran Province. Strategic Studies of Public Policy, 11(40): 132-153.
- 55. Mousavi, A., Zarei, M. R., Asadi, M., and Ataei, M. 2021. Extension Model Compatible with Drought Management in Razavi Khorasan Province, Iran. *Water Resour. Manag.*, 18(6): 155-169.
- 56. Movahedii, Saeed, Asakareh, Hossein, Sabzi Parvar, Ali Akbar, Masoudian, Abolfazl, and Merianji, Zahra. 2012. Investigating Changes in the Seasonal Pattern of Rainfall in Hamadan Province. Geogr. Res, 28(2): 33-47.
- Naderi, L. and Karami Dehkordi, I. 2019.
 Impact of the BeheshtAbad Dam Construction on the households' Livelihood Strategies of Local Communities. J. Spat. Plan. Geomat., 23(1): 25-51. (in Persian)
- Nicholas, K. A. and Durham, W. H. 2012. Farm-Scale Adaptation and Vulnerability to Environmental Stresses: Insights from Winegrowing in Northern California. *Glob Environ. Change*, 22(2): 483-494.
- Nilsen, P., Nordström, G. and Ellström, P.
 E. 2012. Integrating Research-Based and Practice-Based Knowledge through Workplace Reflection. J. Workplace Learn, 24(6): 403-415.
- Ommani, A. R. 2011. Affecting Factors on Adoption of Sustainable Water Resources Management in Agriculture. Res. J. Environ. Sci., 5(1): 36-48.
- 61. Poortaheri, M., Eftekhari, A. and Kazemi, N. 2013. The Role of Drought Risk Management Approach in Reducing Social-Economic Vulnerability of Farmers and Rural Regions Case Study: Sulduz Rural District. Azarbaijan Gharbi, *J. Rural Res.*, 4 (1): 1-22.
- Pouralimoghaddam, S., Zare Mehrjerdi M. R., Amirtaimoori, S. and Naghavi S. 2021.

- Investigating the Effect of Knowledge Based Economy Components on Water Productivity and Consumption in Iran's Agricultural Sector. *Irrig. Water Eng.*, **11(3):** 305-318. (in Persian)
- 63. Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt, J. V. and Van Dijk, A. I. 2013. Toward Global Drought Early Warning Capability: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting. *Bull. Am. Meteorol. Soc.*, 94(6): 776-785.
- 64. Qiu, H. J., Zhu, W. B., Wang, H. B. and Cheng, X. 2007. Analysis and Design of Agricultural Sustainability Indicators System. Agric. Sci. China, 6(4): 475-486.
- Rahimi, M., Pourmohammadi, M. R., Mohammadi, A. and Mehdipour, F. 2019. Development of Extension Model for Drought Management in Iran. J. Agric. Educ., 14(4): 123-138.
- 66. Rahimian, M. 2015. Factors Affecting the Sustainable Management of Water Resources among Irrigated Wheat Farmers in Kohdasht City. *Iran. Agric. Ext. Educ. J.*, 12(2): 233-247. [in Persian with English Abstract]
- 67. Rahman, M. H. and Alam, K. 2016. Forest Dependent Indigenous Communities' Perception and Adaptation to Climate Change through Local Knowledge in the Protected Area- A Bangladesh Case Study. *Climate*, **4(1)**: 1-25.
- Rezadoost, B. and Allahyari, M. S. 2014.
 Farmers' Opinions Regarding Effective Factors on Optimum Agricultural Water Management. J. Saud. Soc. Agric. Sci., 13(1): 15-21.
- Sabir, N., Riazuddin, S. A., Kaul, H., Iqbal, F., Nasir, I. A., Zafar, A. U. and Riazuddin, S. 2010. Mapping of a Novel Locus Sssociated with Autosomal Recessive Congenital Cataract to Chromosome 8p. Mol. Vis., 16: 2911.
- Saifi, B. and Drake, L. 2008. A Co-Evolutionary Model for Promoting Agricultural Sustainability, Ecol. Econ., 65(1): 24-34.
- Sangpenchan, R. 2011. Vulnerability of Thai Rice Production to Simultaneous

- Climate and Socioeconomic Change: A Double Exposure Analysis. Abstract ID. GC11A-0903, Fall Meeting 2011, American Geophysical Union.
- Savari, M. and Eskandari Damaneh, H. 2019. The Role of Participatory Management in Empowering Local Communities in Coping with Droughts in Southern Kerman Province. J. Spat. Plan., 23(2): 123-171.
- 73. Shabanali Fami, H., Savari, M., Motaghed, M., Mohammadzadeh Nasrabadi, M., Afshari, S. and Baghaee, M. 2020. Formulating and Analysis of Adaptation Strategies of Farmers to Drought Conditions in Isfahan Province Using TOWS Matrix. J. Spat. Plan., 24(1): 21 47.
- 74. Shahmohammadi, Z., Haghighatjoo, P. and Afrasiab, P. 2001. Determining Droughts and Droughts Based on Long-Term Annual Rainfall Statistics in Iran. The First National Conference on Mitigation of Water Crises, 8 PP.
- 75. Shakouri, A. and Merseli, I. 2018. Study of the Impact of Climate and Environmental Factors on Promoting Water Productivity in Rural Communities. *J. Spat. Plan. Manage.*, **23(2):** 47-73.
- 76. Singh, R.K., Zander, K.K., Kumar, S., Singh, A., Sheoran, P., Kumar, A. and Padung, E. 2017. Perceptions of Climate Variability and Livelihood Adaptations Relating to Gender and Wealth among the Adi Community of the Eastern Indian Himalayas. Appl. Geogr., 86: 41-52.
- 77. Smit, B. and Pilifosova, O. 2003. Adaptation to Climate Change in the Context of Sustainable Development and Equity. *J. Sustain. Dev.*, **8(9):** 9.
- 78. Solh, M. and van Ginkel, M. 2014. Drought Preparedness and Drought Mitigation in the Developing World's Drylands. *Weather Clim. Extrem.*, **3**: 62-66.
- Strauss, A. and Corbin, J. 1998. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. 2nd Edition, Inc., Sage Publications, Thousand Oaks, CA.
- Tavakoli, J., Almasi, H. and Qochi, P.
 Investigation and Analysis of

- Drought Adjustment Strategies in Kermanshah Province. *J. Rural Res.*, **7(1)**: 217-241.
- 81. Teisman, G., van Buuren, A., Edelenbos, J. and Warner, J. 2013. Water Governance: Facing the Limits of Managerialism, Determinism, Water-Centricity, and Technocratic Problem-Solving. *Int. J. Water Gov.*, **1(1-2)**: 1-11.
- 82. Thieme, S. 2006. Social Networks and Migration: Far West Nepalese Labour Migrants in Delhi. Series on Culture, Society, Environment, Vol. 7, LIT Publishing House, Münster-Hamburg-London, 270 PP.
- 83. Tripathi, A. and Mishra, A. K. 2017. Knowledge and Passive Adaptation to Climate Change: An Example from Indian Farmers. *Clim. Risk Manag.*, **16**: 195-207.
- 84. Tucker, S. S., Craine, J. M., and Nippert, J. B., 2011. Physiological Drought Tolerance and the Structuring of Tallgrass Prairie Assemblages. *Ecosphere*, **2(4)**: 1-19.
- 85. Udayakumara, E. P. N., Shrestha, R. P., Samarakoon, L. and Schmidt-Vogt, D. 2010. People's Perception and Socioeconomic Determinants of Soil Erosion: A Case Study of Samanalawewa Watershed, Sri Lanka. *Int. J. Sediment Res.*, 25(4): 323-339.
- 86. Wani, R. A., Sheema, S., Dar, N. A., Angchuk, S., and Parray, G. A., 2013. Irrigation Regimes Effecting Drought Tolerance of Grape Rootstocks Under Cold Arid Conditions. *International Journal of Science and Technology Research*, 2: 113-117.
- 87. Werkheiser, I. and Piso, Z. 2015. People Work to Sustain Systems: A Framework for Understanding Sustainability. *J. Water Resour. Plan. Manag.*, **141(12)**: 315.
- 88. Xenarios, S. Nemes, A. Sarker, G. W. and Sekhar, N. U. 2016. Assessing Vulnerability to Climate Change: Are Communities in Flood-Prone Areas in Bangladesh More Vulnerable than Those in Drought-Prone Areas Are?. *Water Resour. Rural Dev.*, 7(2): 1-19.
- 89. Yazdanpanah, M., Forouzani, M and Zobeidi, T. 2015. A Typology of Iranian Farmer Perceptions of Climate change:

- Application of the Q Methodology. Proceedings of 31st Q Conference, Università Politecnica Delle Marche: 121-123. Ancona. Italy.
- Zarafshani, K., Sharafi, L., Azadi, H., & Van Passel, S. 2016. Vulnerability assessment Models to Drought: Toward a
- Conceptual Framework. *Sustainability*, **8(6):** 588.
- Zarafshani, K., Sharafi, L., Azadi, H., Hosseininia, G., De Maeyer, P. and Witlox, F. 2012. Drought Vulnerability Assessment: The Case of Wheat Farmers in Western Iran. Glob. Planet Change, 98: 122-130.

یک مدل ترویجی سازگار با مدیریت خشکسالی در ایران

جلال محمودزاده، محمدصادق صبوري، مهرداد نیکنامي، و الهام دانایي

چکیده

هدف اصلی این تحقیق، طراحی یک مدل ترویجی سازگار با مدیریت خشکسالی در ایران بود. این تحقیق از رویکرد تحقیق ترکیبی، شامل تلفیق روشهای کیفی و کمی، استفاده کرد. در بخش کیفی، دادهها از طریق مصاحبههای نیمه ساختاریافته، مشاهده و بررسی منابع مرتبط جمع آوری شد. شرکت کنندگان در این بخش، ۱۵ نفر از کارشناسان ترویج با تجربه قابل توجه در مدیریت خشکسالی بودند که از طریق روشهای نمونه گیری هدفمند و گلوله برفی انتخاب شدند. دادهها با استفاده از رویکرد نظریه زمینهای سیستماتیک با نرمافزار MAXQUDA10 مطابق با رویکرد (1998) Strauss and Corbin و تحلیل شدند. در بخش کمی، جامعه آماری شامل کارشناسان، مربیان و اساتیدی بود که رشته یا پست سازمانی آنها مرتبط با منابع آب، آبیاری و زهکشی، ترویج و توسعه کشاورزی و خشکسالی بود و به صورت تمام وقت در وزارت جهاد کشاورزی مشغول به کار بودند .(N=6018) حجم نمونه با استفاده از فرمول کوکران، در مجموع ۲۷۲ نفر تعیین شد. برای تجزیه و تحلیل دادهها از مدلسازی معادلات ساختاری (SEM) و نرمافزار PLS استفاده شد. نتایج نشان داد که اجزای اصلی مدل شامل الزامات تفصیلی مدیریت خشکسالی (ضریب ۲۰۱۳)، شرایط و میامدهای مدیریت خشکسالی (۲۰۱۳)، شرایط و پیامدهای مدیریت خشکسالی در ایران ارائه شد.

Assessment of Habitat Suitability of *Carissa carandas* L. in India Using Bio-Climatic Variables, GHG Scenarios, Land Use, and Land Cover Predictors

Manish Mathur¹, and Preet Mathur²*

ABSTRACT

This study was conducted to assess the habitat suitability of Carissa carandas in India, which is crucial for its sustainable integration into agriculture under changing climatic conditions. We utilized Maximum Entropy (MaxEnt) modelling to evaluate the species' distribution across current and future scenarios (2050 and 2070) under four Representative Concentration Pathways (RCPs: 2.6, 4.5, 6.0, and 8.5). Results indicated that temperature-related variables, particularly the Minimum Temperature of the Coldest Month (MiTCM, contributing 46.8% in 2070 RCP 2.6) and Isothermality (contributing up to 35.2% in 2070 RCP 8.5), are the dominant climatic drivers. Land Use and Land Cover (LULC) factors such as urbanization (49.8%), total cultivated land (28.1%), and grassland (9.0%) significantly influence habitat suitability. Under the current conditions, optimal habitat spans 4,588 km², decreasing by 38.95% under LULC scenarios. Projected habitat changes indicate 2.04% gain under 2070, but 11.06% decline under 2050 RCP 2.6. Southern and western regions, including Karnataka, Tamil Nadu, Maharashtra, and Gujarat exhibit high suitability. Habitat fragmentation is projected in northern and western India due to climate change and land use modifications. These findings underscore the need for proactive conservation planning and climate-adaptive agricultural strategies to optimize the cultivation of C. carandas. Policymakers and stakeholders should focus on preserving suitable regions while mitigating urbanizationinduced habitat loss.

Keywords Climate Change, Maximum Entropy modelling, Underutilized crop, Urbanization.

INTRODUCTION

Underutilized plant species are domesticated or wild plant species that have nutritional, medicinal, economic, ecological value, but are not widely cultivated, traded, or researched (Ghosh et al., 2023). These species are often locally important but remain underdeveloped in terms of agronomic improvements, policy support, and market integration (Padulosi et al., 2013). Such species have some specific traits like limited commercialization, local or indigenous importance, high resilience and adaptability, nutritional and medicinal

benefits and contributing agroto biodiversity. Carissa carandas, Moringa oleifera, Ensete ventricosum and Chenopodium quinoa are the few examples (Knez et al., 2023). Further, such species could lead to innovative crop cultivation. Despite climate change, farmers can increase their income by producing these agricultural commodities sustainably (Akinola et al. 2020; Meena et al., 2022; Mugiyo et al., 2022).

Despite their alleged ability to adapt to sub-optimal environments and changes in climate, there is a lack of scholarly studies focused on the consequences of climate

¹ ICAR- Central Arid Zone Research Institute, 342 003, Jodhpur, India.

² Department of Computer Science, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.

^{*}Corresponding author; e-mail: preetm9535@gmail.com

change on their spatial and temporal distribution. The limited extent of policy and decision-making procedures presents a barrier to the integration of smallholder farmers into adaptation strategies (Olayinka Atoyebi et al., 2017). Given the current circumstances, a cohort of esteemed researchers is advocating for the assimilation of overlooked crop varieties into agricultural and dietary frameworks in response to the ramifications of climate change (Nyathi et al., 2018; Chibarabada et al., 2020). Smallholder farmers integration into adaptation strategies is hindered by policy decision-making gaps (Olayinka Atoyebi et al., 2017). Due to climate change, esteemed researchers are advocating for the inclusion of overlooked crop varieties in and agricultural dietary frameworks (Chibarabada et al., 2020).

Spatial modelling and analysis can reveal underutilized species distribution patterns (Mathur et al., 2023). Species Distribution Modelling (SDMs) combine species occurrence data with topographical and climatic factors to create cartographic representations of past, present, and future species distributions (Akpoti et al., 2020). The correlation between environmental variables and species occurrence records helps researchers understand ecological or evolutionary mechanisms and predict macroscopic agro-ecology suitability (Mathur and Mathur, 2023).

Carissa carandas, (Hindi= Karondais) is an Indian Apocynaceae species and commonly called "Christ's Thorn." It's an evergreen shrub (Figure 1-A) that blooms elegant white flowers from December to April (Figure 1-B). Within Indian states like Gujarat, Karnataka, and Uttar Pradesh, gardens, orchards. and small-scale plantations grow this plant for bio-fencing, live-fencing, and aesthetics (Meena et al., 2022). This species can produce 5-8 kilograms of fruit in arid and semi-arid regions with little care (Figure 1-C). According to Krishna et al. (2017), the botanical specimen can yield 10–15 kilograms per tree when grown under proper agrarian conditions. It is used as vegetable and immature fruit is usually used in pickling and chutney. However, fully matured fruit is eaten raw or made into confectioneries and natural food colorants (Singh et al., 1998). Iron-rich Karonda fruit has 39 mg/100 g vitamin C-rich fruit treats anemia and scurvy (Kanupriya et al., 2019). Pectin makes pickles and jellies ideal for mature fruit (Figure 1-D). These fruits can also be used to make popular preserves, drinks, and condiments.

The habitat modelling of *Carissa carandas* (karonda) is significant for various

Figure 1. Carissa carandas an underutilized evergreen shrub (A), utilize in landscaping for their flower (B), beautiful shiny fruits (C), and cherries are useful for preparation of pickles and vegetable (D). Presence locations of the species, use for habitat suitability modelling (E).

ecological, agricultural, and conservation-related reasons, including the followings:

- (a) **Ecological importance**: *C. carandas* is a resilient, drought-tolerant shrub that flourishes in several climatic environments, and comprehending its habitat is essential for evaluating its contribution to biodiversity, particularly its relationships with pollinators and other plant species.
- (b) Agricultural and commercial significance: The plant yields consumable fruits utilized in traditional medicine, food processing (jams, pickles), and nutraceutical sectors. Habitat modelling facilitates the identification of optimal places for its production, hence enhancing yield and profitability for farmers. It facilitates the advancement of sustainable agroforestry methods through the incorporation of *C. carandas* into agricultural systems.
- (c) Conservation and sustainable utilization of its native populations are imperilled by habitat degradation, overharvesting, and alterations in land use. Modelling assists in conservation planning and in pinpointing regions suitable for protection.
- (d) Climate resilience and adaptation: By examining its habitat preferences, researchers can assess its resilience to drought and fluctuating temperatures, rendering it a valuable species for climate adaptation strategies. Such studies can also be applied to reforestation initiatives aimed at mitigating soil erosion and desertification.

In summary, habitat modelling of *C. carandas* is essential for enhancing its agricultural utilization, preserving its natural populations, and incorporating it into climate-resilient ecosystems.

Additionally, this species' area-yield relationship, market authenticity, cost trends, and ecological studies have knowledge gaps ((Banik *et al.*, 2012; Mahajan *et al.*, 2022; Maanik *et al.*, 2023; Mishra *et al.*, 2024; Sarkar, 2024). These gaps make it difficult to understand how its distribution patterns relate to climate and land use.

Given the scientific knowledge gaps, this study investigated the habitat suitability for

this species. We examined bio-climatic variables over different timescales, GHS scenarios, and land-use predictors. The Maxent model (Mathur et al., 2023) was used to assess how climate change affects the spatial arrangement of arable regions suitable for Carissa carandas fruit cultivation in India. Our specific goals were to: (a) Identify the species' habitats, as delineated by current and projected climatic conditions over 2050 and 2070, within four Greenhouse Gas (GHG) scenarios, (b) Quantify the impact of diverse land utilization patterns on the species' habitat appropriateness, and (c) Identify the manifold climatic and land use factors that exert influence on both the fundamental and realized niches of this species.

MATERIAL AND METHODS

Distributional Record

Distributional records for this species were obtained from data repositories such as the Global Biodiversity Information Facility (GBIF, 2023), the Indian Biodiversity Portal (https://indiabiodiversity.org/species/show/3 2472), and published literature ((Singh et al., 2010; CIAH 2014 and 2020; Meghwal et al... 2014; Kanupriya et al., 2019; Meena et al., 2020) and our field work during 2005 to 2014 at various districts of arid and semiarid areas of Rajasthan, India (Mathur and 2023). reduce Mathur, To autocorrelation and eliminate duplicate records, we followed Sofaer et al. (2019) and used the spatial thinning window of "Wallace Software," a user-friendly graphical interface built on the R programming language (Kass et al., 2018), with a thinning distance of 10 kilometres.

Bio-Climatic (Bio) and Non-Bioclimatic Variables (Non-Bio)

Machine learning helps predict species distribution based on their current

range (Praveen et al., 2022). In this study, WorldClim version 2.0 observational bioclimatic data was used to predict species distributions (Fick and Hijmans, 2017). The study used 19 bioclimatic variables from Hijmans et al. (2005), extracted at a 30second spatial resolution (~1 km²). DIVA-GIS version 7.5 converted these variables to ASCII or ESRI ASCII (Coban et al., 2020). The 2050- and 2070-time frames, which represent the mean values from 2041 to 2060 and 2061 to 2080, respectively, were used to collect data for the current and two future climatic scenarios, according to Zhang et al. (2021). The future datasets are associated with four Representative Concentration Pathways (RCPs): 2.6 W/m² (lowest emission), 4.5, 6.0, and 8.5 W/m² (highest emission, Chaturvedi et al., 2012). Table 1 summarizes bio-climatic parameters, including units and mathematical expressions.

Land Use and Land Cover (LULC)

Various Land Use and Land Cover

(LULC) predictors, including rain-fed and irrigated land, total cultivated land, forest, Grass/Scrub/Woodland (GRS), barren/very sparsely vegetated land (NVG), urban land, land used for housing and infrastructure, and wet lands, have been employed to forecast the suitability of habitats for this particular species. These variables were downloaded from web at a resolution of ~1 km² utilized as recommended by Fischer *et al.* (2008)

Issue of Multicollinearity

The Pearson correlation coefficient (r) was used to examine cross-correlation, and multicollinearity was examined to assess over-fitting. We also followed Pradhan *et al.* (2016) to eliminate variables with cross correlation coefficients of 0.85 or higher. This was accomplished through the utilization of the Niche Tool Box, as described by Osorio-Olvera *et al.* (2020a, b). A singular variable, which exhibits substantial cross-correlation and holds biological relevance to the species, was selected from a set of two alternative variables for the purpose of simplifying model

Table 1. Description of predictive bio-climatic variables use in this study.

Code	Environmental variables and their abbreviations	Scaling	Unit
Bio -1	Annual Mean Temperature (AMT)	10	°C
Bio -2	Mean Diurnal Range (MeDR)	10	°C
Bio -3	Isothermality (Bio 2/Bio 7) (×100) (Iso)	100	-
Bio -4	Temperature Seasonality (Standard deviation×100) (TempS)	100	-
Bio -5	Max Temperature of Warmest Month (MaTWaM)	10	°C
Bio -6	Min Temperature of Coldest Month (MiTCM)	10	°C
Bio -7	Temperature Annual Range (Bio 5- Bio 6) (TAR)	10	°C
Bio -8	Mean Temperature of Wettest Quarter (MeTWeQ)	10	°C
Bio -9	Mean Temperature of Driest Quarter (MeTDQ)	10	°C
Bio -10	Mean Temperature of Warmest Quarter (MeTWaQ)	10	°C
Bio -11	Mean Temperature of Coldest Quarter (MeTCQ)	10	°C
Bio -12	Annual Precipitation (AnPr)	1	mm
Bio -13	Precipitation of Wettest Month (PrWeM)	1	mm
Bio -14	Precipitation of Driest Month (PrDM)	100	mm
Bio -15	Precipitation Seasonality (Coefficient of Variation) (PrS)	1	Fraction
Bio -16	Precipitation of Wettest Quarter (PrWeQ)	1	mm
Bio -17	Precipitation of Driest Quarter (PrDQ)	1	mm
Bio -18	Precipitation of Warmest Quarter (PrWaQ)	1	mm
Bio -19	Precipitation of Coldest Quarter (PrCQ)	1	mm

interpretation (Mathur and Mathur 2023).

Projection Transformation

The Bio-Climatic (Bio) and Non-Bio variables were obtained from different sources at different resolutions, so, they were standardized before extracting data and generating predictions using machine learning tools. We used ArcMap and ArcToolbox to follow a methodology for analysis. The Data Management Tools interface's "projection and transformation" section explained the projection (Jijon *et al.*, 2021). To quantify area under each habitat suitability class in Arc Map's "calculate geometry" window, we converted the habitat class raster file projections to WGS 1984 web Mercator (auxiliary sphere-3857).

Species Distribution Modelling

The present study used Maxent 3.4.1 (http://www.cs.princeton.edu/schapire/Maxent to simulate and predict Ccarandas plausible geographic distribution likelihood using the current scenario, two future scenarios (2050- and 2070-time frames), and a non-climatic variable. This tool's discrete execution with each predictor in isolation allowed us to accurately measure their impact on the species' distributional pattern. Background points were randomly generated at 10,000 (Zhang et al., 2021). We set the regularization multiplier to 0.1 to avoid test data overfitting. (Phillips et al., 2006), while the rest were left at their software defaults. To calibrate and validate Maxent model evaluation, threshold-independent Receiver-Operating Characteristic (ROC) analyses were used, and an Area Under the receiver operating Curve (AUC) was used to estimate model predictions (Elith et al., 2006). Based on the AUC value, the model was classified using the conservative guide suggested by Thuiller et al. (2005) and Kagnew et al. (2023) as: failing (0.5-0.6), poor (0.6-0.7), fair (0.7-0.8), good (0.8-0.9), or

excellent (0.9-1). The model performs well with AUC values near one (Mathur *et al.*, 2023).

Variable Importance values and response curves were used to assess how bioclimatic and non-bioclimatic variables affected this species' distribution (Mathur and Mathur, 2023). We then used ArcGIS to convert the Maxent output ASCII file into raster format and classified (Ali et al., 2023) this species' habitat with help of "Raster Calculation Tool" into areas as optimal (1.0 to 0.80), moderate (0.80 to 0.60), marginal (0.60 to 0.40), low (0.40 and 0.20), and absent (< 0.20). Then, the optimum habitat raster file was converted into Keyhole Markup Language (KML) to accurately identify ideal habitat changes across diverse climatic temporal intervals and LULC compared to the current optimal habitats. Percent changes (gain and loss) in areas of optimum habitat suitability under different climatic and non-climatic variables in comparison to current optimum area were calculated using the following formula provided by (Mathur and Mathur, 2023). This exercise allowed us to quantify optimal habitats based on climatic time frames, RCPs, and LULC.

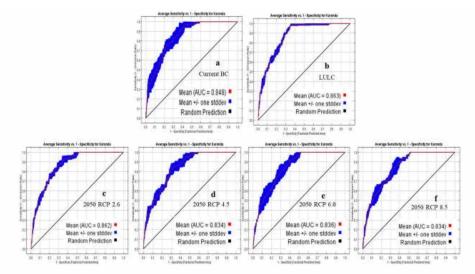
$$\left(\frac{Future\ Optimum\ Area-Current\ Optimum\ Area}{Current\ Optimum\ Area}\right)$$
x 100

Ellipsoid Niche Hypervolume

Machine learning models offer a variety of significant variables to enhance the precision of species localization. The quantification of hypervolumes linked to the niches of this particular species was carried out by employing the top three predictors across all bioclimatic scenarios and RCPs, in addition to LULC variables. In the present study, we utilized NicheToolBox (Osorio-Olvera et al., 2020a) software program coded in the R programming language, necessitates the invocation of the raster output pertaining to BC variables. Ellipsoidal models were constructed through the calculation of the centroid and covariance matrix of the environmental values of the species. The

research region was comprehensively examined, with all potential settings radiating outward from its geographic epicentre. Through the utilization of this particular methodology, we were able to determine the environmental factors that dictate the fundamental and realized niche of the said species.

RESULTS


Multicollinearity and Model Performance By conducting an extensive examination of a wide array of sources (as mentioned in material and method) originating from the Indian region, we effectively derived a total of 285 locations where this particular species can be found. Using Wallace Software's spatial thin window feature (Kass et al., 2018), we eliminated all instances of a record within a 10-kilometer radius. Integrating 218 C. carandas presence points without spatial autocorrelation completed the ENM development process (Figure 1-E). The final bioclimatic variables and their percentage contributions are shown in Table 2, which uses the "x" symbol to exclude variables from their bioclimatic time frame and RCPs. Based on their strong correlations bioclimatic factors. Bio-1,2, 9,10,11,12,14,15, and 18 were excluded from future analyses. Figures 2-a (current) and -b (LULC) show model quality results in terms of AUC. Additionally, Figures 2-c to -f show the 2050 climatic time frame results for each Representative Concentration Pathway (RCP). Figures 3-a to -d show the 2070 results and RCPs. Since all AUC curves exceeded 0.80, model performance was good.

Percent Contribution of Bio-climatic and LULC Variables

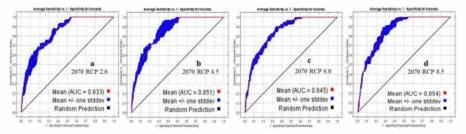

Table 2 and Figure 4 show bio-climatic LULC variable percentage contributions. The Minimum Temperature of Coldest Month (Bio-6 MiTCM) is the bio-climatic predictor primary that significantly affects this species' habitat suitability across various climatic timeframes and RCPs, except for 2070 RCPs 6.0 and 8.5. In these situations, isothermality (Bio-3), the ratio between the annual mean temperature and the mean diurnal range, controls the species the most. This climatic variable is the second most influential factor in all future Representative Concentration Pathways. However, given the bioclimatic conditions, temperature seasonality (Bio-4) is the second most important factor affecting this species' habitat suitability. Temperature Annual Range (Bio-7 TAR) and Mean Temperature of the Wettest Quarter (Bio-8 MeTWeQ) are the least effective bioclimatic factors. In Land Use and Land Cover (LULC) variables, urbanization, cultivated land, and grassland are influential.

Table 2. Maxent output showing percent contribution of the different bioclimatic variables to the model with respect to bioclimatic time-frames and their RCPs.

Bio			2050 RCPs			2070 RCPs			
Variables	Current	2.6	4.5	6.0	8.5	2.6	4.5	6.0	8.5
Bio-3	X	28.3	27.4	25.9	33	25	28.7	34.6	35.2
Bio-4	29.2	3.7	3.3	5.2	1.1	2.6	3.1	4.3	4
Bio-5	X	14.7	X	X	9	8.7	9.8	18.5	10.2
Bio-6	36.9	33.3	42.1	38.9	35.6	46.8	36.5	0.7	28.3
Bio-7	0.9	X	2.1	3.5	0.6	3.6	3.9	1.1	0.1
Bio-8	4.7	1.3	7.9	5.1	3	3.8	1	10.4	4.8
Bio-13	12.9	6.7	6.8	10.7	11.5	5.3	3.4	13.2	5.4
Bio-16	5.3	6.4	5.9	6.3	6.2	4.2	7.5	10.8	9
Bio-17	7.3	5.7	X	X	X	X	X	X	X
Bio-19	2.8	X	4.5	4.4	X	X	6.1	6.5	3

Figure 2. The area under the receiver operating curve with current bio-climatic (a), LULC (b), future climatic time frame (2050) with four RCPs namely 2.6 (c), 4.5 (d), 6.0 (e), and 8.5 (f).

Figure 3. The AUC curve with future climatic time frame (2070) with four RCPs namely 2.6 (a), 4.5 (b), 6.0 (c), and 8.5 (d).

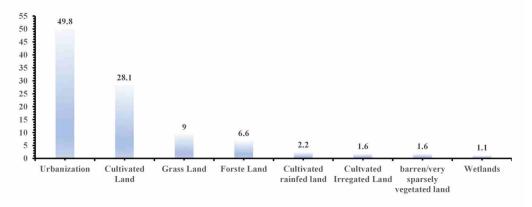
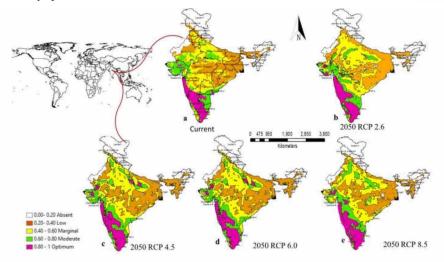
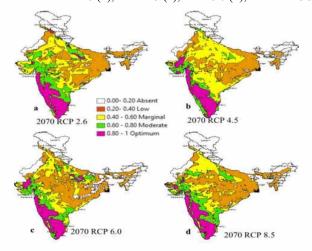


Figure 4. Variable importance values of Maxent output with different variables of LULC.

Their percentage contributions are 49.8, 28.1, and 9. Cultivated rain-fed and irrigated land, barren land, and wetlands have variable importance values below 2.0.


The supplementary material (Figures 1–10) shows response curves for the three most important bio-climatic and land use/land cover variables. The response curves showed that the projected species suitability values with MiTCM variables were highest at 15°C for both present conditions and all future Representative Concentration **Pathways** (RCPs), except 6.0 and 8.5 in 2070. Isothermaility has had the greatest impact on these two RCPs. Additionally, species suitability peaked at 50 and ranged from 40 to 55. Temperature seasonality peaks between 20 and 40°C. Urbanization and grassland have LULC skewed curves in variables. Urbanization peaks between 10 and 20, while grassland peaks between 5 and 10. Cultivated lands have a wider spectrum, peaking at 35 to 60.

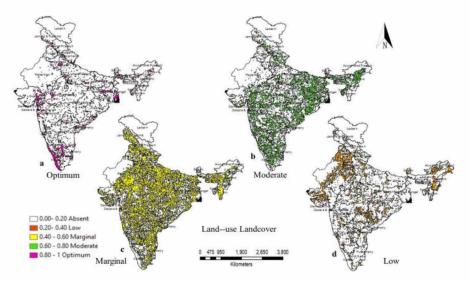
Habitat Suitability Areas (km²)


Table 3 shows habitat suitability areas for optimal, moderate, marginal, and low habitat types. The spatial distribution of these areas is shown in Figure 5-a for the current climatic time, and in Figures 5-b to -e for 2050 and its RCPs. Figures 6-a to -d show 2070 habitat suitability and RCPs. Lastly, Figure 7 shows LULC patterns for each habitat type: optimum (Figure 7-a), moderate (Figure 7-b), marginal (Figure 7c), and low (Figure 7-d). In the optimal class, 2070RCP 2.6 had the largest land area $(46.82 \times 10^2 \text{ km}^2)$. In 2050 RCP 2.6, the bioclimatic variables had the smallest area $(40.81 \times 10^2 \text{ km}^2)$, followed by 2070 RCP 8.5. The optimal habitat type covers km² under current climate 45.88×10^{2} conditions. The LULC optimum suitability habitats (km²) had the smallest area, 28.01×10^2 km². The areas with the greatest extent were moderate (70.85×10² km²) and low (16.19 x 10³ km²), under the current bioclimatic conditions. Conversely, 2070 RCP 4.5 (34.51×10^2) and land use and land

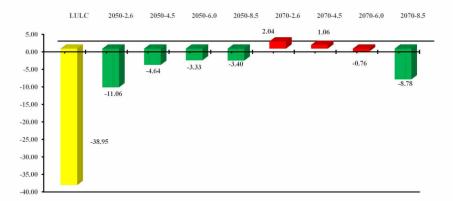
cover change (50.08×10^2) had the smallest areas for above classes. LULC had the highest marginal class area (15.04×10^3).

Based on analysis of habitat suitability classes and their spatial extents, this study proposes the existence of optimal regions in the southern (Karnataka and Tamil Nadu), as well as in the western (covering the western Ghat region of Maharashtra and Goa, and some scattered areas in Gujarat) areas of India, which exhibit similar characteristics across various bio-climatic time frames and RCPs. Nonetheless, LULC predictors have shown fragmented patterns in optimum habitat. Furthermore, this habitat has been observed in both the eastern (Odisha, Jharkhand, West Bengal) and northern (Uttar Pradesh, New Delhi, Uttarakhand) parts of the country. Furthermore, given the current climatic conditions, it is found that specific regions in the west (Gujarat, Rajasthan), north (Uttar Pradesh), and south (Andhra Pradesh) are moderately favourable for this species. Given the steady evolution of climatic conditions projected for 2050, as well as the four RCPs, it is expected that certain portions of western India, particularly Maharashtra, will see the emergence of suitable habitats for this species. However, it is vital to highlight that habitat fragmentation is likely to occur in the country's northern territories, including Uttar Pradesh, as well as western portions (Gujarat and Rajasthan), resulting in the split and isolation of these ecosystems. The moderate portions of Gujarat (western part of the country) will either become a marginal habitat by 2070 (RCP 2.6) or proceed to an optimum habitat under RCP 4.5, 6.0, and 8.5 scenarios. The central areas of India are distinguished by the presence of habitats with marginal or low ecological value. In addition to optimum habitat, we have documented fragmented and patchy habitats classified as moderate, marginal, or low with LULC. This species cannot be grown in the extreme western region (Rajasthan), which has a hot and arid climate and encompasses Barmer and Jaisalmer districts. Similarly, the northern region, such as Jammu and Kashmir, as well as Ladakh, are unsuited for cultivation of this species. Finally, the eastern areas of the country, notably Arunachal Pradesh and Sikkim, do not have ideal circumstances for cultivating this plant.

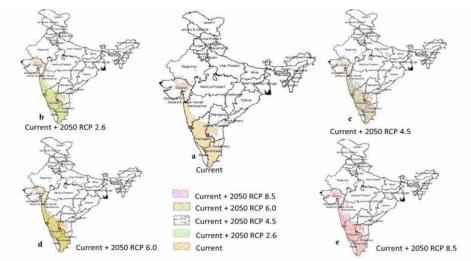
Figure 5. Habitat suitability of *C. carandas* under different classes with current (a) and 2050 bioclimatic time frame with its four RCP 2.6 (b), RCP 4.5 (c), RCP 6.0 (d), and RCP 8.5 (f).


Figure 6. Habitat suitability of *C. carandas* under different classes with 2070 bio-climatic time frame with its four RCP 2.6 (b), RCP 4.5 (c), RCP 6.0 (d), and RCP 8.5 (f).

Spatial Changes in Optimum Habitats


As evaluated using various predictors, Figure 8 shows the percentage changes in the most suitable habitat's extent relative to the optimal area. The spatial distribution of these alterations is shown in Figure 9-a to -e (current+2050, along with their RCPs) and Figures 10-a to -d (current+2070 RCPs) for two future climatic-time frames. Based on LULC parameters, this suitability class is highly fragmented. Comparatively, this fragmentation has decreased by 38.95%. This species has a marginal gain of +2.04 for

2070 under the RCP 2.6 scenario and +1.06 under the RCP 4.5 scenario. With the previous one, hilly regions of norther India (Himachal Pradesh, Uttarakhand, Uttar Pradesh), western parts (covering areas adjoining to Ahmedabad, Morbi, Rapar, Bhabhar, Tharad, Dhanera, Deesa, Raniwara Gir National Park in Gujarat, and Bhinmal Gudamalani in Rajasthan) had the highest gain of 2070RCP4.5. However, optimal habitats decreased by -11.06 and -8.75% under the 2050 and 2070 RCPs 2.6 and 8.5, respectively. RCP 4.5, 6.0, and 8.5 of 2050 showed less than 5% loss in optimum habitats (Figure 8).


Figure 7. Habitat suitability of *C. carandas* under different classes with LULC: Optimum (a), moderate (b), marginal (c), and low (d).

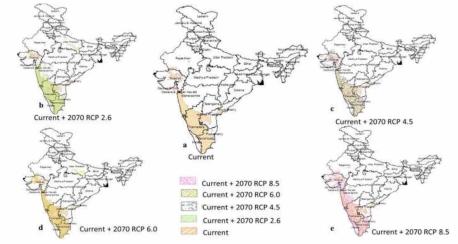

Figure 8. Percent changes (gain and loss) in areas of optimum habitat suitability under different climatic and non-climatic variables in comparison to the current optimum area.

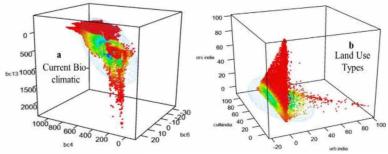
Table 3. Area (km²) of different habitat suitability classes with studied predictors.

Variables	Optimum	Moderate	Marginal	Low
Current	45.88×10^2	70.85×10 ²	12.78×10 ³	16.19×10 ³
Land use and Landcover	28.01×10^{2}	53.93×10^2	15.04×10^3	50.08×10^{2}
2050RCP2.6	40.81×10^{2}	48.10×10^{2}	11.49×10^{3}	10.77×10^3
2050RCP4.5	43.75×10^2	54.09×10^{2}	11.43×10^{3}	10.96×10^{3}
2050RCP6.0	44.35×10^2	50.59×10^{2}	10.97×10^{3}	11.75×10^3
2050RCP8.5	44.32×10^2	53.97×10^2	11.42×10^{3}	10.38×10^{3}
2070RCP2.6	46.82×10^2	60.92×10^2	10.50×10^3	10.65×10^3
2070RCP4.5	46.37×10^2	34.51×10^2	13.16×10^{3}	10.21×10^{3}
2070RCP6.0	45.53×10^2	46.85×10^{2}	85.74×10^2	11.76×10^{3}
2070RCP8.5	41.85×10^{2}	54.29×10^2	92.05×10^{2}	12.36×10^3

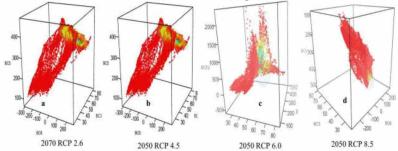
Figure 9. Superimposition of the current optimum suitability sites (a) with different RCPs of 2050 2.6 (b), 4.5 (c), 6.0 (d), and 8.5 (e).

Figure 10. Superimposition of current optimum suitability sites (a) with different RCPs of 2070 2.6 (b), 4.5 (c), 6.0 (d), and 8.5 (e).

Ellipsoid Niche Hypervolume


Using the existing dataset, we constructed an ellipsoid hypervolume, which represents a multidimensional space encompassing the available resources for a given species. This hypervolume was employed to simulate both the fundamental niche, which refers to the species' capacity to persist and reproduce in a wider range of environments in the absence of interspecific competition, and the realized niche, which considers the species' interactions with other coexisting species. To achieve this, we utilized projected

occurrence records of the species C. with the pertinent carandas, along environmental variables that were identified as crucial through the Maxent algorithm, presented in the form of raster output. This enables us to discern the variables that dictate both its fundamental and realized niche. The results are display in Figures 11-a (current bio-climatic) and -b (LULC), 12 (ad) (2050 and its RCPS) and 13 (a-d) (2070 and its RCPS). Within these visual representations, the utilization of the blue hue signifies the concept of niche stability, while the incorporation of the color green



conveys the notion of niche unfilling, denoting the extent to which the native niche remains unoccupied by the exotic niche. Additionally, the inclusion of the red hue serves to symbolize the phenomenon of niche expansion (Mathur and Mathur, 2023). The dimensions of these zones are directly proportional to the magnitude of their respective ecological niche. In terms of bioclimatic space, C. carandas ellipsoidal had larger niche hypervolume (82.21×10³°C mm²) with the current bioclimatic conditions, followed by 2.6 RCPs of 2050 $(60.24 \times 10^{3} \text{ o C mm}^2)$ and 2070

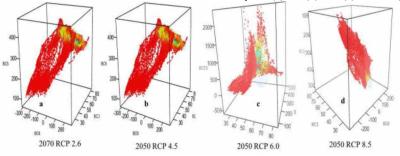

(57.16×10³°C mm²), and among the bioclimatic variables it was the smallest (23.06×10²°C mm²) during the 2050 RCP 4.5. However, with LULC, it was recorded minimum having 19.26×10²°C mm². The manifestation of environmental factors on the dynamics of ecological niches is denoted by the centroid values associated with these variables. The spatial proximity of these entities to the centroid serves as a reliable indicator of their capacity to exert influence over the suitability of species (Nunez-Penichet *et al.*, 2021). The values pertaining to the centroid of various bio-climatic

Figure 11. Graphical representation of *C. carandas* niche hypervolume with three most influential variables pertains to the current bioclimatic (a) and LULC (b) predictors.

Figure 12. Graphical representation of *C. carandas* niche hypervolume with three most influential variables pertains to 2050 bioclimatic time frame with its four RCPS namely 2.6 (a) 4.5 (b), 6.0 (c) and 8.5 (d).

Figure 13. Graphical representation of *C. carandas* niche hypervolume with three most influential variables pertains to 2070 bioclimatic time frame with its four RCPS namely 2.6 (a) 4.5 (b), 6.0 (c) and 8.5 (d).

variables across three distinct time frames are displayed in Table 4.

This species expands its ecological niche mostly beyond its fundamental niche in relation to precipitation levels during the wettest month (Bio-13, the water variable) in the current climate. Table 4 also shows that temperature seasonality (Bio-4) and the minimum temperature during the coldest month (Bio-6) help preserve these niche areas. This analysis of all four RCPs from 2070 shows that the warmest month's maximum temperature (Bio-5) controls the expansion of its fundamental niche. Alternatively, isothermality, the minimum temperature of the coldest month, and the precipitation of the wettest month (2070 RCP 6.0) support these niche areas. Except for RCP 4.5 in 2050, the other RCPs suggest that, like the current situation, its niche expansion is primarily influenced by precipitation levels during the wettest month. In RCP 4.5, the mean temperature of the wettest quarter (Bio-5) dominates this expansion. The centroid value of 52.93 for the LULC variables indicates that cultivated lands control C. carandas' fundamental niche Urbanization (13.29) expansion. barren/sparsely vegetative areas (5.47) help this species maintain its niche.

DISCUSSION

The Asian continent persists in grappling with a significant incidence of malnutrition. The enduring state of malnutrition can be ascribed to a deficiency in dietary variety, coupled with a dearth of diversity in

production. Dietary diversity encompasses the adoption of a nourishing, well-rounded, and heterogeneous dietary pattern, thereby guaranteeing the sufficiency of essential nutrients. The principle of dietary diversity is unequivocally endorsed in all national food-based dietary guidelines. Strategies centred on food that aim to combat malnutrition, particularly deficiencies in essential micronutrients, are intricately intertwined with scientifically substantiated dietary patterns. However, these approaches remain disjointed from the existing agricultural production system. The incorporation of promising, vet underutilized, species characterized by their high nutrient density, climate resilience, profitability, and local availability and adaptability plays a pivotal role in enhancing both dietary and production diversity (Mayes et al., 2012).

By delineating the boundaries of suitable areas, scholar inquiry can significantly strengthen the justification for integrating these crops into a holistic approach to adaptation. Furthermore, climate agronomists have the ability to utilize these in order to augment understanding of the existing and future limitations on resources in each specific region and crop. Upon undergoing scrutiny by an agronomist, it becomes evident that maps possess the inherent capacity to expedite the discernment of the most appropriate agronomic methodology that harmonizes with the particular circumstances of the agriculturalist (Mugiyo et al., 2022; Mathur and Mathur, 2024).

This study used four Representative

Table 4. Values of niche centroid of three most influential bio-climatic variables pertains to various time-frames and RCPs.

		2050 RCPs				2070 RCPS			
Bio variables	Current	2.6	4.5	6.0	8.5	2.6	4.5	6.0	8.5
Bio-3	-	48.52	49.51	48.34	48.9	50.33	49.27	50	49.78
Bio-4	358.72	-	-	-	-	-	-	-	-
Bio-5	-	386.45	-	-	-	384.27	393.86	499.02	402.63
Bio-6	13.69	154.44	164.78	158.81	166.26	163.17	164.4	-	183.03
Bio-8	-	-	279.84	-	-	-	-	-	-
Bio-13	363.06	-	-	465.02	442.04	-	-	391.42	-

Concentration Pathways (RCPs) to assess crop viability at various concentrations. The RCPs included a large trajectory (RCP8.5), a moderate trajectory (RCP4.5 and RCP6.0), and a small trajectory (RCP2.6). We wanted to determine crop sustainability potential across these trajectories. The environmental adaptation and eco-geographic distribution of underutilized species have been widely recognized in scholarly literature (Williams and Haq, 2002; Mugiyo et al., 2022). Many underutilized species have adapted to inhospitable environments, preserving biodiversity and protecting against risks in ever-changing ecosystem. understanding their ecological adaptation and ecogeographic dispersion is crucial to selecting crops for future use (Bow and Haq, 2010).

C. carandas is discussed as a climateresilient, underutilized crop to examine the factors affecting its domesticated areas, the fundamental niche, and its new viable areas, the realized niche, for its introduction. Koch et al. (2022) empirically supported our methods. Their research involves developing an ensemble model to characterize the distribution patterns of Ensete ventricosum. a perennial banana species grown only in southwestern Ethiopia. Ratnayake et al. (2020) advocated for predictive modelling in the management of Neglected Underutilized Fruit Species (NUFS) in the light of climate change, supporting our methods. The researchers examined Aegle marmelos, Annona muricata, Limonia acidissima, and Tamarindus indica species in both present and projected future climates (RCP 4.5 and RCP 8.5) for 2050 and 2070. They used the widely-recognized Maximum entropy (Maxent) Species Distribution Modelling (SDM) approach to predict species distributions. These methods have highlighted the need for climate change adaptation strategies and research to strengthen underutilized fruit crops against climate change.

The current study has furnished a comprehensive nationwide database concerning the geo-tagged spatial

distribution of *C. carandas*. This dataset comprises 218 strategically thinned points, and its implications extend to practical assessments of favourable regions for crop cultivation, accurate productivity forecasting, and facilitation of appropriate markets for these under-utilized crops. Moreover, it represents a crucial step towards the development of a user-friendly mobile application, such as "Kirshi-Kisan" (https://play.google.com/store/apps/details?id=com.cropdemonstrate&hl=en&gl=US) by government of India.

The results of our habitat suitability analysis have revealed that the distribution dynamics of this particular species are primarily influenced by temperature-related variables rather than water-related variables such as precipitation. Among temperature variables, isothermality and the minimum temperature during the coldest months have the greatest impact on species distribution. Temperature annual range and the wettest quarter mean temperature affect species distribution less. Moreover, by employing threshold values of the effective temperature variables, such as a minimum temperature of 15°C for the coldest month and an isothermality peak of 50, we can deduce the distribution pattern of this particular species. It becomes apparent that the species is predominantly found in the southern and western regions of the countries, while its presence is notably absent in the northern and eastern regions: In the regions of Gujarat, Karnataka, Tamil Nādu, Andhra Pradesh, and certain areas of Rajasthan. These locations exhibit isothermality, where the diurnal temperature range is half of the annual temperature range. In essence, a numerical value of 100 represents a location where daily temperature fluctuations equal annual temperature variation. However, a numerical value of 50 indicates a location where the 24-hour temperature difference is half of the annual temperature range. According to Kogo et al. (2019), environmental factors tend to affect the appropriateness of different regions. Any deviation from these parameters affects crop suitability, whether positively or negatively. In India, *C. carandas* thrives in hot, humid climates. The main factors limiting *C. carandas* growth and development are temperature and seasonal fluctuations (Meena *et al.*, 2022).

The variables of urbanization, cultivated land, and grassland have been identified as influential factors in Land Use and Land Cover (LULC). Our analysis has shown that as urbanization increases by 10-20% and grassland expands by 5-10%, the likelihood of suitability for this particular species experiences a gradual but limited decrease. particular Nevertheless. this species demonstrates a remarkable adaptability to thrive within cultivated regions, owing to its significantly higher tolerance for land use and land cover changes. As mentioned, these areas are mostly in Karnataka, Tamil Nadu, and the Western Ghats of Maharashtra and Goa. There are also occasional suitable habitats for this species in Gujarat. We included all the relevant bio-climatic temporal variations and RCPs in our analysis. RCPs were used to identify several Rajasthan locations. However, using LULC predictors, we found widely dispersed optimal habitats for this species in Odisha, Jharkhand, West Bengal, Uttar Pradesh, New Delhi, Uttarakhand, and Jharkhand.

By utilizing the LULC variable, we have successfully documented the highest level of fragmentation within the optimal suitability category, resulting in a notable reduction of up to -38.95% compared to its existing climatic extent. The phenomenon fragmentation has been previously examined and conceptualized by Rathore et al. (2022). LULC changes should significantly impact C. carandas distribution in the study region. Urban heat islands show that human activity and ecosystem damage can raise local temperatures, so, species composition may differ between urban and rural areas. Urbanization alters soil properties. Heavy metal and organic matter are higher in urban soils (Wang et al., 2016). Bhandari et al. (2022) and Padder and Mathavan (2022) quantified how land cover changes adversely

affected rice and maize productivity. Unfortunately, this association for underutilized crops has not been studied. This study helped us understand the causes and effects of underutilized crop productivity and its factors.

Understanding niche dynamics is crucial to creating effective conservation strategies (Atwater et al., 2018; Liu et al., 2020). During habitat colonization, species change their niche space, which can maintain, expand, or contract. Variations in the realized niche-all the biotic and abiotic conditions a species is observed in nature and the fundamental niche—the abiotic conditions needed for positive population without biotic interactionsgrowth influence these changes (Guisan Thuiller, 2005). Jezkova and Wiens (2016) that changing realized fundamental niches are distinct processes that do not overlap. We simulate C. carandas climatic and non-climatic fundamental and realized niche using a precise predictor. The ecological niche hypervolume analysis has shown that C. carandas 'climatic niche is larger than its non-climatic niche, which is supported by Bilton et al. (2016). This study found that temperature-related factors are most important in determining the phenomenon's spatial range. Niche analysis has shown that the amount of precipitation received during the wettest month is the main factor affecting its ecological niche expansion during the current and projected 2050 climatic timeframe. Niche expansion is regulated by the warmest month's upper limit in 2070.

CONCLUSIONS

This study provides a comprehensive assessment of the habitat suitability of *Carissa carandas* in India, incorporating bio-climatic variables, Greenhouse Gas (GHG) scenarios, and Land Use/Land Cover (LULC) predictors. Using the MaxEnt model, we identified key environmental factors influencing the species'

distribution, with temperature-related variables, such as the minimum temperature of the coldest month and isothermality, playing a dominant role. Future climate projections for 2050 and 2070 indicate shifts in suitable habitat, with the southern and western regions of India (including Karnataka, Tamil Nadu, Maharashtra, and Gujarat) continuing to be optimal areas, while habitat fragmentation is expected in the northern and western regions due to climate change and land use changes. The findings underscore the importance of integrating C. carandas into climate-resilient agricultural and conservation strategies. Given its adaptability and economic potential, promoting its cultivation in suitable regions can enhance biodiversity, support sustainable agriculture, and provide economic benefits to farmers. However, policy interventions are needed to mitigate the effects of urbanization and land-use changes on its habitat. Future research should focus on refining habitat predictions using additional environmental factors and assessing the socio-economic impact of cultivating this underutilized species.

ACKNOWLEDGEMENTS

Senior author is thankful to the Director of ICAR-CAZRI, for giving approval to him for attending training on R-Programming that enhance his working capacity using ENM modelling techniques. Preet Mathur is thankful to their director for extending their academic help.

REFERENCES

- Akinola, R., Pereira, L. M., Mabhaudhi, T., De Bruin, F. M. and Rusch, L. 2020. A Review of Indigenous Food Crops in Africa and the Implications for More Sustainable and Healthy Food Systems. Sustainability, 12:3 493.
- Akpoti, K., Kabo-bah, A. T., Dossou-Yovo, E. R., Groen, T. A. and Zwart, S. J. 2020. Mapping Suitability for Rice Production in Inland Valley Landscapes in Benin and Togo Using Environmental Niche modeling. Sci. Total Environ., 709: 136165.

- Ali, F., Khan, N., Khan, A.M., Ali, K. and Abbas, F. 2023. Species Distribution Modelling of *Montotheca buxifolia* (Falc.)
 A. DA.: Present Distribution and Impacts of Potential Climate Change. *Heliyon*, 9(2): 1-16.
- Atwater, D. Z., Ervine, C. and Barney, J. N. 2018. Climatic Niche Shifts are Common in Introduced Plants. *Nat. Ecol. Evol.*, 2: 34– 43.
- Banik, B. C., Ghosh, S. N. and Singh, S. R. 2012. Research and Development in Karonda (*Carissa carandas*), a Semi Wild Fruit in India. In: "Proceeding of first International Symposium on Wild Relatives Subtropic and Temperate Fruits and Nuts Crops", (Eds.): Aradhya, M. K. and Kluepfel, D. A. Acta Hortic., 948: 61-66.
- Bhandari, A., Joshi, R., Thapa, M. S., Sharma, R. P. and Rauniyar, S. K. 2022 Land Cover Changes and Its Impact in Crop Yield: A Case Study from Western Nepal. Sci. World J., Volume 2022, Article ID 5129423, 9 PP.
- 7. Bilton, M.C., Metz, J. and Tielorger, K. 2016. Climatic Niche Groups: A Novel Application of a Common Assumption Predicting Plant Community Response to Climate Change. *PPEES*, **19:** 61-69.
- 8. Bow, C. and Haq, N. 2010. Quantifying the Global Environmental Niche of an Underutilised Tropical Fruit Tree (*Tamarindus indica*) Using Herbarium Records. *Agric. Ecosyst. Environ.*, **139**: 51-58.
- 9. Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G. and Ravindranath, N. H. 2012. Multi-Model Climate Change Projections for India under Representative Concentration Pathways. *Curr. Sci.*, **103(7):** 791-802.
- Chibarabada, T. P., Modi, A. T. and Mabhaudhi, T. 2020. Calibration and Evaluation of Aquacrop for Groundnut (*Arachis hypogaea*) under Water Deficit Conditions. *Agric. For. Meteorol.*, 281: 1-8.
- CIAH. 2014. Annual Report Central Institute for Arid Horticulture. Bikaner, Rajasthan
- 12. CIAH. 2020. Annual Report Central Institute for Arid Horticulture. Bikaner, Rajasthan
- Coban, H. O., Orucu, O. K. and Arslan, E.
 S. 2020. MaxEnt Modelling for Predicting the Current and Future Potential

- Geographical Distribution of *Quercus libani* Olivier. *Sustainability*, **12(7)**: 1-17.
- 14. Elith, J., Graham, C. H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. 2006. Novel Methods Improve Prediction of Species' Distributions from Occurrence Data. Ecography, 29: 129–151
- Fick, S. E. and Hijmans, R. J. 2017.
 WorldClim 2: New 1 km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol., 37 (12): 4302-4315.
- 16. Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. and Wiberg, D. 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy. https://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/harmonized-world-soil-database-v12/en
- 17. GBIF. 2023. GBIF Occurrence. Global Biodiversity Information Facility. Download from: https://doi.org/10.15468/dl.ags3ht
- Ghosh, S., Sarkar, T. and Chakraborty, R.
 2023. Underutilized Plant Sources: A
 Hidden Treasure of Natural Colors. Food Biosci., 52: 1-14.
- Guisan, A. and Thuiller, W. 2005.
 Predicting Species Distribution: Offering More than Simple Habitat Models. *Ecol. Lett.*, 8: 993–1009.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. 2005. Very High-Resolution Interpolated Climate Surfaces for Global Land Areas. *Int. J. Climatol.*, 25 (15): 1965-1968
- Jezkova, T. and Wiens, J. J. 2016. Rates of Change in Climatic Niches in Plant and Animal Populations Are Much Slower than Projected Climate Change. *Proc. Biol. Sci.*, 283: 1-9.
- Jijon, J. D., Gaudry, K. H., Constante, J. and Valencia, C. 2021. Augmenting the Spatial Resolution of Climate-Change Temperature Projections for City Planners

- and Local Decision Makers. *Environ. Res. Lett.*, **16:** 1-12.
- 23. Kagnew, B.; Assefa, A. and Degu, A. 2023. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability, 15(1): 1-21.
- Kanupriya, C., Tripathi, P. C., Singh, P., Venugopalan, R. and Radhika, V. 2019. Analysis of Morphological, Biochemical and Molecular Diversity in Karonda (*Carissa carandas* L.) Germplasm. Fruits, 74 (3): 130-140.
- Kass, J. M., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., Anderson, R. P. 2018. Wallace: A Flexible Platform for Reproducible Modelling of Species Niches and Distributions Built for Community Expansion. *Methods Ecol.* Evol., 9: 1151–1156.
- 26. Knez, M., Ranic, M. and Gurinovic, M. 2023. Underutilized Plant Increase Biodiversity, Improve Food and Nutrition Security, Reduce Malnutrition, and Enhance Human Health and Well-Being. Let's Put Them Back on the Plate!. Nut. Rev., 82(2): 1111-1124.
- 27. Koch, O., Mengesha, W.A., Pironon, S., Pagella, T., Ondo, I., Rosa, O., Wilkin, P. and Borrell, J. S. 2022. Modelling Potential Range Expansion of an Underutilised Food Security Crop in Sub-Saharan Africa. *Environ. Res. Lett.*, 17: 1-15.
- Kogo, B. K., Kumar, L., Koech, R. and Kariyawasam, C. S. 2019. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MAXENT) Approach. Agronomy, 9(11): 1-18.
- Krishna, H., Chauhan, N. and Shamra, B.
 D. 2017. Evaluation of Karonda (*Carissa carandus L.*) Derived Natural Colourant Cum Nutraceuticals-Supplement. *Int. J. Minor Fruits Med. Aromat. Plants*, 3(2): 28-33.
- Liu, C., Wolter, C., Zian, W. and Jeschker, J. M. 2020. Most Invasive Species Largely Conserve Their Climatic Niche. *PNAS* 117: 31-38.
- Maanik, Deep, J. B., Kumar, R., Sharma, R., Gupta, S., Choudhary, A., Thakur, N. and Sharma, T. 2023. Economic Analysis of Propagation Studies on Karonda (Carissa carandas L.) under Jammu Sub-

- Tropics: A Comparative Study. *Pharm. Innov.*, **12(8)**: 1242-1246.
- 32. Mahajan, M., Bons, H. K., Dhillon, G. K. and Sachdeva, P. A. 2022. Unlocking the Impact of Drying Methods on Quality Attributes of an Unexploited Fruit, Karonda (*Carissa carandas* L.): A Step towards Food and Nutritional Security. *South Afr. J. Bot.*, **145**: 473–480.
- Mathur, M., Mathur, P. and Purohit, H. 2023. Ecological Niche Modelling of a Critically Endangered Species Commiphora wightii (Arn.) Bhandari Using Bioclimatic and Non-Bioclimatic Variables. Ecol. Process., 12: 1-30.
- 34. Mathur, P. and Mathur, M. 2023. Machine Learning Ensemble Species Distribution Modelling of an Endangered Arid Land Tree Tecomella undulata: A Global Appraisal. Arab. J. Geosci., Volume 16, Article Number 131.
- 35. Mathur, M. and Mathur, P. 2024. Comparative Assessment of Different Earth System Models for Habitat Suitability of *Cuminum cyminum* (Linn.) Crop: A Machine Learning Evaluation from Arid and Semi-Arid Hot Areas of the India. *Indian J. Plant Genet. Resour.*, 37(2): 316-340.
- Mayes, S., Massawe, F. J., Alderson, P. G., Roberts, J.A., Azam-Ali, S. N. and Hermann, M. 2012. The Potential for Underutilized Crops to Improve Security of Food Production. J. Exp. Bot., 63 (3): 1075-1079.
- Meena, V. S., Gora, J.S., Singh, A., Ram, C., Meena, N. K., Rouphael, Y., Basile, B. and Kumar, P. 2022. Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies. *Horticulture*, 8(2): 1-29
- Meena, V. S., Pratap, B., Bhatt, K. C., Pradeep, K., Meena, N. L., Kumar, A. and Singh, K. 2020. Physico-Chemical Studies on Maroon Coloured Karonda (*Carissa carandus*) Collected from Uttar Pradesh, India. *Int. J. Econ. Plants*, 7(1): 34-37.
- Meghwal, P. R., Singh, S. K., Singh, A. and Pathak, R. 2014. Characterization of Karonda (*Carissa carandas*) Accession under Arid Region. J. Appl. Hortic., 16(2): 157-160.
- 40. Mishra, B., Tomaer, V., and Kumar, A. 2024. Karonda (*Carissa carandas* L.): A

- Miracle Fruit with Multifaceted Potential. *J. Agri. Food Res.*, **18**: 1-15.
- Mugiyo, H., Chimonyo, V. G. P., Kunz, R., Sinanda, M., Nhamo, L., Masemola, C. R., Modi, A. T. and Mabhaudhi, T. 2022. Mapping the Spatial Distribution of Underutilized Crops Species under Climate Change Using the MaxENT Model: A Case of KwaZulu-Natal, South Africa. Clim. Serv., 28: 1-14.
- 42. Nunez-Penichet, C., Cobos, M. E. and Soberon, J. 2021. Non-Overlapping Climatic Niches and Biogeographic Barriers Explain Disjunct Distributions of Continental Urania Moths. Front. Biogeogr., 13(2): 1-12.
- Nyathi, M. K., van Halsema, G. E., Annandale, J. G. and Struik, P. C. 2018. Calibration and Validation of the AquaCrop Model for Repeatedly Harvested Leafy Vegetables Grown under Different Irrigation Regimes. Agric. Water Manag., 208: 107–119.
- Olayinka Atoyebi, J., Osilesi, O., Adebawo, O. and Abberton, M. 2017. Evaluation of Nutrient Parameters of Selected African Accessions of Bambara Groundnut (Vigna subterranea (L.) Verdc.). Am. J. Food Nutr., 5 (3): 83–89.
- 45. Osorio-Olvera, L., Lira-Noriega, A., Soberon, J., Townsend, P. A., Falcon, M., Contrears-Diaz, R. G., Martinez-Meyer, E., Barve, V. and Barve, N. 2020a. Ntbox: An R Package with Graphical User Interface for Modeling and Evaluating Multidimensional Ecological Niches. *Methods Ecol. Evol.*, **11:** 1199-1206.
- Osorio-Olvera, L., Yañez-Arenas, C., Martínez-Meyer, E. and Peterson, A.T. 2020b. Relationships between Population Densities and Niche-Centroid Distances in North American Birds. *Ecol. Lett.*, 23: 555– 564.
- 47. Padder, A.H. and Mathavan, B. 2022. Dynamics of Land Use and Land Cover Change in Jammu and Kashmir. *J. Agric. Hortic. Res.*, **5(2)**: 104-112.
- 48. Padulosi, S., Thompson, J. and Rudebjer, P. 2013. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species: Needs, Challenges and the Way Forward. Bioversity International, Rome, 60 PP. https://hdl.handle.net/10568/68927

- Phillips, S. J., Anderson, R. P. and Schapire, R. E. 2006. Maximum Entropy Modeling of Species Geographic Distributions. *Ecol. Modell.*, 190(3-4): 231–259.
- Pradhan, P. 2016. Strengthening Maxent Modelling through Screening of Redundant Explanatory Bioclimatic Variables with Variance Inflation Factor Analysis. Researcher, 8(5): 29–34.
- Praveen, S., Kaur, S., Baishya, R. and Goel,
 S. 2022. Predicting the Potential Suitable Habitats of Genus Nymphaea in India Using MaxEnt Modelling. Environ. Monit. Assess., 194: 1-17.
- 52. Rathore, P., Roy, A. and Karnatak, H. 2022. Predicting the Future of Species Assemblages under Climate and Land Use Land Cover in Himalaya: A Geospatial Modelling Approach. Clim. Change Ecol., 3: 1-17.
- 53. Ratnayake, S. S., Kumar, L. and Kariawasam, C. S. 2020. Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential Distribution under Climate Change. Agronomy, 10(1):
- 54. Sarkar, T. 2024. Karonda: An Underutilized Fruit Crop, Promise as a Significant Asset for Rural Economies. Int. *J. Agric. Food Sci.*, **6 (2):** 156-158.
- 55. Singh, A.K. and Singh, P. 1998. Power of Significance of Difference among Fruit and Seed Size Parameters of Karonda (*Carissa carandus* Linn.). *Ann. Rev. Agri. Res.*, 19: 6671.

- Singh, I.S., Awasthi, O. P. and Meena, S. R. 2010. Influence of Tree Plantation on Soil Physico-Chemical Properties in Arid Region. *Indian J. Agrofor.* 12(20): 42-47.
- 57. Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., Cook, C. L., Edwards, T. C., Guala, G. F., Howard, T. G., Morisette, J. T. Hamilton, H. 2019. Development and delivery of species distribution models to inform decision making. *Biosci.* 69 (7): 544-557.
- 58. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughs GO, Rouget M (2005) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11(12): 2234–2250
- Wang, W., Zhang, C., Li, W., Boyer, M. A., Segerson, K. and Silander, J. 2016. Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut. Land, 5(3): 1-22.
- 60. Williams, J. T. and Haq, N. 2002. Global Research on Underutilized Crops. An Assessment of Current Activities and Proposals for Enhanced Cooperation, 46 PP
- 61. Zhang, Y., Tang, J., Ren, G., Zhao, K. and Wang, X. 2021. Global Potential Distribution Prediction of *Xanthium italicum* Based on Maxent Model. *Sci. Rep.*, 11: 1-10.

ارزیابی مناسب بودن زیستگاه گونه .*Carissa carandas* L در هند با استفاده از متغیرهای زیست اقلیمی، سناریوهای گازهای گلخانهای،و پیشبینی کنندههای کاربری زمین و پوشش زمین

مانیش ماتور، و پریت ماتور

چکیده

این یژوهش به منظور ارزیابی مناسب بودن زیستگاه کاریسا کاراندا(Carissa) carandas) ، گیاهی که برای ادغام پایدار آن در کشاورزی تحت شرایط آب و هوایی متغیر بسیار مهم است، در هند انجام شد. ما از مدلسازی حداکثر آنتروپی (MaxEnt) برای ارزیابی توزیع گونهها در سناریوهای فعلی و آینده (۲۰۵۰ و ۲۰۷۰) در چهار مسیر غلظت نماینده (Representative Concentration Pathways) شامل (Revesentative Concentration) شامل ٤.٥، 6.0 و 8.5) استفاده كرديم. نتايج نشان داد كه متغيرهاي مرتبط با دما، به ويژه حداقل دماي سردترين ماه (MiTCM)، با سهم %48.8 در 2.6 RCP سال 2070) و ايزوتر ماليتي (با سهم تا %35/2 در 8.5 RCP سال 2070)، محركهاي اقليمي غالب هستند. عوامل كاربري و يوشش زمين (LULC) مانند شهرنشيني (49.8)، كل زمينهاي كشتشده (18/1%) و علفزارها (9%) به طور قابل توجهي بر تناسب زيستگاه تأثير مي گذارند. در شرایط فعلی، زیستگاه بهینه 4588 کیلومتر مربع را در بر می گیرد که تحت سناریوهای 38.95% LULC كاهش مى يابد. تغييرات ييش بينى شده زيستگاه نشان دهنده افزايش %2.40 تا سال 2070 است، اما كاهش. 11.06درصدي تا سال 2050 با RCP 2.6 را نشان مي دهد. مناطق جنوبي و غربي، از جمله كارناتاكا، تاميل نادو، ماهاراشترا و گجرات، از تناسب بالایی برخوردارند. تکهتکه شدن زیستگاه در شمال و غرب هند به دلیل تغییرات اقلیمی و تغییرات کاربری زمین پیشبینی می شود. تأکید این یافته ها بر نیاز به برنامه ریزی حفاظتی یشگیرانه و استراتژیهای کشاورزی سازگار با آب و هوا برای بهینهسازی کشت C. carandas میباشد. سیاستگذاران و ذینفعان باید بر حفظ مناطق مناسب تمرکز کنند و درعین حال از بین رفتن زیستگاه ناشی از شهرنشینی را کاهش دهند.

Explaining and Validating the Green Curriculum's Characteristics Based on the Critical Competencies of Education for the 21st Century

Maryam Hosseini Largani¹, Hossein Taimour², and Mahsa Saadvandi^{2*}

ABSTRACT

This study aimed to explain and validate the characteristics of a Green Curriculum (GC) based on critical competencies required for the 21st-century education. A mixedmethods approach was employed. In the qualitative phase, experts with experience in sustainability within Iran's higher education system were selected through snowball sampling. Data were collected via semi-structured interviews and analyzed using content analysis. The identified GC characteristics were then quantitatively validated using the Lawshe method. For this purpose, 40 faculty members and doctoral students in educational sciences were randomly selected to evaluate the appropriateness of these characteristics on a three-level scale. The results identified 50 characteristics from interviews and documents, with 48 being validated through the Lawshe method. Additionally, the study found that each of the five competencies for the 21st-century education (learning to know, learning to be, learning to do, learning to live together, and learning to transform oneself and society) aligns with several GC characteristics. Recommendations for operationalizing these competencies within a GC include integrating environmental management into various academic curricula, defining practical projects for students, and encouraging engagement with the environmental organizations and global research communities.

Keywords: Environmental challenges, Green university, Higher Education sustainability, Lawshe method.

INTRODUCTION

Green University

Due to increasing concern about various environmental issues, universities are expected to contribute to solving these problems by generating relevant knowledge and integrating sustainability into their programs. This expectation has led to the introduction of the concept of a green university (Shu *et al.*, 2024; Khoderchah and

Semaan, 2024). Although "green" is a broad and complex concept encompassing environmental concerns, protection of the planet and animals, humanitarian concerns, fair trade, clean water, welfare, equality, and sustainability (Nowak, 2023), in higher education, it represents an approach proposed under the concept of sustainable development, highlighting the serious responsibility of higher education in this regard (Deriu and Gallo, 2024). The first thought that comes to mind when hearing about a green university is often a green campus. However, it refers to all human activities in the 21st century that cause the

¹ Educational and Curricular Innovations Group, Institute for Research and Planning in Higher Education, Tehran, Islamic Republic of Iran.

² Department of Agricultural Extension and Education, College of Agriculture, Tarbiat Modares University (TMU), Tehran, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: m.saadvandi@modares.ac.ir

least damage to the environment (Pouramini and Bashokouh, 2024). Following the introduction of the green university concept, several assessment systems have been designed to monitor the activities of green universities worldwide (Figure 1).

As shown in Figure 1, among the six defined ranking systems for green universities, only two systems consider education as a criterion: STARS and Green Metric. The former is specifically designed for American and Canadian universities and is not a global ranking system (Atici et al., 2013). The latter system emphasizes the physical environment, with education presented implicitly alongside research. Chankrajang and Muttarak (2017) studied the contribution of education to proenvironmental behavior and confirmed that education significantly increased the probability of taking knowledge-based environmentally-friendly actions. Kountouris and Remoundou (2023) also found that education improved some types of environmentally friendly activities, such as waste recycling. Therefore, educational aspects are underestimated in Green University (GU) assessments and need more attention.

Despite the increasing emphasis on sustainability in higher education, the current GU assessment systems inadequately address the educational aspects of sustainability. Most systems focus primarily on the physical environment, neglecting the critical role of education in fostering pro-

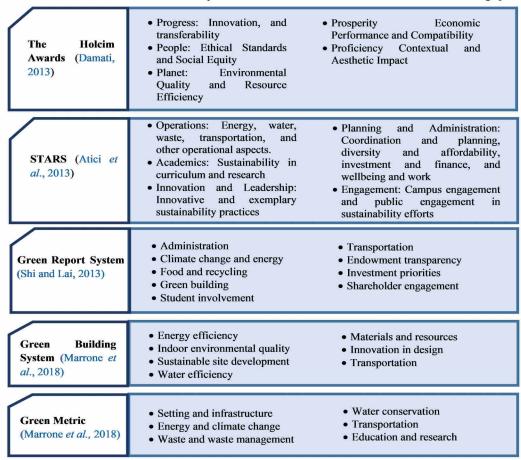


Figure 1. Green Universities Ranking systems.

environmental behaviors and competencies. This oversight limits the effectiveness of GU in promoting comprehensive sustainability education.

Addressing this gap is crucial because education is a powerful tool for instilling sustainable practices and mindsets in future generations. Without a strong educational component, GU cannot fully achieve their potential in driving societal change towards sustainability. This research aims to bridge this gap by validating the characteristics of a green curriculum based on the critical competencies of education for the 21st century.

This study provides a detailed analysis of the educational dimensions of GU, proposing a framework for integrating sustainability into higher education curricula. By focusing on the critical competencies identified by UNESCO, this research offers practical guidelines for developing green curricula that equip students with the knowledge, skills, values necessary attitudes, and sustainable living.

Green Curriculum

According to the Illinois Central College Curriculum Committee in the United States, curriculum is related to sustainability and equips learners with the knowledge and skills to identify, analyze, and solve problems in various social, economic, and environmental domains (Illinois Central College, 2023). The green curriculum aims to integrate sustainability into the teaching process so that the learners obtain sufficient knowledge and skills to become "Sustainability Minded Citizens." The primary purpose of sustainable thinking is to empower individuals to comprehend the complex issues of sustainability and the challenges facing human society at local and global levels, enabling them to seek logical solutions to these problems (Tagipour et al., 2016; Singer-Brodowski et al., 2018). Previous studies related to the green

curriculum confirm that this type of curriculum focuses on environmental crises and often aims to empower people to solve these crises.

According to UNESCO's Greening Curriculum Guidance, integrating climate mitigation and adaptation into teaching and learning is essential for fostering a holistic, scientifically accurate, and justice-driven approach to climate change education (UNESCO, 2024). Hays and Reinders (2020) discussed that the concept of Sustainable Learning and Education (SLE) emphasizes creating curricula that instill skills and dispositions necessary for thriving challenging circumstances. integration of sustainability in the green curriculum is crucial for developing an environmentally conscious mind-set in students. Gabrys et al. (2020) emphasize problem-solving in a coached apprenticeship system, which can be applied to green education through real-world environmental challenges. Avvisati and Borgonovi (2020) show that problem-solving in mathematics enhances analytical skills vital sustainability. Rebello et al. (2017) highlight the need for an interdisciplinary approach to address complex scientific problems, stressing the importance of a green curriculum that incorporates sustainability subjects. across various Furthermore, Karami et al. (2020) examined the green curriculum in Iranian universities. emphasizing the water crisis, climate change, and knowledge supply sources. They suggested developing a green curriculum aligned with climate change management in Iran, including creating a department for curriculum development and revision in all universities of the Ministry of Research and Science. Technology according to the country's water conditions, and dedicating part of the lessons to climate change management at different education levels. Another study considered the green curriculum as a tool for sustainable learning, indicating that it should be used to allow people to solve their problems in communities through radical problem-

solving initiatives and ideas. Transformative solutions, which are holistic, not only are profitable but also save people and the planet (Louw, 2013). Haigh (2005) indicated that universities should equip all their students with "environmental literacy", and sustainability must be the central point of the curricula and all practices of any university worldwide. Greening the curriculum is considered a plan to ensure students' ability to face the challenges of the 21st century, such as global warming and climate change, social inequalities, unsustainable lifestyles, and the urgent need to move to an economy based on renewable energy (Greenheart Education, 2019). Accordingly, the green also covers the critical curriculum competencies of education for the 21st century. Competency in this context refers to combination of knowledge, skills, attitudes, and values that students need to effectively navigate and succeed in various aspects of life, including personal, academic, and professional domains (Koeppen et al., 2008). These competencies, which correspond to basic skills and required characteristics for sustainable activities, are identified by UNESCO and presented in Delors's report (1996) as follows:

Learning to know: Obtaining the instruments of understanding or learning how to learn, which can be considered a foundation for lifelong learning.

Learning to do: Applying learned knowledge in daily life to improve the ability to be creative and responsible toward the surrounding environment.

Learning to be: Obtaining universally shared values, developing one's personality, self-identity, and self-knowledge, becoming immersed in one's culture and wisdom, and being empowered to learn about oneself and become more fully human.

Learning to live together: Education for international and intercultural understanding is essential for fostering the social dimension of human development. It serves as the foundation for cohesion and harmony, conflict avoidance, non-violence, and peaceful coexistence. Recognizing that

difference and diversity are opportunities rather than dangers, this competency emphasizes the value of diversity as a resource for the common good. It promotes the ability to tolerate, respect, welcome, and celebrate differences in people, their histories, traditions, beliefs, values, and cultures, using this diversity to enrich our lives and classrooms.

Learning to transform oneself and society: This competency focuses on working towards a gender-neutral, non-discriminatory society and acting to achieve social solidarity and international understanding. Above all, it emphasizes living sustainably (Shaeffer, 2007).

Given the above explanations, it is clear that the green university movement is a approach to addressing crucial mitigating environmental concerns in the contemporary era. However, despite the critical role of education in this journey. current ranking systems for universities have not sufficiently considered educational aspects. Due to the significance of green education, it aligns well with the critical competencies of education for the 21st century, as introduced by UNESCO. Therefore, this study aims to design and validate a green curriculum model based on these critical competencies. To achieve this aim, we have formulated two research questions:

What are the characteristics of a green curriculum?

How can we categorize the characteristics of a green curriculum based on the competencies of education for the 21st century?

MATERIALS AND METHODS

Research Design

This study employed a mixed-methods approach, combining qualitative and quantitative paradigms to explore and validate the characteristics of a green curriculum based on the critical

competencies of education for the 21st century. The exploratory nature of the initial phase justified the use of qualitative methods, allowing for an in-depth understanding of the research topic. The subsequent phase utilized quantitative methods to validate the content of the green curriculum characteristics.

Qualitative Phase

In the first phase, we conducted semistructured interviews with 12 experts in education and sustainability. These experts were selected using snowball sampling, ensuring a diverse and knowledgeable participant pool. The interview questions focused on identifying the characteristics and components of a green curriculum. Data collection continued until theoretical saturation was reached, indicating comprehensive coverage of the topic. Additionally, we conducted a documentary analysis of 14 published articles and a dissertation related to the green curriculum, using content analysis techniques (Aithal and Rao, 2016; Capdevila et al., 2002; Chakraborty et al., 2018; Cotgrave and Alkhaddar, 2006; Haigh 2005, Karami et al., 2020; Louw, 2013; Okaka, 2016; Okaka, 2007; Şahin, 2008; Şahin et al., 2009; Torre et al., 2017; Wemmenhove and de Groot, 2001; Wu, 2011; Xiong et al., 2013). The accuracy of this procedure was verified through constant comparison (Schilling, 2006). Thus, 10% of all selected documents were examined by two researchers at the same time using research tools (including index cards proposed by Padang et al., 2018) to systematically gather and organize data, ensuring a structured and efficient approach to documentary analysis. Then, the results were compared. Since more than 90% of the results were similar, the accuracy of the research tool was confirmed. To analyze the data, content analysis was used according to Borg and Gall (1984). Accordingly, the texts of both the interviews and documents were carefully studied and, firstly, in the open coding, all statements illustrating characteristics of the green curriculum were extracted. In the next step, categorization was done thorough the axial coding. Considering that the basis of this research was the key competencies of education for the 21st century, central coding was done on this basis.

Quantitative Phase

In the second phase, we employed the Lawshé method to assess the content validity of the green curriculum characteristics. A questionnaire containing the identified characteristics was distributed to a panel of 40 experts, who evaluated each "necessary", "useful unnecessary", or "unnecessary". The Content Validity Ratio (CVR) calculated for each item using the following formula:

$$CVR = \frac{ne - N/2}{N/2} \tag{1}$$

Where, (ne) is the number of panelists indicating "necessary" and (N) is the total Number of panelists. The minimum acceptable value of CVR for a panel of 40 members is 0.29 (Paykari *et al.*, 2018). Items with lower values were omitted.

Additionally, the Content Validity Index (CVI) was calculated to assess the simplicity, clarity, and relevance of the characteristics. The CVI was determined using the following formula:

$$CVI = \frac{\text{The number of experts giving rate 3 or 4}}{\text{Total number of experts}} \quad (2)$$

Panel members rated each item on a 4-point scale, and the minimum acceptable CVI value for the remaining items in the questionnaire was 0.79 (Munro, 2005).

RESULTS

Descriptive Findings

To determine the characteristics of the green curriculum, we conducted interviews

 Table 1. Concepts extracted from interviews regarding the green curriculum characteristics.

Concepts extracted from interviews	Number of citations
Emphasis on creating a positive attitude toward environmental issues among students	6
Increasing students' awareness of the current environmental issues in the world	5
Teaching a critical attitude towards behaviors and activities that affect the environment	5
Benefiting from educators who believe in sustainability	5
Considering social responsibility in the content of the green curriculum	5
Considering the principles of sustainability and environmental protection in the curriculum evaluation stage	5
Providing the opportunity for students to respond to environmental challenges in nature	5
Developing a curriculum based on the ecological needs of the society	5
Using teaching-learning approaches based on interaction in order to promote the spirit of empathy in	4
solving environmental hazards among learners	
Emphasis on problem-oriented education based on solving environmental problems	4
Teaching the operational principles of paying attention to sustainability in any specialized work related to people's profession	3
Improving people's creativity in solving environmental challenges	3
Emphasizing the necessity of environmental protection in the green curriculum	3
Emphasis on minimizing environmental risks	3
Emphasis on systemic thinking and attention to the relationship between environmental components	3
Paying attention to the education of citizenship or global citizen in the content of the green curriculum	3
Considering the principles of sustainability and environmental protection in the curriculum design phase	3
Introducing knowledge resources related to sustainability to learners as auxiliary resources	3
Introducing knowledge resources related to sustainability to learners as main resources	3
Introducing knowledge resources related to sustainability to learners as non-curriculum resources	3
Enabling the students to consider the consequences of personal behaviors and paying attention to the direct effects of these behaviors	2
Enabling the students to consider the consequences of personal behaviors and paying attention to the indirect effects of these behaviors	2
Integrating different aspects of sustainable development in the content of the green curriculum	2
Teaching the sustainability skills to students (students' ability to combine the principles of	2
sustainability with all aspects of life)	_
Considering the issue of social justice (rights of the next generation) in the content of the green curriculum	2
Considering the issue of environmental culture in the content of the green curriculum	2
Encouraging students to learn lifelong environmental issues	2
Focus on changing students' behavior to achieve sustainability in society	2
Using educational resources related to the environment	1
Informing students about political relations effective on environmental risk management	1
Creating an opportunity for students to exchange their experiences related to environmental management	1
Considering topics related to personal adaptation in the content of the green curriculum	1
Emphasizing public interest repeatedly in the curriculum	1
Encouraging students to pursue environmentally friendly trans-sectoral activity	1
	-
Encouraging students to consider sustainability in economic activities Considering the principles of sustainability and environmental protection in the curriculum	1 1
implementation phase Using environmental symbols and signs in the learning environment	1
Encouraging students to consider future consequences of various activities	1

with 12 experts in the field of curriculum planning. The total duration of these interviews was 477 minutes, averaging 39.7 minutes per interview. To supplement and enrich the data obtained from the interviews,

we also reviewed a set of related documents. These documents included 15 research studies published in national and international databases, predominantly articles in English, along with a doctoral

Table 2. Concepts extracted from documents regarding the green curriculum characteristics.

Concepts extracted from the reviewed documents	Number of citations
Using environmental symbols and signs in the learning environment*	8
Providing environmental knowledge originated from high-quality research	4
Increasing students' awareness of the current environmental issues in the world*	4
Empowering students for addressing real environmental issues or concerns	4
Emphasis on systemic thinking and attention to the relationship between environmental components*	4
Benefiting from educators who believe in sustainability*	3
Teaching the operational principles of paying attention to sustainability in any specialized work related to people's profession*	2
Developing practical guidelines for environmental education	2
Creating a positive attitude toward environmental protection among students	2
Encouraging students to learn lifelong environmental issues*	2
Integrating green concepts into the curriculum	2
Explaining the philosophy and basic concepts of the green curriculum	2
Considering the principles of sustainability and environmental protection in the curriculum evaluation stage*	2
Considering optional courses for students who are interested in gaining expertise in environmental protection	2
Equipping students with the knowledge and skills to monitor environmental problems and concerns	2
Emphasizing the necessity of environmental protection in the green curriculum*	1
Encouraging students to consider sustainability in economic activities*	1
Defining homework related to the environment to encourage students 'short-term achievements	1
Considering the principles of sustainability and environmental protection in the curriculum implementation phase*	1
Explaining sustainability in various industrial processes	1
Explaining sustainability in various social processes	1
Providing the opportunity for students to respond to environmental challenges in nature*	1
Introducing and teaching the use of green technologies	1

^{*} Common concepts in both interviews and documents. **Note:** More explanations about the characteristics in Tables 1 and 2 is provided in the Appendix (1).

dissertation and a scientific research article in Persian. Detailed bibliographic information on these sources is provided in Appendix 1.

Inferential Findings

The content analysis of the interviews resulted in the identification of 38 characteristics of the green curriculum. Table 1 summarizes the key concepts extracted from the interviews.

In the content analysis of the documents related to the green curriculum, 23 characteristics of the green curriculum were extracted. Among these characteristics, there are 11 similar items to those extracted from the interviews, marked with (*) in Table (2).

In this research, the key competencies of education for the 21st century (Shaeffer, 2007) were used as a theoretical framework. Accordingly, axial coding was performed to check the alignment of all extracted characteristics with these competencies (see Table 3). Subsequently, the values of Content Relevance Value (CRV) and Content Validity Index (CVI) were calculated. In the category of "learning to know," the CRV values for the two items were less than 0.29. However, all items had an acceptable CVI value.

To summarize the key findings, it can be mention that this study systematically identified 50 characteristics of a green curriculum through comprehensive expert interviews and an extensive review of

Table 3. Adjusting green curriculum characteristics with key competencies of education for the 21st century and the amount of CRV and CVI.

Key competencies of education for the 21st century	Green curriculum characteristics	CRV	CVI
	Providing environmental knowledge originated from high- quality research	0.900	1
	Using educational resources related to the environment	0.944	0.875
	Informing students about political relations effective on environmental risk management	0.589	0.923
	Increasing students' awareness of the current environmental issues in the world	0.900	0.897
	Integrating green concepts into the curriculum	0.850	0.925
	Explaining the philosophy and basic concepts of the green curriculum	0.487	0.900
	Benefiting from educators who believe in sustainability	0.589	0.925
	Introducing knowledge resources related to sustainability to learners as auxiliary resources	0.550	0.897
Learning to know	Introducing knowledge resources related to sustainability to learners as main resources	0.650	0.950
Learning to know	Introducing knowledge resources related to sustainability to learners as non-curriculum resources	<u>0.250*</u>	0.875
	Considering the principles of sustainability and environmental protection in the curriculum implementation phase	0.350	0.890
	Considering optional courses for students who are interested in gaining expertise in environmental protection	0.800	0.850
	Considering the principles of sustainability and environmental protection in the curriculum design phase	<u>0.250*</u>	0.875
	Equipping students with the knowledge and skills to monitor environmental problems and concerns	0.800	0.925
	Integrating different aspects of sustainable development in the content of the green curriculum	0.846	0.900
	Considering the principles of sustainability and environmental protection in the curriculum evaluation stage	0.500	0.875
	Developing practical guidelines for environmental education	0.894	0.950
	Teaching the operational principles of paying attention to sustainability in any specialized work related to people's profession	0.857	0.951
Learning to do	Improving people's creativity in solving environmental challenges	0.785	0.961
	Using environmental symbols and signs in the learning environment	0.700	0.950
	Encouraging students to learn lifelong environmental issues	0.743	0.925
	Emphasis on problem-oriented education based on solving environmental problems	0.735	0.950
	Defining homework related to the environment to encourage students 'short-term achievements	0.726	0.916
_	Providing the opportunity for students to respond to environmental challenges in nature	0.722	0.980
	Introducing and teaching the use of green technologies	0.719	0.865

Table 3 continued...

Key competencies of education for the 21st century	Green curriculum characteristics	CRV	CVI
	Focus on changing students' behavior to achieve sustainability in society	0.716	0.895
	Explaining sustainability in various industrial processes Explaining sustainability in various social processes	0.700 0.641	0.975 0.925
	Empowering students for addressing real environmental issues or concerns	0.600	0.975
	Emphasizing the necessity of environmental protection in the green curriculum	0.850	0.948
	Encouraging students to consider sustainability in economic activities	0.478	0.923
	Teaching a critical attitude towards behaviors and activities that affect the environment	0.692	0.975
	Enabling the students to consider the consequences of personal behaviors and paying attention to the direct effects of these behaviors	0.789	0.925
Learning to be	Enabling the students to consider the consequences of personal behaviors and paying attention to the indirect effects of these behaviors	0.700	0.925
	Teaching the sustainability skills to students (students' ability to combine the principles of sustainability with all aspects of life)	0.750	0.950
	Emphasis on creating a positive attitude toward environmental issues among students	0.800	.948
	Using teaching-learning approaches based on interaction in order to promote the spirit of empathy in solving environmental hazards among learners	0.850	0.948
	Creating an opportunity for students to exchange their experiences related to environmental management	0.700	0.973
	Creating a positive attitude toward environmental protection among students	0.750	0.925
earning to live	Considering social responsibility in the content of the green curriculum	0.600	0.947
ogether	Emphasis on minimizing environmental risks	0.794	0.925
-	Emphasis on systemic thinking and attention to the relationship between environmental components	0.641	0.950
	Emphasizing public interest repeatedly in the curriculum Considering topics related to personal adaptation in the	0.550	1
	content of the green curriculum	0.692	0.925
	Considering the issue of social justice (rights of the next generation) in the content of the green curriculum	0.692	1
	Considering the issue of environmental culture in the content of the green curriculum Encouraging students to pursue environmentally	0.794	0.950
	Encouraging students to pursue environmentally friendly trans-sectoral activity Paying attention to the education of citizenship or global	0.600	0.950
Learning to transform oneself and society	citizen in the content of the green curriculum Developing a curriculum based on the ecological needs	0.743	1
mesen and society	of the society Encouraging students to consider future consequences	0.743	0.923
	of various activities	0.794	0.973

relevant literature. These characteristics were meticulously aligned with the key competencies essential for the 21st-century education. The validity of each characteristic was rigorously assessed using the CVR and CVI as per the Lawshe method. These findings provide a robust framework for the development of a green curriculum that is both contemporary and educationally sound.

DISCUSSION

The growing importance of sustainability necessitates that higher education systems integrate environmental principles into their curricula. Traditionally, universities have focused on sustainability in the physical environment, but the influence of higher education on human resources is equally significant. In today's world, the role of human resources in driving societal progress cannot be underestimated. Therefore, competencies such as learning to know, learning to do, learning to live together, learning to be, and learning to transform oneself and society are essential (Shaeffer, 2007). This study classifies characteristics of a green curriculum based on these dimensions.

Learning to Know

This competency involves expanding learners' knowledge to create a wellinformed, proactive, and engaged population capable of addressing global environmental challenges. For example, empowering learners to identify environmental problems is a key characteristic of the green curriculum, as confirmed by previous research (Pe'er et al., 2007; Otto and Pensini, 2017). This competency includes providing environmental knowledge, encouraging lifelong learning, introducing reliable sources for acquiring knowledge. Supporting researchers in environmental and curriculum development fields and integrating sustainability content across all academic disciplines are recommended. Additionally, the green curriculum should empower learners to identify, recall, explain, discuss, and evaluate environmental issues, concerns, values, and problems at different levels from local to global society.

Learning to Do

This competency emphasizes the application of knowledge in everyday life, leading to the consolidation of learning and societal benefits from trained human green learning, which resources. In empowers individuals to fulfil their citizenship roles. problem-oriented education is crucial. Teaching through problem-solving methods, as highlighted by various researchers (Gabrys et al., 2020; Avvisati and Borgonovi, 2020; Rebello et 2017). involves al., students environmental issues and encourages them to find solutions. This approach should be integrated into curriculum design, with practical assignments and projects that have environmental management outcomes. For instance, arranging scientific short trips to areas impacted by human activities can enhance practical learning.

Learning to Live Together

This competency prepares individuals for a better life by empowering them to make informed decisions and understand the consequences of their behaviors on the environment. Critical thinking and the ability to evaluate personal behaviors are essential. Educational systems should provide opportunities for learners to apply sustainability principles in practical projects and share their achievements with others. Emphasizing responsibility, empathy, systemic thinking, and minimizing environmental risks are key characteristics of the green curriculum. For example, teaching the consequences of personal

behaviors and fostering a critical view towards activities affecting the environment are crucial.

Learning to Transform Oneself and Society

This highest level of learning involves seeking positive changes in oneself and society. In the context of environmental and sustainability issues, this means encouraging learners to engage in environmentally friendly extracurricular activities collaborate with various societal sectors. The green curriculum should prepare students for interdisciplinary and transorganizational work. fostering transformation and societal improvement. For instance, training students to work across sectors and value interdisciplinary thinking can significantly contribute to societal transformation.

CONCLOSIONS

This study identified and validated 48 key characteristics of the green curriculum aligned with UNESCO's five critical competencies for 21st-century education. The findings confirm that sustainability beyond education should extend environmental infrastructure to focus on capacity building in higher human education. The proposed framework provides practical guidance for integrating sustainability principles into curricula and for developing students' critical, creative, and transformer competencies.

The main limitation of our study was the reliance on the opinions of Iranian experts due to constraints in time, budget, and access to international researchers. Despite these constraints, we ensured the comprehensiveness and validity of our findings by reviewing publications from global experts. This approach enriched our study with diverse perspectives, enhancing its overall quality and relevance.

Future Research Directions

should Future research focus on expanding international collaboration and conducting longitudinal studies to track the long-term impact of green curriculum initiatives. Interdisciplinary approaches and integration technology can enhance curriculum delivery, while policy impact analysis and cultural context studies can identify the best practices. Exploring practical applications of green curriculum principles, methods to increase student engagement, and new assessment methods are also crucial. Additionally, involving the community in green curriculum initiatives can provide valuable insights for curriculum developers. These suggestions aim to build on the current findings and further promote sustainability and environmental awareness.

REFERENCES

- Aithal, P. S. and Rao, P. 2016. Green Education Concepts and Strategies in Higher Education Model. *Int. J. Sci. Res.* Mod. Educ. (IJSRME),1(1): 793-802.
- Atici, K. B., Yasayacak, G., Yildiz, Y. and Ulucan, A. 2021. Green University and Academic Performance: An Empirical Study on UI GreenMetric and World University Rankings. J. Clean. Prod., 291: 125289.
- 3. Avvisati, F. and Borgonovi, F. 2020. Learning Mathematics Problem Solving through Test Practice: A Randomized Field Experiment on a Global Scale. *Educ. Psychol. Rev.*, **32(3):** 791-814.
- 4. Borg, W. R. and Gall, M. D. 1984. Educational Research: An Introduction. *Br. J. Educ. Stud.*, **32(3):** 274-274.
- Bussiek, P. B. V., De Poli, C. and Bevan, G. 2018. A Scoping Review Protocol to Map the Evidence on Interventions to Prevent Overweight and Obesity in Children. BMJ Open, 8(2): e019311.
- Capdevila, I., Bruno, J. and Jofre, L. 2002. Curriculum Greening and Environmental

- Research Co-Ordination at the Technical University of Catalonia, Barcelona. *J. Clean. Prod.*, **10(1)**: 25-31.
- Chakraborty, A., Singh, M. P. and Roy, M. 2018. Green Curriculum Analysis in Technological Education. *Int. J. Progress.* Educ., 14(1): 122-129.
- Chankrajang, T. and Muttarak, R. 2017. Green Returns to Education: Does Schooling Contribute to Pro-Environmental Behaviors? Evidence from Thailand. *Ecol. Econ.*, 131: 434-448.
- Cotgrave, A. and Alkhaddar, R. 2006. Greening the Curricula within Construction Programmes. J. Educ. Built Environ., 1(1): 3-29.
- Damati, S. 2013. Principles in Green Architecture: An Inquiry into the Evaluation Criteria of Green Awards. Master's Thesis, Middle East Technical University. https://open.metu.edu.tr/handle/11511/2245
- Delors, J. 1996. Learning: The Treasure within. Report to UNESCO of the International Commission on Education for the Twenty-first Century. UNESCO. https://www.seameo.org/img/Programmes_ Projects/Competition/SEAMEOJapanESD_ Award/2013_SEAMEOJapanESD_Award/ pub/delors e.pdf
- 12. Deriu, F. and Gallo, R. 2024. Sustainable Green Educational Paths in the Italian Higher Education Institutions: A Text Mining Approach. Sustainability, 16(13): 5407
- 13. Gabrys, G., Arlene, W. and Lesgold, A. 2020. Learning by Problem Solving in a Coached Apprenticeship System. In: "Cognitive Science Foundations of Instruction". Routledge, PP. 119-148.
- 14. GreenHeart Education. 2019. Greening the Curriculum: Ensuring Students' Ability to Face 21st-Century Challenges. GreenHeart Education,
 - https://www.greenhearted.org/greening-thecurriculum.html
- Haigh, M. 2005. Greening the University Curriculum: Appraising an International Movement. J. Geogr. High. Educ., 29(1): 31–48.
- 16. Hays, J. and Reinders, H. 2020. Sustainable Learning and Education: A Curriculum for the Future. *Int. Rev. Educ.*, **66(1):** 29-52.

- 17. Illinois Central College. 2023. *Climate Works Pre-apprenticeship Program*. Retrieved from https://icc.edu/programs/climate-works/
- 18. Karami, Sh., Fathi Vajargah, K., Khosravi Babadi, A. A. and Farajzadeh, M. 2020. Green Curriculum in the Higher Education of Iran: Water Crisis, Climate Change, Sources of Knowledge. Q. J. Environ. Educ. Sustain. Dev., 9(1): 81-94. [in Persian]
- Khoderchah, E. and Semaan, N. M. 2024.
 The Green University Campus Diagnosis Model. *Process Integr. Optim. Sustain.*, 8: 1295-1307.
- 20. Koeppen, K., Hartig, J., Klieme, E. and Leutner, D. 2008. Current Issues in Competence Modelling and Assessment. *Z. Psychol./J. Psychol.*, **216(2):** 61-73.
- Kountouris, Y. and Remoundou, K. 2023.
 Does Higher Education Affect Pro-Environmental Behaviour? Evidence from Household Waste Recycling in Greece. Environ. Res. Lett., 18(8): 084017.
- 22. Lawshe, C. H. 1975. A Quantitative Approach to Content Validity. *Pers. Psychol.*, **28(4):** 563–575.
- Louw, W. P. 2013. Green Curriculum: Sustainable Learning in Higher Education. Int. Rev. Res. Open Distance Learn., 14(1): 1-15.
- 24. Munro, B. H. 2005. *Statistical Methods for Health Care Research*. Vol. 1, Lippincott Williams & Wilkins, 494 PP.
- 25. Nowak, P. M. 2023. What Does It Mean that "Something Is Green"? The Fundamentals of a Unified Greenness Theory. Green Chem., 25(12): 4625-4640.
- 26. Okaka, W. T. 2007. Promoting Green Curriculum Approach in Science, Engineering, and Technology Training Programs for the Achievement of Environmental Sustainability in the African Union Author. 2nd African Regional Conference of Vice-Chancellors, Provosts, and Deans of Science, Engineering and Technology.
- Okaka, W. T. 2016. Developing Green University Curriculum Innovations for Sustainable Education in Africa. XI European Conference on Social and Behavioral Sciences, Rome, Italy.
- 28. Orsini, F. and Marrone, P. 2019. Approaches for a Low-Carbon Production

- of Building Materials: A Review. J. Clean. Prod., 241: 118380.
- Otto, S. and Pensini, P. 2017. Nature-Based Environmental Education of Children: Environmental Knowledge and Connectedness to Nature, Together, Are Related to Ecological Behaviour. Glob. Environ. Change, 47: 88-94.
- Padang, M. N. B., Angin, R. B. P. and Saragi, D. 2018. The Effect of Index Card Match Method and Learning Motivation toward Student's Learning Outcomes in Elementary School. *IOSR J. Res. Method Educ.*, 8(1): 69-78.
- Paykari, A., Mazloumi, A., Halvani, GH., Ghaneh, S. and Mashayekhi, M. 2018.
 Validation and Reliability Study of a Ventilator Usability Assessment Tool. Occup. Med. Q. J., 10(3): 1-12.
- 32. Pe'er, S., Goldman, D. and Yavetz, B. 2007. Environmental Literacy in Teacher Training: Attitudes, Knowledge, and Environmental Behavior of Beginning Students. *J. Environ. Educ.*, **39(1):** 45-59.
- 33. Pouramini, Z. and Bashokouh, M. 2024. Green University component modelling for higher education (Case Study: Mohaghegh Ardabil University). Journal of Natural Environment, 76(4), 715-729. https://jne.ut.ac.ir/article_93006.html?langen
- 34. Rebello, N. S., Cui, L., Bennett, A. G., Zollman, D. A. and Ozimek, D. J. 2017. Transfer of Learning in Problem Solving in the Context of Mathematics and Physics. In: "Learning to Solve Complex Scientific Problems". Routledge, PP. 223-246.
- 35. Şahin, E. 2008. An Examination of Indications for a Green Curriculum Application towards Sustainability. Ph.D. Dissertation, The Graduate School of Natural and Applied Sciences of Middle East Technical University.
- Şahin, E., Ertepinar, H. and Teksöz, G., 2009. Implications for a Green Curriculum Application toward Sustainable Development. Hacet. Üniv. Eğit. Fak. Derg., 37(37): 123-135.
- Schilling, J. 2006. On the Pragmatics of Qualitative Assessment. Eur. J. Psychol. Assess., 22(1): 28-37.
- Shaeffer, S. 2007. Education for Sustainable Development: A Framework for Reform. UNESCO Bangkok, Asia and Pacific Regional Bureau for Education.

- [Online] Available at: http://www.unescobkk.org/esd.
- 39. Shi, H. and Lai, E. 2013. An Alternative University Sustainability Rating Framework with a Structured Criteria Tree. *J. Clean. Prod.*, **61:** 59-69.
- Shu, C., Zhao, J., Yao, Q. and Zhou, K. Z. 2024. Green Innovation and Export Performance in Emerging Market Firms: A Legitimacy-Based View. *Manag. Organ.* Rev., 20(1): 85-110.
- 41. Singer-Brodowski, M., Beecroft, R. and Parodi, O. 2018. Learning in Real-World Laboratories: A Systematic Impulse for Discussion. *GAIA-Ecol. Perspec. Sci. Soc.*, 27(1): 23-27.
- 42. Taqipour, M., Abbasi, E., Naeimi, A., Ganguly, S., and Zamani, N. 2016. An Investigation of Self-Directed Learning Skills among the Iranian Agricultural Students (Case of Agricultural College, Tarbiat Modares University). J. Agric. Sci. Technol., 18(1): 15-26.
- 43. Torre, D., Procaccianti, G., Fucci, D., Lutovac, S. and Scanniello, G., 2017. On the Presence of Green and Sustainable Software Engineering in Higher Education Curricula. *1st International Workshop on* Software Engineering Curricula for Millennials (SECM2017), IEEE, PP. 54-60. https://arxiv.org/pdf/1703.01078
- 44. UNESCO. 2024. Greening Curriculum Guidance: Teaching and Learning for Climate Action. UNESCO, Paris. https://doi.org/10.54675/AOOZ1758
- 45. Wemmenhove, R. and de Groot, W. T., 2001. Principles for University Curriculum Greening- An Empirical Case Study from Tanzania. *Int. J. Sustain. High. Educ.*, **2(3)**: 267-283.
- Wu, G. 2011. A New Concept of Green Education: The Cultivation Model for Successful and Practical Talents. *Int.* Forum Teach. Stud., 7(1): 45-48.
- 47. Xiong, H., Fu, D., Duan, C., Chang'E, L., Yang, X. and Wang, R., 2013. Current Status of Green Curriculum in Higher Education of Mainland China. *J. Clean. Prod.*, **61**: 100-105.

Appendix 1: Explanation of the green curriculum characteristics.

Creating a positive attitude: Encouraging students to develop a favourable view of environmental issues.

Increasing awareness: Educating students about current global environmental problems.

Teaching critical attitude: Instilling a critical perspective on behaviours impacting the environment.

Sustainability-minded educators: Utilizing teachers who prioritize sustainability.

Social responsibility: Integrating social responsibility into the green curriculum.

Sustainability in evaluation: Including sustainability principles in curriculum assessments.

Responding to challenges: Allowing students to address environmental challenges in nature.

Ecological needs-based curriculum: Designing curriculum based on societal ecological needs.

Interactive approaches: Promoting empathy through interactive teaching methods.

Problem-oriented education: Focusing on solving environmental problems through education.

Operational principles: Teaching sustainability principles relevant to professional work.

Creativity in challenges: Enhancing creativity in solving environmental issues.

Necessity of protection: Emphasizing the importance of environmental protection.

Minimizing risks: Focusing on reducing environmental risks.

Systemic thinking: Encouraging understanding of the interconnections within the environment.

Global citizenship: Including global citizenship education in the curriculum.

Sustainability in design: Considering sustainability in curriculum design.

Auxiliary resources: Introducing supplementary sustainability resources.

Main resources: Providing primary sustainability resources.

Non-curriculum resources: Offering non-curricular sustainability resources.

Direct consequences: Teaching students to consider the direct effects of their behaviours.

Indirect consequences: Teaching students to consider the indirect effects of their behaviours.

Sustainable development: Integrating sustainable development aspects into the curriculum.

Sustainability skills: Teaching students to apply sustainability principles in life.

Social justice: Addressing social justice in the curriculum.

Environmental culture: Incorporating environmental culture into the curriculum.

Lifelong learning: Encouraging lifelong learning about environmental issues.

Behaviour change: Focusing on changing behaviours to achieve societal sustainability.

Educational resources: Using environment-related educational materials.

Political relations: Informing students about political factors in environmental risk management.

Experience exchange: Creating opportunities for students to share environmental management experiences.

Personal adaptation: Including personal adaptation topics in the curriculum.

Public interest: Repeatedly emphasizing public interest in the curriculum.

Trans-sectoral activity: Encouraging environmentally friendly activities across sectors.

Economic sustainability: Promoting sustainability in economic activities.

Implementation phase: Considering sustainability in curriculum implementation.

Environmental symbols: Using environmental symbols in the learning environment.

Future consequences: Encouraging consideration of future impacts of activities.

High-quality research: Providing knowledge from high-quality environmental research.

Addressing real issues: Empowering students to tackle real environmental concerns.

Practical guidelines: Developing practical guidelines for environmental education.

Positive attitude: Creating a positive attitude toward environmental protection.

Green concepts: Integrating green concepts into the curriculum.

Philosophy and concepts: Explaining the philosophy and basic concepts of the green curriculum.

Optional courses: Offering optional courses for environmental protection expertise.

Monitoring skills: Equipping students with skills to monitor environmental issues.

Environment-related homework: Assigning environment-related homework for short-term achievements.

Industrial sustainability: Explaining sustainability in industrial processes.

Social sustainability: Explaining sustainability in social processes.

Green technologies: Introducing and teaching the use of green technologies.

تبیین و اعتبارسنجی ویژگیهای برنامه درسی سبز مبتنی بر شایستگیهای حیاتی آموزش برای قرن بیست و یکم

مریم حسینی لارگانی، حسین تیمور، و مهسا سعدوندی

چکیده

هدف این پژوهش، تبیین و اعتبارسنجی ویژگیهای برنامهٔ درسی سبز بر اساس شایستگیهای حیاتی مورد نیاز آموزش برای قرن بیستویکم است .پژوهش با رویکرد ترکیبی (کیفی-کمی) انجام شد. در بخش کیفی، متخصصان دارای تجربه در حوزهٔ پایداری در آموزش عالی ایران از طریق نمونه گیری گلولهبرفی انتخاب و داده ها از راه مصاحبههای نیمه ساختاریافته گردآوری و با روش تحلیل محتوا تحلیل شدند .ویژگیهای به دست آمده در بخش کمی با استفاده از روش لاوشه اعتبارسنجی شدند. بدین منظور، ۴۰ نفر از اعضای هیئت علمی و دانشجویان دکتری علوم تربیتی به صورت تصادفی برای ارزیابی تناسب این ویژگی ها انتخاب شدند . علمی و دانشجویان دکتری علوم تربیتی به صورت تصادفی برای ارزیابی تناسب این ویژگی ها انتخاب شدند . آموزش برای قرن بیست ویکم (یادگیری برای دانستن، یادگیری برای انجام دادن، یادگیری برای بودن، یادگیری برای باهم زیستن، و یادگیری برای دگرگونی خود و جامعه) با چندین ویژگی برنامهٔ درسی سبز هم راستا هستند . بر اساس یافته ها، برای عملیاتی کردن این شایستگی ها پیشنهاد می شود مدیریت محیط زیست در برنامههای آموزشی گنجانده شود، پروژه های عملی برای دانشجویان طراحی گردد، و تعامل آنان با سازمانهای محیط زیستی و جوامع پژوهشی جهانی تقویت شود.

Identifying the Dimensions of Empowerment and Their Impacts on Food Security in Rural Women

Kayvan Shoja Chaghervand¹, Alireza Poursaeed²*, and Maryam Omidi Najafabadi¹

ABSTRACT

The present study was conducted to identify the empowerment dimensions of femaleheaded households in rural areas and their effects on food security in Iran. Based on the data collected from the Iranian Statistical Center, the population of rural women-headed households of Tehran Province included 495 individuals, from which 216 were selected using the stratified random sampling method with proportional allocation. A questionnaire was designed by researchers and its validity and reliability was confirmed by confirmatory factor analysis and Cronbach method, respectively. The data were collected from November 2020 to July 2021. Structural equation modeling was used to analyze and estimate the relationships among multiple variables. The results confirmed the dimensions of empowerment as grouping work and communication skills, creativity and solving problem, commitment and responsibility, information and specific knowledge, technical skills and operational work, including psychological, social, political, economic, managerial, and educational factors and their effects on food security. The highest effects on food security belonged to commitment and responsibility, economic factors, and grouping work, respectively. Job empowerment predicted 75% variance in food security. It is suggested to consider job empowerment of female-headed households in rural areas to decrease food insecurity.

Keywords: Female-headed households, Gender and food security, Social and economic empowerment.

INTRODUCTION

Poverty is a global challenge that mainly influences human societies in rural areas. especially in non-developing countries and rural women-headed households (Abrar ul et al., 2019). Women-headed households are usually faced with several challenges and are one of the most vulnerable groups in different societies in terms of poverty and food security (Daoud et al., 2019; Dunga, 2020). Food security is defined as the permanent physical, social and economic access to sufficient, safe and nutritious food to supply dietary requirements and food preferences for an

active and healthy life (Galiè et al., 2019). It is estimated that 800 million people are undernourished across the globe who do not receive adequate nutritional content and calories (Pakravan-Charvadeh et al., 2020). Women-headed households are vulnerable to food insecurity compared to men-headed households due to low presence in the labor market and productive activities, housekeeping, and child care (Mallick and Rafi, 2010). A major portion of womenheaded households lives in developing countries and in rural regions (Van Eerdewijk et al., 2017). Social and cultural factors and expectations have prevented rural women from participating in the

¹ Department of Economics, Agricultural Extension and Education, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

² Department of Agricultural Extension and Education, Ilam Branch, Islamic Azad University, Ilam, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: Alireza.poursaeed@iau.ac.ir

development programs (Sarani et al., 2013). Despite the key role of rural women-headed households as suppliers of food security, income earners, and caretakers of households and children, they have been disempowering in society. Empowerment might be a key factor in improving food security in rural women-headed households in developing countries.

Empowerment is defined as controlling decision-making about his and/or her life and giving the ability to intervene in all life challenges (Baig et al., 2018). This conception not only comprises extrinsic control but it also involves the development of intrinsic capabilities (Abrar-ul-Haq et al., initiates foundations 2018). It understanding available opportunities to Notably, most studies women. have emphasized the positive effects empowerment in increasing food security and decreasing food insecurity (Asitik and Abu, 2020; Galiè et al., 2019; Ntenkeh et al., 2022; Sharaunga et al., 2016), factors affecting empowerment are not the same in other countries. It is essential to identify factors empowering women in each country. Rural women in Iran mostly perform housekeeping, care of children, farming, tailoring, carpet weaving, and work at home. It was recently reported that 32% of Iranian faced with families food insecurity (Pakravan-Charvadeh et al., 2020).

Although previous studies have emphasized the role of empowerment in increasing food security, they lack specific focus on the challenges and empowerment dimensions for women-headed households in rural areas, especially in countries like Iran. This study aimed to identify the unique empowerment dimensions affecting food security specifically for rural women-headed households in Iran, contributing to a localized understanding of the issue.

The research brings an innovative approach by considering not just economic, but other possible dimensions to women's empowerment and food security in rural areas. The study aimed to identify empowerment dimensions affecting food

security in rural women-headed households in Iran.

MATERIALS AND METHODS

Empowering Factors

Empowerment is a multi-dimensional factor and it can influence food security. It comprises intrinsic capabilities such as empowerment factors and job skills and communications that develop empowerment (Asitik and Abu, 2020; Galiè et al., 2019; Ntenkeh et al., 2022; Sharaunga et al., 2016). Economic factors are one of the most important factors in the life of the womenheaded households in rural areas (Sharma, 2019). Income generation, financial independence, and control over finances directly improve food security. Another factor affecting women's empowerment is social factors, which allow women to develop their lives in a holistic framework. These factors help women to (Sharma, 2019). Participation in social networks and community involvement enhances access to resources and support, and better food security. Psychological factors are another component of empowerment. It was reported that the increase in feelings of self-efficacy among people help to identify intrinsic empowerment (Muduli and Pandya, 2018). Self-efficacy, resilience, and adaptability lead to proactive behavior and greater food security. Political factors may influence women's empowerment. The political empowerment of women is a result of awakening at the individual and social levels to enable women who live with dignity (Sharma, 2020). Involvement in political processes helps women advocate for better governance and policies affecting food access. Women's education and using educational systems is an important strategy for empowering women (Savari et al., 2020). Education and skills development provide better employment opportunities, indirectly improving food security. Women with management ability may have a better Rural Women's Food Security _______JAST

feeling of self and their empowerment. Decision-making and resource management strengthen women's ability to ensure household food security.

H1: Economic, social, psychological, political, educational and managerial factors (empowering factors) are dimensions of empowerment and can independently affect food security of women-headed households in rural areas.

Job Skills and Communications

Participation of women in grouping works and using other experiences and opinions may empower rural women. The ability to communicate with others seems to be a strategy for empowering women. Other factors associated with empowerment may be creativity and solving problems. Creativity is the production of new and profitable ideas by persons in a working environment. Empowered people prefer to solve their problems and use creative solutions. Commitment and responsibility are important factors that may influence empowerment. Responsible and committed women try to maintain values in a working environment, correctly perform their tasks, show their interest in learning new subjects and have a positive view of working environments. It was reported communication channels create several jobs in rural areas for Iranian women (Savari et al., 2020). Thus, access to information and specific knowledge may empower rural women and indirectly food security. Women with technical skills can produce jobs for themselves. Such skills can decrease injuries and damage in working environments. They perform their job tasks in minimum time and decrease their costs.

H2: Creativity and solving problems, communication skills and grouping work, commitment and responsibility, information and specific knowledge and practical work and technical skills (Job skills and communications) are dimensions of empowerment and can independently affect

food security of women-headed households in rural areas.

We hypothesized that job skills and communications and empowering factors influence food security.

H3: Empowerment influences food security of women-headed households in rural areas.

A study investigated the effects of women empowerment in rural areas in South Africa and showed that female-headed households had better economic conditions, physical capital psychological empowerment, empowerment and farm financial management skills had better food security (Sharaunga et al., 2016). An original study in Iran investigated the role of educational channels in improving household food security in Iranian rural women (Savari et al., 2020). Recently, a study showed a positive relationship between women's empowerment and food security in Cameroon (Ntenkeh et al., 2022). Another study investigated determinants of food security among female-headed households in South Africa and showed that age, race, income and size of the household had significant effects on food security (Dunga, 2020). Positive relation was reported between women's empowerment and food security and emphasized social, cultural, economic and educational factors for improving empowerment (Meti and Sathish, 2016). Another study found a significant positive relationship between the economic dimension of empowerment and food security in communities in Tanzania (Galiè et al., 2019). It was reported that empowered women enhance household food security (Asadullah and Kambhampati, 2021). A positive link has been found between women's empowerment and food security (Aziz et al., 2022). It has been reported that socio-economic factors play significant roles in women's food security (Clement et al., 2019). The current study investigates comprehensive factors affecting empowerment in Iranian women that have not been previously investigated in femaleheaded households in rural areas.

MATERAILAS AND METHDS

Statistical Population, Sample and Sampling Method

This applied descriptive study aimed to explore the empowerment dimensions of female-headed households in Tehran Province, Iran, and their effects on food security. The statistical population comprised 495 women, based on data from the Statistical Center of Iran. Tehran Province was divided into ten rural districts, each treated as a separate stratum. A stratified sampling method with proportional allocation was used to ensure appropriate representation from each district. The sample size was determined using Cochran's formula, and 216 women were selected to participate in the study.

Measurements

The indicators used in the two self-constructed questionnaires for empowerment and food security are presented in Table 1.

Additionally, demographic variables such as age, education, employment status, family size, and annual income were collected to provide context for the analysis. The data were collected from November 2020 to July 2021.

Validity and Reliability of the Questionnaires

To ensure the validity and reliability of the instruments, Confirmatory Factor Analysis (CFA) was conducted on all theoretical constructs. CFA was employed to validate the measurement models of both empowerment and food security, following the guidelines of previous studies (Magnier-Watanabe *et al.*, 2020; Yang and Hsu,

Table 1. The indicators used in the two self-constructed questionnaires.

Indicators	Number of items	Scoring	References
Empowerment	01 1101115	Likert scale (1-5)	
Grouping work and communication skills	7		Authors
Creativity and solving problem	6		Authors
Commitment and responsibility	6		Authors
Information and specific knowledge	5		Authors
Technical skills and operational work	5		Naseri et al., (2020)
Psychological factors	9		Naseri et al., (2020)
Social factors	9		Naseri et al., (2020)
Political factors	5		Naseri et al., (2020)
Economic factors	6		Naseri et al., (2020)
Managerial factors	7		Authors
Educational factors	7		Authors
Food security		Likert scale (0-5)	
Accessibility	6		FAO (2016)
			WFP (2018)
Availability	6		Coates et al., (2007)
			FAO (2016)
			USDA (2020)
Utilization	7		WHO (2019)
Stability	4		FAO (2016)
			WFP (2018)

2018). Reliability was assessed using Cronbach's alpha, ensuring internal consistency of the scales.

Data Analysis

Structural Equation Modeling (SEM) was used to analyze the relationships between the empowerment dimensions and food security. Both CFA and SEM were conducted using AMOS software (version 24). SEM allowed for the estimation of direct and indirect effects among multiple variables, providing a comprehensive understanding of how different dimensions of empowerment influence food security outcomes.

RESULTS

Descriptive Statistics

The results indicated that the average age of female-headed households in rural areas was 48.28 years, with a standard deviation of 11.55 years. The majority of the women were between 31 and 60 years old. Most had only primary education (41.20%), while a smaller proportion had attained a high school diploma or higher education. A significant portion of the women were unemployed (24.53%), with the remainder engaged in various occupations, including service work (18.51%), tailoring (15.27%), (13.88%),carpet peddling weaving (11.57%), farming (2.31%), and other jobs (13.93%). The average annual income of these households was 85 million IRR. It is also noteworthy that unemployed women were under the supervision of supporting institutions.

The means and standard deviations for the constructs were as follows: grouping work and communication skills (2.77±0.88), creativity and solving problem (3.01±0.90), commitment and responsibility (3.26±1.02), information and specific knowledge

 (2.94 ± 0.94) , technical skills and operational work (3.22 ± 1.00) , psychological factors (3.16 ± 0.86) , social factors (3.08 ± 0.78) , political factors (2.63 ± 1.01) , economic factors (2.24 ± 0.86) , managerial factors (2.75 ± 0.81) , educational factors (2.70 ± 0.99) , access (2.23 ± 0.84) , availability (2.42 ± 0.80) , utilization (2.69 ± 1.10) and stability (2.57 ± 0.74) .

Table 2 displays the correlations between these constructs. The analysis revealed positive correlations among all variables.

Analysis of the Measurement Models

The validity and reliability of the individual measurement models assessed following the methodologies outlined by Yang and Hsu (2018). The results are summarized in Table 3. CFA and model fit indices confirmed that all items appropriately fit their respective constructs. According to previous research (Magnier-Watanabe et al., 2020), the recommended fit indices are as follows: normed chi-square less than 3.00, Root Mean Square Residual (RMR) less than 0.09, Normed Fit Index (NFI) greater than 0.90, and IFI and TLI greater than 0.95. Hair et al. (2010) suggest that the values for each construct should fall between 0.5 and 0.9, with reliability values exceeding 0.7. The obtained values in this study were all above 0.7, confirming the internal consistency and reliability of each scale.

Structural Equation Modeling

To avoid ambiguity and complexity, we considered the mean of constructs and did not use items for SEM. A SEM was built and the results are shown in Figure 1. The results for model-fitting showed that empowerment and food security had a good fit for the data with fit indices (χ 2/df= 1.86, CFI= 0.98; NFI= 0.98; IFI= 0.97; TLI= 0.98; RMR= 0.032; RMSEA= 0.036).

The results in Figure 2 for model-fitting showed that empowerment dimensions and

Table 2. Correlation between constructs."

ST	0.383	0.506***	0.533***	0.518***	0.533	0.512***	0.360^{***}		0.336***	0.386***	0.526***		0.555***		0.332***		0.659***	
ITU	0.523	0.557***	0.537***	0.536***	0.508	0.533	0.313***		0.338**	0.372***	0.390***		0.693***		0.333***			
AVA	0.133*	0.150***	0.139^{*}	0.133^{*}	0.179°	0.163	0.166^*		0.215**	0.195^{*}	0.130^*		0.339***					
ACC	0.373***	0.350***	0.530***	0.505***	0.372	0.376	0.263***		0.317^{***}	0.512***	0.501***							
EDF	0.360	0.378***	0.532***	0.510***	0.685	0.629	0.352***		0.306***	0.739***								
MF	0.389	0.538***	0.531***	0.523***	0.725	0.675	0.363***		0.563***									
EF	0.363***	0.373***	0.335***	0.333*	0.566	0.325	0.503***											
POF	0.298*	0.265***	0.269***	0.238***	0.518	0.593												
SF	0.509***	0.520***	0.533***	0.372***	0.765													
PF	0.506	0.529***	0.533***	0.512***														
LS	0.792***	0.832***	0.865***															
IS	0.798	0.886***																
CR	0.836***																	
GC CS	0.893***																	
CC																		
	S S	S S	IS	LS	PF	SF	PO	F	EF	MF	ED	щ	AC	C	AV	4	LI	_

" Grouping work and Communication skills (GC), Creativity and Solving problem (CS), Commitment and Responsibility (CR), Information and Specific knowledge (IS), Technical Skills and operational work (TS), Psychological Factors (PF), Social Factors (SF), Political Factors (POF), Economic Factors (EF), Managerial Factors (MF), Educational Factors (EF), Accessibility (ACC), Availability (AVA), Utilization (UTI) and Stability (ST). Superscripts *, and *** show significant correlation at P<0.05 and P<0.0001, respectively.

 Table 3. Constructs and reflective indicators.

Constructs and reflective indicators	Loading
Empowerment (χ^2 = 42.47, df= 24; CFI= 0.93; RMR= 0.031; IFI= 0.96; TLI= 0.97)	
Grouping work and communication skills (Cronbach's α= 0.759; CR= 0.865; AVE= 0.623)	
Reflection of facts in presenting feedback is common in my work environment	0.523
I express my opinion in relation to job issues	0.598
I receive a good reaction along with patience from others.	0.502
I am interested in the transformation of information and experiences to others.	0.523
I have a devotion to solving challenges in the working environment.	0.589
Coordination and integrity are found between my colleagues.	0.569
I use my supervisor's ideas and my colleague's for solving problems.	0.567
Creativity and solving problem (Cronbach's α = 0.796; CR= 0.802; AVE= 0.551)	
I solve working issues through data collection and analysis.	0.509
I consider various aspects of a problem.	0.521
I use opportunities for creating positive changes in my life.	0.598
I am interested in new experiences and experiments	0.595
I present new strategies for job issues.	0.569
I suggest new strategies for performing job tasks.	0.567
Commitment and responsibility (Cronbach's α= 0.899; CR= 0.815; AVE= 0.665)	
I am on time in the working environment.	0.595
I try to maintain values in the working environment.	0.502
I correctly conduct working tasks.	0.685
I am interested to increase knowledge and job skills.	0.672
I have a positive view of the working environment.	0.621
I have actively participation in educational periods for improving technical skills.	0.512
Information and specific knowledge (Cronbach's α= 0.752; CR= 0.785; AVE= 0.515)	
I have sufficient information for equipment and tools in working environment.	0.526
I have obtained general knowledge for my job.	0.612
Job purposes are achieved by required knowledge.	0.570
I need a presence in educational periods for improving information and specific knowledge.	0.572
I have sufficient information for quality and activity standards.	0.525
Technical skills and practical work (Cronbach's α = 0.717; CR= 0.709; AVE= 0.589)	0.020
I correctly use equipment in the working environment.	0.599
I have standardized job skills.	0.597
Damages and injuries have decreased in the working environment.	0.598
I perform job tasks in minimum time and for improving working quality.	0.602
I use raw materials in a true way.	0.707
Psychological factors (Cronbach's α = 0.717; CR= 0.741; AVE= 0.576)	0.707
I feel myself to be a valuable human.	0.712
I feel to have several good characteristics.	0.712
<u> </u>	
I can well conduct several works.	0.541
I have a good view of myself.	0.539
I have abilities for the expression of opinions in family meetings.	0.614
My member family uses my opinions.	0.647
I am a determiner of interactions of my member family with others.	0.615
I have abilities for changing the conditions of my life based on current possibilities.	0.523
I am independent in solving problems.	0.516
Social factors (Cronbach's α = 0.802; CR= 0.773; AVE= 0.562)	A = A =
I am interested in participation in grouping works.	0.506
I have interactions with kinfolk and neighbors.	0.501
I participate in different meetings.	0.605
I consult others for different problems.	0.712
I participate in community-oriented educational classes.	0.597
I have the ability for finding new friends.	0.522
Political factors (Cronbach's α = 0.739; CR= 0.752; AVE= 0.562)	

Table 3 continued

Continued of Table 3. Constructs and reflective indicators.

Constructs and reflective indicators	Loading
The services given by the village council are efficient for improving my job.	0.553
Political decisions influence my life.	0.552
I participate in elections.	0.551
Decisions of local agents for rural regions influence my life.	0.514
I participate in meetings of people agents and managers.	0.595
Economic factors (Cronbach's α = 0.702; CR= 0.717; AVE= 0.645)	0.516
I have access to facilities and a bank loan.	0.516
I participate in the microfinance credits fund.	0.667
I participate in activities of consumers' co-operative. I provide the required equipment and facilities for myself and member family.	0.547
I decide on financial resources and ways for spending them.	0.702 0.502
I feel to be valuable women activities in society.	0.540
Managerial factors (Cronbach's α = 0.751; CR= 0.820; AVE= 0.598)	0.540
I have abilities for handling my job.	0.589
I participate in local meetings.	0.597
I have enough ability for supplying local products.	0.606
My job is affecting society.	0.641
I can manage crises in my life.	0.578
I manage economic issues in my life.	0.641
I can manage my assets.	0.529
Educational factors (Cronbach's α= 0.796; CR= 0.824; AVE= 0.591)	
I feel rural women appreciate educational periods.	0.532
I feel that potential trainers educate us.	0.541
Educational contents are in agreement with my requirements.	0.537
It is possible to combine science and practice	0.536
All skills and educations are various.	0.541
I have the ability for learning professional skills.	0.546
I feel educational classes are in agreement with my requirements.	0.527
Food security (χ 2= 43.12, df= 24; CFI= 0.98; RMR= 0.033; IFI= 0.97; TLI= 0.98)	
Access (Cronbach's α = 0.741; CR= 0.736; AVE= 0.565)	
My required food is in access.	0.632
My required food for my children is in access.	0.541
Various foods are in access to us.	0.571
Food supplier centers are in access.	0.569
Food supplier centers supply enough food.	0.502
Food supplier centers supply high-quality foods.	0.622
Availability (Cronbach's α = 0.741; CR= 0.751; AVE= 0.598)	0.571
I have enough income for purchasing the required foods for my body.	0.571 0.533
I have enough income for purchasing the required foods for my children. I have enough income for providing dietary diversity.	0.625
Price fluctuations influence dietary diversity.	0.593
My income is one important factor in purchasing interesting foods.	0.576
My saving is affected by purchasing in an emergency condition.	0.588
Utilization (Cronbach's α = 0.912; CR= 0.755; AVE= 0.717)	0.500
Knowing quality affects food utilization.	0.555
Knowing calories affects food utilization.	0.575
Foods with low waste influence their utilization.	0.632
Knowing diets influence food utilization.	0.509
Knowing food benefit influences food utilization.	0.707
An appropriate food program for family members influences food utilization.	0.812
Having an appropriate food program for children influences food utilization.	0.589
Stability (Cronbach's α = 0.763; CR= 0.751; AVE= 0.613)	0.507
Required foods are constantly supplied in the market.	0.645
Foods are scarce in undetermined and unpredictable times.	0.512
Suppliers immediately supply scarce foods.	0.512
Precise mechanisms are considered and performed for keeping stability.	0.596

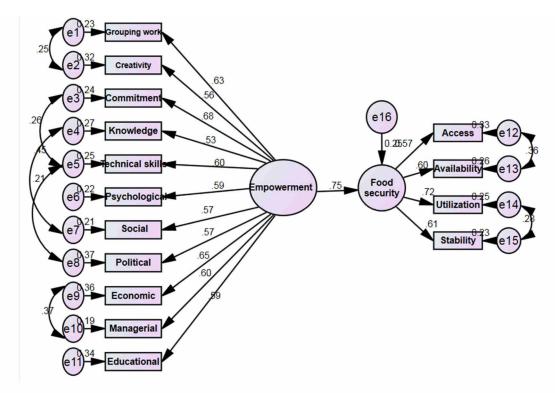


Figure 1. Results of the structural equation modeling for the effect of empowerment on food security.

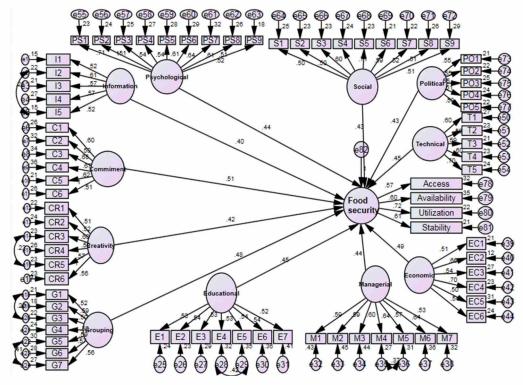


Figure 2. Results of structural equation modeling for the effect of empowerment dimensions on food security.

food security had a good fit for the data with fit indices (χ 2/df= 1.71, CFI= 0.96; NFI= 0.95; IFI= 0.96; TLI= 0.97; RMR= 0.036; RMSEA= 0.041).

The results for the SEM of the effects of empowerment and its dimensions on food security are shown in Table 4, which show that empowerment predicts 75% of the variance in food security. To investigate the hypotheses, we ran another model comprising items, and the results are shown in Table 4 and Figure 2.

The results of the effects of the empowerment construct on food security are shown in Table 4, which confirmed all the hypotheses. All the constructs predicted food security. Commitment responsibility, economic factors and grouping work predicted 51.00%, 49.00% and 48.00% of the variance of food security, respectively. The results also showed that job skills and communications empowering factors predicted 61% and 58% of the variance of food security, respectively. The model was run twice. The first run assessed the effects of factors as dimensions of empowerment, which allowed an evaluation of the overall empowerment effect.

DISCUSSION

The empirical role of empowerment and its dimensions as independent variables in enhancing food security is revealed by this study. In line with previous research, the findings demonstrate that empowerment accounts for 75.00% variance in food security. (Clement *et al.*, 2019; Sharaunga *et al.*, 2016).

Group work and communication abilities predicted differences in food security and empowerment by 48.00 and 63.00%, respectively. Through improved decisionmaking, negotiation, and leadership. communication promotes the sharing of information and experiences, thereby increasing empowerment (Mishra Mishra, 2020). The ability to articulate ideas clearly enhances women's self-esteem and strengthens their contributions to family or community food security plans. Working in groups offers individuals the opportunity to solve problems and exchange experiences. These social partnerships can promote collective empowerment by addressing collaboratively, issues transforming women's individual abilities into community-based solutions for food security while also providing emotional and practical support.

Food security and empowerment are influenced by creativity and problem-solving. Women with creative minds can develop innovative ways to raise living standards in rural areas, such as launching new businesses or adopting sustainable farming methods. Women who apply their creativity are better equipped to leverage local resources, reduce risks, and identify new sources of income, thereby

Table 4. The results of SEM for the effects of constructs on food security.

Relationship	Estimates	C.R.	P-value
Empowerment→Food	0.75	6.92	0.001
Grouping work→Food	0.48	4.42	0.001
Creativity→Food	0.42	3.87	0.001
Commitment →Food	0.51	4.70	0.001
Information→Food	0.40	3.68	0.001
Technical skills →Food	0.45	4.14	0.001
Psychological→Food	0.44	4.05	0.001
Social→Food	0.43	3.96	0.001
Politicial→Food	0.43	3.95	0.001
Economic→Food	0.49	4.51	0.001
Managerial →Food	0.44	4.05	0.001
Educational→Food	0.45	4.15	0.001

strengthening their ability to provide food for their families.

Food security and empowerment were most impacted by commitment and responsibility (β =0.68). Commitment represents a strong intrinsic drive to provide sufficient food for families, particularly in female-headed households. Women's sense of duty to their families and children motivates them to take the initiative in developing their skills and ensuring food security by seeking reliable sources of income, improving agricultural yields, or securing high-quality food products.

Disparities in food security and empowerment were predicted by specific knowledge and information to be 40.00 and 53.00%, respectively. Women with access to timely and relevant information are better equipped to make informed decisions about nutrition, food production, and household management. Another important factor is women's participation in training programs or knowledge-sharing networks, which help them progress into more empowered and financially stable roles.

Technical skills and practical work predicted 60.00 and 45.00% of the variations in empowerment and food security, respectively. These abilities provide women with opportunities to work in occupations that can increase income and improve living standards. Women who possess technical skills in business, crafts, or agriculture are evidently better able to empower themselves and contribute to their households' food security.

Both food security (β =0.44) and empowerment (β =0.59) were significantly influenced by psychological factors. Longterm food security relies on women's ability to manage risks and seize opportunities, both of which are strengthened by psychological well-being (Ahmed and Malik, 2019). When faced with obstacles, psychologically empowered women are more likely to persist, whether through education, starting a business, or adopting improved farming methods.

Social and political factors alone predicted 43.00% of the variance in food security and 57.00% in empowerment. When women participate in community organizations, cooperatives, or political systems they gain platforms for advocacy, resource access, and mutual support. Especially in rural regions, women can influence decisions that shape food security policies through political engagement. Participation in social groups enhances women's agency and voice, opening opportunities for collective action that can improve both community-wide food security and individual empowerment.

Economic considerations had a significant impact on both food security (β =0.49) and empowerment (β =0.65). These findings align with documented research on the influence of economic factors on food security (Ali et al., 2019; Oni et al., 2010). Food security improves directly when women have access to economic resources. such as land ownership, credit, and financial capital, allowing them to invest in productive assets like business or farming equipment. Additionally, 60% of the variance in empowerment was explained by managerial factors, which enable women to manage resources effectively and balance economic activities with domestic responsibilities, thereby supporting food security.

Food security was significantly impacted by educational characteristics, similar to other factors. Education provides women with the technical know-how, social skills, and critical thinking abilities necessary for production, managing food finding employment, and participating in community decision-making. Educational initiatives, particularly those emphasizing employable, and real-world skills can greatly aid in reducing food insecurity.

There are limitations to this study. The exclusive emphasis on a specific rural group may restrict the broader applicability of the results to other cultural or regional contexts. Significant differences in socioeconomic and cultural factors influencing empowerment and food security in rural

developing nations compared to urban areas regions may other limit generalizability of the findings. To better understand how various groups of women perceive empowerment, future research should consider intersectional aspects such as age, ethnicity, class, and disability. Although the study discusses several empowerment-related aspects, it falls short in addressing external factors that can directly impact food security in rural areas, such as market access, government policy, and climate change.

CONCLUSIONS

In summary, empowerment and its components significantly impacted food security individually. To enhance women's empowerment and food security, it is essential to educate them about the largely internal factors involved. We propose that local institutions, NGOs, and government collaborate establish agencies to community-based skill development centers specifically designed for rural women to improve food security and empowerment in these areas. In addition to partnering with local media for educational outreach, they must implement practical technical training that incorporates safety precautions. The centers should also support women-led cooperatives by facilitating peer learning and access to microfinance. Furthermore, strong monitoring and evaluation procedures must be established to track progress and make the necessary program adjustments.

Acknowledgements

We appreciate the participants in the study.

REFERENCES

1. Abrar-ul-Haq, M., Jali, M. and Islam, G. 2018. The Development of Household Empowerment Index among Rural Household of Pakistan. *Pertanika J. Soc. Sci. Hum.*, **26(2)**: 787-810.

- 2. Abrar ul haq, M., Jali, M. R. M. and Islam, G. M. N. 2019. Household Empowerment as the Kkey to Eradicate Poverty Incidence. *Asian Soc. Work Policy Rev.*, **13(1):** 4-24.
- 3. Ahmed, N. and Malik, B. 2019. Impact of Psychological Empowerment on Job Performance of Teachers: Mediating Role of Psychological Well-Being. *Rev. Econ. Dev. Stud.*, **5(3)**: 451-460.
- Ali, N. B., Tahsina, T., Hoque, D. M. E., Hasan, M. M., Iqbal, A., Huda, T. M. and El Arifeen, S. 2019. Association of Food Security and Other Socio-Economic Factors with Dietary Diversity and Nutritional Statuses of Children Aged 6-59 Months in Rural Bangladesh. *Plos One*, 14(8): e0221929.
- Asadullah, M. N., and Kambhampati, U. 2021. Feminization of Farming, Food Security and Female Empowerment. Glob. Food Secur., 29, 100532.
- 6. Asitik, A. J. and Abu, B. M. 2020. Women Empowerment in Agriculture and Food Security in Savannah Accelerated Development Authority Zone of Ghana. *Afr. J. Econ. Manag. Stud.*, **11(2):** 253-270.
- 7. Aziz, N., He, J., Raza, A. and Sui, H. 2022. A Systematic Review of Review Studies on Women's Empowerment and Food Security Literature. . *Glob. Food Secur.*, **34:** 100647.
- 8. Baig, I. A., Batool, Z., Ali, A., Baig, S. A., Hashim, M. and Zia-ur-Rehman, M. 2018. Impact of Women Empowerment on Rural Development in Southern Punjab, Pakistan. *Qual. Quant.*, **52(4):** 1861-1872.
- 9. Clement, F., Buisson, M.-C., Leder, S., Balasubramanya, S., Saikia, P., Bastakoti, R., Karki, E. and van Koppen, B. 2019. From Women's Empowerment to Food Security: Revisiting Global Discourses through a Cross-Country Analysis. . *Glob. Food Secur.*, 23: 160-172.
- Coates, J., Swindale, A. and Bilinsky, P. 2007. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide: Version 3. Food and Nutrition Technical Assistance III Project (FANTA), Academy for Educational Development, Washington, DC
- 11. Daoud, S. A. M., Gindeel, R. H. and Ahmed, H. B. 2019. Targeting the Poor for Social Protection: A Study of Female Headed Households, in West Darfur, Genina Locality. *Ahfad J.*, **36(2):** 17-26.

 Dunga, H. M. 2020. An Empirical Analysis on Determinants of Food Security among Female-Headed Households in South Africa. Int. J. Soc. Sci. Hum. Stud., 12(1): 66-81.

- FAO (Food and Agriculture Organization).
 2016. The State of Food and Agriculture: Climate Change, Agriculture and Food Security. FAO.
- 14. Galiè, A., Teufel, N., Girard, A. W., Baltenweck, I., Dominguez-Salas, P., Price, M. J., Jones, R., Lukuyu, B., Korir, L., Raskind, I. G., Smith, K. and Yount, K. M. 2019. Women's Empowerment, Food Security and Nutrition of Pastoral Communities in Tanzania. Glob. Food Secur., 23: 125-134.
- 15. Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. 2010. Canonical Correlation: A Supplement to Multivariate Data Analysis. In: "Multivariate Data Analysis: A Global Perspective". 7th Edition, Pearson Prentice Hall Publishing, Upper Saddle River, NJ, USA.
- Magnier-Watanabe, R., Uchida, T., Orsini, P. and Benton, C. F. 2020. Organizational Virtuousness, Subjective Well-Being, and Job Performance: Comparing Employees in France and Japan. Asia Pac. J. Bus. Adm., 12(2): 115-138.
- Mallick, D. and Rafi, M. 2010. Are Female-Headed Households More Food Insecure? Evidence from Bangladesh. World Dev., 38(4): 593-605.
- 18. Meti, S. and Sathish, H. 2016. Women Empowerment and Food Security for Sustainable Development. *Indian Res. J. Ext. Educ.*, **14(3):** 83-87.
- 19. Mishra, S. K. and Mishra, P. 2020. Functional Aspects of Communication Skills for Professional Empowerment. *J. Engl. Lang. Lit. (JOELL).*, **7(1):** 79-85.
- Muduli, A. and Pandya, G. 2018.
 Psychological Empowerment and Workforce Agility. Psychol. Stud., 63(3): 276-285.
- Naseri, S., Amin, H. C., Poursaeed, A. and Arayesh, M. B. 2020. Investigating the Effective Factors on Employment-Oriented Empowerment of Rural Female Heads of Households in Ilam, Irán. Nexo Sci. J., 33(02): 539-546.
- Ntenkeh, B. T., Fonchamnyo, D. C. and Yuni, D. N. 2022. Women's Empowerment

- and Food Security in Cameroon. J. Dev. Areas., 56(2): 141-153.
- Oni, S., Maliwichi, L. and Obadire, O. 2010. Socio-Economic Factors Affecting Smallholder Farming and Household Food Security: A Case of Thulamela Local Municipality in Vhembe District of Limpopo Province, South Africa. Afr. J. Agric. Res., 5(17): 2289-2296.
- 24. Pakravan-Charvadeh, M. R., Khan, H. A. and Flora, C. 2020. Spatial Analysis of Food Security in Iran: Associated Factors and Governmental Support Policies. *J. Public Health Policy*, **41(3)**: 351-374.
- Sarani, V., Shahpasand, M. and Savari, M. 2013. Analysis of Barriers to Entrepreneurship among the Rural Women in Divan-Darreh City Using by Grounded Theory. *Int. Res. J. Appl. Basic Sci.*, 4(5): 1302-1308.
- Savari, M., Sheykhi, H. and Amghani, M. S. 2020. The Role of Educational Channels in the Motivating of Rural Women to Improve Household Food Security. *One Health*, 10: 100150.
- Sharaunga, S., Mudhara, M. and Bogale, A. 2016. Effects of 'Women Empowerment'on Household Food Security in rural KwaZulu-Natal Province. *Dev. Policy Rev.*, 34(2): 223-252.
- Sharma, E. 2020. Women and Politics: A Case Study of Political Empowerment of Indian Women. *Int. J. Sociol. Soc. Policy*, 40(7/8): 607-626.
- 29. Sharma, K. 2019. Hunger in Jharkhand: Dimensions of Poverty and Food Security in Palamu District. *South Asia Res.*, **39(1)**: 43-60.
- 30. USDA (United States Department of Agriculture). 2012. Household Food Security Survey Module: Three-Stage Design, with Screeners.
- 31. Van Eerdewijk, A., Wong, F., Vaast, C., Newton, J., Tyszler, M. and Pennington, A. 2017. White Paper: A Conceptual Model on Women and Girls' Empowerment. Royal Trop. Inst. (KIT), Amsterdam.
- 32. WFP (World Food Programme). 2018. Food Security and Nutrition Assessment.
- WHO (World Health Organization). 2019.
 Nutrition and Health in Women: A Global Perspective. WHO.
- 34. Yang, C. -C. and Hsu, W. -L. 2018. Evaluating the Impact of Security Management Practices on Resilience

Capability in Maritime Firms—A Relational Perspective. Transp. Res. Part

A: Policy Pract., 110: 220-233.

شناسایی ابعاد توانمندسازی و تأثیر آن بر امنیت غذایی زنان روستایی

کیوان شجاع چاغروند، علیرضا پورسعید، و مریم امیدی نجف آبادی

چکیده

این مطالعه با هدف شناسایی ابعاد توانمندسازی خانوارهای زنان سرپرست در مناطق روستایی و تأثیرات آنها بر امنیت غذایی در ایران انجام شد. بر اساس دادههای جمعآوریشده از مرکز آمار ایران، جمعیت زنان سرپرست خانوار در مناطق روستایی استان تهران شامل ٤٩٥ نفر بود که از میان آنها ۲۱۲ نفر با استفاده از روش نمونهگیری تصادفی طبقهبندیشده با تخصیص تناسبی انتخاب شدند. پرسشنامهای توسط پژوهشگران طراحی شد و اعتبار و پایایی آن به ترتیب با استفاده از تحلیل عاملی تأییدی و روش کرونباخ تأیید گردید. دادهها از نوامبر ۲۰۲۰ تا ژوئیه ۲۰۲۱ جمعآوری شد. برای تحلیل و برآورد روابط بین متغیرهای متعدد از مدلسازی معادلات ساختاری استفاده شد. نتایج، ابعاد توانمندسازی را شامل کار گروهی و مهارتهای ارتباطی، خلاقیت و حل مسئله، تعهد و مسئولیتپذیری، اطلاعات و دانش تخصصی، مهارتهای فنی و کار عملیاتی نشان داد که شامل عوامل روانی، اجتماعی، سیاسی، اقتصادی، مدیریتی و آموزشی میشوند و تأثیر آنها بر امنیت غذایی را شمخص کرد. بیشترین تأثیر بر امنیت غذایی به ترتیب متعلق به تعهد و مسئولیتپذیری، عوامل اقتصادی و کار گروهی بود. توانمندسازی شغلی توانست گراوریانس امنیت غذایی را پیشبینی کند. پیشنهاد میشود برای گروهی بود. توانمندسازی شغلی خانوارهای زنان سرپرست در مناطق روستایی مورد توجه قرار گیرد.

Investigating Agricultural Ecosystem Functions and Services in Northern Iran

Sareh Hosseini^{1*}, and Fahimeh Karimpour²

ABSTRACT

Agricultural ecosystem provides various functions and services for humans. Therefore, investigating their role and importance in agricultural land programming and management is one of the research goals. In this research, we used Common International Classification of Ecosystem Services (CICES) for identification of the Agricultural Ecosystem Functions and Services (AEFS). Also, Multi-Criteria Decision-Making (MCDM) models were used for weighting and prioritizing of the AEFS like Stepwise Weight Assessment Ratio Analysis (SWARA) for calculating their weight, and Simple Additive Weighting (SAW), Additive Ratio Assessment (ARAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for prioritizing them. The research data was extracted using field survey, random sampling, and completing the Delphi questionnaire of 40 agricultural experts in the north of Iran. Also, the R² coefficient was used to compare the AEFS prioritization models. The results of SWARA technique showed that provisioning, regulation, and cultural functions with weights of 0.0298, 0.0286 and 0.0250 had the highest weight, respectively. Also, the results indicated that the SAW model with the $R^2 = 0.90$ was chosen as the appropriate prioritization model. Provisioning, regulation, and cultural functions with marginal weights of 0.6319, 0.5448, and 0.5092 were ranked the first to third priority, respectively. Also, food supply, employment, genetic material supply, and educational and research services were important positive services of the agricultural ecosystem compared to the other services. It is suggested that more appropriate programming and more research be done by relevant organizations for the sustainable management of agricultural ecosystems in northern Iran.

Keywords: Agricultural Ecosystem Functions and Services, Common International Classification of Ecosystem Services, Weighting assessment.

INTRODUCTION

A set of ecosystem services that human life depends on them is provided by agriculture (Heinze *et al.*, 2022). Also, due to the increasing growth of the world population, there is more pressure on agricultural prospects to receive different services (Azaiez *et al.*, 2020). Based on this, a series of factors such as climate, geology, ecology, as well as management methods, technology and skills affect the provision of landscapes ecosystem

services. In fact, agriculture ecosystems are both a recipient and a provider of services. Therefore, the sustainability of agricultural ecosystems requires their ability to simultaneously provide services in a balance between the provision and consumption of services. However, the main management approach is based on the preservation of the services for the use of future generations, and the balance between services compared with other agricultural ecosystems (Altieri, 2018). Therefore, agricultural ecosystem managers

¹ Department of Forest Science and Engineering, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Islamic Republic of Iran.

² Department of Irrigation and Drainage, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: S.Hosseini@Guilan.ac.ir

are trying to integrate ecosystem services in ecosystem agricultural policies management by using a set of methods including evaluation of dependencies and effects of ecosystem services, valuation of ecosystem services, scenario creation and other interventions that can become the main basis for resolving conflicts and establishing a compromise between development and nature, and guaranteeing the stability of both (Xu and Peng 2022). Therefore, access to quantitative and qualitative information about the positive services of the agricultural ecosystem is of particular importance to achieve sustainable agriculture (Jia et al., 2021).

Among the diverse ecosystems, the agricultural ecosystem with different functions and services have direct and indirect roles in the economic and human livelihoods (FAO, 2018), whose maintenance should be the main goal of human activities. Therefore, five classifications including the study of Costanza et al., 1998, De Groot et al. (2012), Millennium Ecosystem Classification (MEA, 2005), The Economics of Ecosystems and Biodiversity (TEEB) (2010), and Common International Classification of Ecosystem Services (CICES) (2018) emphasized the classification of ecosystem services (Haines-Young and Potschin 2013). CICES (2018) is the latest classification of ecosystem functions and their services that was developed by the European Environment Agency (EEA) with the aim of providing a standard for the systematic nomenclature, description, and classification of ecosystem services. This classification includes three main groups of provision, regulating, and cultural functions (EEA, 2016).

Based on CICES classification, provisioning services are products and energy outputs obtained from goods and products. The regulating services include all the ways in which ecosystems can manage the environment where people live or depend on in some way, and benefit from them in terms of their health or safety. Finally, the cultural services category refers to all the non-material aspects of an ecosystem that contribute to or are important

for humans' mental intellectual or wellbeing. Cultural services are intangible human benefits that contribute to development and culture, including the functioning of local, national, international cultural ecosystems. It is included dissemination of knowledge and ideas, and interaction with nature (music, art, architecture) creativity emerges from dialogue, and entertainment (CICES, 2018).

These functions and services are not free and have hidden economic value. If these services are considered free, the agricultural ecosystem will be destroyed (Dick et al., 2018). Various pressures arising as economic purposes have caused their decline and destruction, and we are witnessing their destruction in everywhere in the world. For this reason, the identification of the Agricultural Ecosystem Functions and Services (AEFS) has become important. Obviously, this issue requires the participation of stakeholders and finding out about their preferences for positive services of the agricultural ecosystem, especially the Agricultural Ecosystem of Northern Iran (AENI) (Dumont et al.., 2019). So far, different models have been proposed for ranking and valuation functions and services, but few studies have been done about defining them. Some of the most important ones are mentioned here.

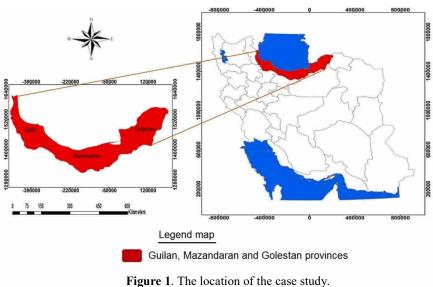
Jia et al. (2021) surveyed agricultural ecosystem services in arid and semi-arid regions of western China based on the equivalent factor method. The study results showed that the factor evaluation method is an accounting tool for the evaluation of ecosystem services. Also, 9 agricultural ecosystem services were analyzed in this evaluation. The findings showed that the agricultural environmental services value in Gansu Province increased from 2008 to 2017. Also, ecological services are the most important agricultural ecosystem services in arid and semi-arid areas. Sun et al. (2021) assessed agricultural services in North China and predicted their changes under different land use scenarios. The results indicated that agricultural ecosystem services play an important role in the economic and social conditions of the society. Also, Wang et al. (2022) assessed the ecological value of China's conventional agricultural ecosystem services in the framework of Energy-Based Life-Cvcle Assessment. The findings showed that the importance of agricultural ecosystem provisioning services ecosystem is much higher than the production services provided by them. In this regard, Heinze et al. (2022) investigated farm diversity and its ecosystem services in different land use scenarios of southeastern Mexico. The results indicated that farms provide different services, and provisioning services are more important compared to other services and considered in different should be management methods.

A review of the previous sources showed that despite the existence of research related to the AEFS evaluation with different approaches, no study has been done about the identification. weighting, prioritization of AEFS. Therefore, this has been tried according to the followings:

- a. The importance of the AENI and highlighting its values to the society.
- b. The tensions resulting from the change of agricultural land use in the north of Iran.
- c. The possibility of the agricultural lands' drought of northern Iran due to the lack of

water resources and the phenomenon of climate change in recent years.

d. The important role of agricultural ecosystem services in the comprehensive management of water resources.


Also, the three main provisioning, regulating, and cultural services and the AENI based on the CICES are identified and prioritized for their optimal management.

MATERIALS AND METHODS

Study Area

agricultural ecosystem has important role in Iran's economy. The Iranian agricultural land area is 16.5 million hectares, of which 14.7 million hectares are under field crops and the rest are gardens. Crops production in the Northern Iran was about 8417436 tons in 2017-2018, which was almost a ninth of the countries (Figure

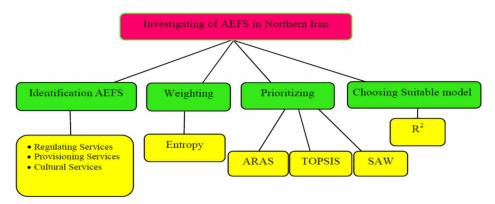
To carry out this research, the three provinces of Mazandaran, Guilan and Golestan were selected. Currently, the cultivated area of agricultural lands in Mazandaran is 476 thousand ha with an annual production of more than 3.574 million tons. Important characteristics of

Mazandaran is the high cultivation coefficient (1.4) compared to the total of Iran (0.7). It has made Mazandaran as the largest producer of rice in Iran, and it has many capacities in increasing the quality and quantity in this regard. Also, it has caused the annual cultivated land of this province to more than 600000 ha. Notably, there are more than 45 types of cultivated crops in Mazandaran, of which the most important ones are rice, wheat, barley, soy bean, rapeseed, corn, fodder plants, vegetables and summer vegetables. Each of these products provide many services to the society. Also, the area of arable land of Golestan Province is 850000 ha, of which the agricultural land area is 710000 ha (250,000 ha of irrigated land and 460,000 ha of dry land). Also, the products of the agricultural ecosystem are very diverse, and some of the products are of special value and importance on a national scale in Guilan Province. Therefore, agriculture in Guilan has both nutritional and commercial value for its producers. The agricultural ecosystem is about 30% of Guilan area. The proportion of irrigated and dry lands in this province is 82% and 18%, respectively (https://maj.ir/).

Methodology of the Study

In this research, in order to weigh and prioritize the AEFS in northern Iran, firstly, the AEFS were identified and compiled based on the most CICES. Then, the research data was extracted in the form of field survey, random sampling, and by completing the Delphi questionnaire and face-to-face interviews with 40 experts of agricultural ecosystem management. Then, the question was asked which of the positive

AEFS in northern Iran were more important for the optimal and sustainable management of agricultural ecosystem? Based on the answers, one of the five degrees of importance of the Likert scale were selected: Unimportant= 1, Little importance= 2, Important= 3, Great importance= 4, and Very important= 5 (Hosseini et al.., 2021). Also, if there were new services, they were added to the questionnaire. Finally, among questionnaires the 40 gathered, questionnaires were removed due to the incompleteness of the information, and the data of 30 questionnaires were used to analyze the information (Table 1).


In order to check the reliability of the Delphi questionnaire, Cronbach's alpha coefficient of reliability technique was used (Mengual-Andrés *et al.*, 2016). According to the value of this coefficient (α = 0.91), the reliability of the questionnaire was confirmed.

In this study, to weigh and prioritize each of AEFS, we used the Multi-Criteria Decision-Making (MCDM) models such as the Stepwise Weight Assessment Ratio Analysis (SWARA) in order to calculate the weight of AEFS (Debnath et al., 2023), we used the Simple Additive Model (SAW) (Hosseini et al.., 2021), the Additive Ratio Assessment (ARAS) (Ben Amor et al.., 2022), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and to prioritize functions and services (Ramón-Canul et al., 2021). Finally, the curve slope (R²) was used for comparing and choosing the suitable models for prioritizing the AEFS in the northern Iran (Figure 2).

Spss16 software was used to process and statistically analyze the questionnaire data such as calculating the questionnaire

Table 1. Delphi members to identify the positive functions and services of the northern Iran agricultural ecosystem.

Row	Delphi members	Education	Number
1	Faculty members of agricultural universities in Iran	Ph.D	15
2	Ministry of Agricultural Jihad of Iran	MSc, Ph.D	10
3	Land Affairs Organization of Iran	BC, MSc	5

Figure 2. Methodology steps for investigating the agricultural ecosystem functions and services in northern Iran.

reliability with Cronbach's alpha test. Also, Excel software was used for weighting and prioritization models analysis.

Step-Wise Weight Assessment Ratio Analysis (SWARA)

The most important advantages of the SWARA method is its ability to evaluate the accuracy of experts' opinions about weight criteria, simple implementation, and no need for high volume of comparisons (Ayan *et al*, 2023). The steps to implement this method are as follows:

• First Step: Sorting Criteria (Services)

At first, the criteria are written based on their importance. The most important criteria are placed in higher categories and less important criteria in lower categories (Debnath *et al.*, 2023).

• Second Step: Determining the Relative Importance of Each Criterion (S_i)

In this step, the relative importance of each criterion was compared with the previous criteria. This value represented using S_j .

• The Third Step: Calculating the Coefficient K_i

The coefficient K_j is a service of the relative importance of each criterion that is calculated using Equation (1):

$$K_j = S_j + 1 \tag{1}$$

• Fourth Step: Calculating the Initial Weight of Each Services

The initial weight (recalculated weight) of criteria (Q_j) is calculated with Equation (2). In this regard, it should be noted that the weight of the first criterion (the most important criterion) is considered equal to one (Majeed and Breesam, 2021; Zolfani and Saparauskas, 2013).

$$Q_i = x_i - 1/K_i \tag{2}$$

• Step Five: Calculate the Final Normal Weight

In the last step, the final weight of the evaluation criteria is calculated by Equation (3). Normalization is done by simple linear method (Yücenur *et al.*, 2021).

$$W_{i} = Q_{i} / \sum_{k}^{n} Q_{i}$$
 (3)

Additive Ratio Assessment Method (ARAS)

The ARAS method was proposed by Zavadsakas *et al.* (2010). This method is one of the best MCDM models to choose the best option. The best option is to have the greatest distance from negative factors and the least distance from the positive factors (Ben Amor *et al.*, 2022). The implementation section of this method is as follows:

Formation of the Decision Matrix

The first step in this technique is to create a decision matrix. A decision matrix is a matrix for evaluating a number of options based on a number of criteria. That is, a matrix in which each option is scored based on a number of criteria. The decision matrix is denoted by x and each term is denoted by x_{ii} (Equation 4) (Fan et al., 2021).

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{1n} \\ x_{21} & x_{22} & x_{2n} \\ x_{m1} & x_{m2} & x_{mn} \end{bmatrix}$$
(4)

Creation of Normal Decision Matrix

Normalization or descaling is the second step in solving all MCDM models (Equation 5) (Prayogo *et al.*, 2019).

$$N = \begin{bmatrix} n_{11} & n_{12} & n_{1n} \\ n_{21} & n_{22} & n_{2n} \\ n_{m1} & n_{m2} & n_{mn} \end{bmatrix}$$
 (5)

Formation the Normal Weighted **Decision Matrix**

In the third step of the ARAS technique, the created normal decision matrix should be weighted. For this purpose, each criterion weight is multiplied in all the regions under the same criterion. The criteria weight should be determined in advance (Equation 6). The SWARA technique is usually used for this purpose (Jaukovic Jocic et al., 2020).

$$V = \begin{bmatrix} v_{11} & v_{12} & v_{1n} \\ v_{21} & v_{22} & v_{2n} \\ v_{m1} & v_{m2} & v_{mn} \end{bmatrix}$$
 (6)

Calculate the Utility of Each Option

The desirability of each option is calculated by the desirability service in the

fourth step of the ARAS technique. The best option is the one that has greater utility. Finally, the degree of desirability must be calculated. The total desirability of each option is represented by Si that it calculated with Equation (7):

$$S_i = \sum V_{ij} \tag{7}$$

The degree of desirability of the option (K_i) is calculated based on the comparison with an optimal value (S₀) using Equation (8). The optimal value can be obtained based on the opinion of experts or the best weighted matrix values (Hosseini et al..,

$$K_i = \frac{S_i}{S_o}$$
 (8)

Simple Additive Weighing (SAW)

In order to use the SAW model for prioritizing AEFS, first, the completed decision matrix was scaled using the linear scaling method. Then, weight is calculated by the SWARA technique multiplying in the unscaled matrix. In this method, taking into account the AEFS weight is calculated by the SWARA technique. The score of each Service (S_i) is calculated by the weighted average of their values in all services based on Equation (9) (Hosseini et al.., 2021).

$$S_i = \sum_i n_{ij} \cdot w_i \tag{9}$$

 $S_i = \sum_j n_{ij} \cdot w_j$ (9) Where, W_j is Weight of each service and n_{ii} is score of each service.

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

In this method, m options are evaluated by n indicators and the options are ranked based on their similarity to the ideal solution (Ramón-Canul et al.., 2021). The technique basis is based on the concept that the selected option should have the smallest distance with the positive ideal solution and the largest distance with the negative ideal solution. The steps of this method are as follows (Zavadskas and Turskis, 2010):

First Step: Converting the Existing Decision-Making Matrix into a Matrix (Unscaled) Using Equation (10):

$$n_{ij} = \frac{r_{ij}}{\sqrt{\sum_{i=1}^{m} r_{ij}^2}} \tag{10}$$

Where, n_{ij} : normalized matrix, and r_{ij} : score of each criterion.

The Second Step: Creating the Weight Matrix Assuming the Vector Was Input to the Algorithm Equation (11):

$$W = \{ W_1, W_2, \dots W_n \}$$
 (11)

Where, W is Weight of each criterion.

So that ND is a matrix in which the criteria scores are dimensionless and comparable,

and $W_{n\times n}$ is a diagonal matrix in which only the main diagonal elements will be non-zero Equation (12).

$$V = ND \cdot W_{n*n} = \begin{bmatrix} v_{11} & v_{12} & v_{1n} \\ v_{21} & v_{22} & v_{2n} \\ v_{m1} & v_{m2} & v_{mn} \end{bmatrix}$$

(12)

Where, V is weight matrix (dimensionless).

The Third Step: Specifying the Positive Ideal Solution (A⁺) and the Negative Ideal Solution (A⁻) Based on Equation (13):

$$A^{+} = \{ (\max V_{ij} \mid j \in J), (\min V_{ij} \mid j \in J') \mid i = 1, 2... m \} = \{ V_{1}^{+}, V_{2}^{+}, ..., V_{j}^{-}, ..., V_{n}^{+} \}$$

$$A^{-} = \{ (\min vi j \mid j \in J), (\max V_{ij} \mid j \in J') \mid i = 1, 2, ..., m \} = \{ V_{1}^{-}, V_{2}^{-}, ..., V_{j}^{-}, ..., V_{n}^{-} \}$$

$$(13)$$

J=
$$\{j=1, 2... n \mid j \in benefit\}, J'= \{j=1, 2... n \mid j \in benefit\}$$

Step 4: Calculate the Distance between the i_{th} Option and Ideals (di) Using the Euclidean Method Based on Equation (14):

$$d_{i+} \sum_{j=1}^{n} = (V_{ij} - V_j^+)^2 \}^{0.5}$$
; i= 1, 2...m

$$d_{i-} \sum_{j=1}^{n} = (V_{ij} - V_{j}^{+})^{2} \}^{0.5}; i=1, 2... (14)$$

The Fifth Step: Calculating the Relative Proximity of A_i to the Ideal Solution (cli₊) Using Equation (15):

$$cl_{i+} = \frac{d_{i-}}{d_{i+} + d_{i-}}; 0 \le cl_{i+} \le 1; i = 1, 2...m (15)$$

The Sixth Step: Ranking the Options Based on cli+ Descending.

RESULTS

The research results include two parts of identifying and determining the AEFS in northern Iran using the Delphi method and prioritizing them with MCDM models. The findings of each part are presented separately below:

Identifying the AEFS of the Northern Iran

In this research, the AEFS of northern Iran identified using CICES (Table 1). Then, the questionnaire containing them was distributed among the members of the Delphi group (experts in the field of agricultural ecosystem management with at least 15 years of experience) in order to score based on the Likert scale. In our research, 30 people formed a Delphi group and expressed their opinions regarding the identification of positive AEFS at each stage (Table 1).

At the end of the first stage of the Delphi method, using the opinions of experts and some specialist expert in this field (Delphi method designer and analyst team), the positive AEFS of northern Iran were modified, integrated, and adjusted. Then, three functions and 23 services were determined for the agricultural ecosystem in northern Iran (Table 2).

In this research, in order to investigate the reliability of the questionnaire questions, the Cronbach's Alpha coefficient was used. Cronbach's alpha coefficient obtained was α = 0.97, which was confirmed.

Weighing and Prioritizing the AEFS in Northern Iran

After collecting and analyzing the questionnaires, in order to determine the weight of the AEFS, SAW, ARAS, and TOPSIS method, the SWARA technique was used for AEFS priority. The finding models are presented below.

Determining the Weight of the AEFS of

 Table 2. The Agricultural Ecosystem Functions and Services (AEFS) of northern Iran.

Functions	Services	Description
	Local and regional	The plants of the agricultural ecosystem can create a more
	climate regulation	addictive microclimate by creating shade and lowering the temperature.
	Improve air quality	Carbon storage by plants causes reduction of greenhouse ga and consequently improves air quality.
	Hydrological cycle	In the agricultural ecosystem, the high rate of water infiltration
	and groundwater	causes the regulation of surface flows and maintaining the flow of
	maintenance	underground water.
	(including regulation	
	of surface water flow;	
	groundwater recharge;	
	basin drainage)	
	Regulating water quality (Water purification)	The vegetation of the agricultural ecosystem causes its filtration by breaking down and removing nutrients and other water pollutants.
	Pollination and seed dispersal	Wind causes seeds to disperse by moving plants in the agricultural ecosystem.
	Pest and disease	Some agricultural plants help to regulate and control the
	control (Biological pest control)	abundance of pathogens.
S	Smell reduction,	Vegetation reduces noise pollution in addition to creating visua
Regulating services	noise reduction, visual screening	appeal and creating a pleasant smell, agricultural.
ig S	Natural hazard	Agricultural vegetation prevents soil erosion and landslides and
atin	regulation	prevents floods by absorbing rain.
gnl	Soil erosion control	Vegetation increases resistance to erosion; It also prevents soi
Reg		erosion by keeping sediments.
	Soil formation	Agricultural vegetation facilitates soil formation by depositing
		organic matter.
	Regulating soil	Agricultural vegetation regulates soil moisture and maintain
	moisture and	soil fertility.
	maintaining soil fertility	
	Ecosystem	The agricultural ecosystem provides the migration paths o
	connectivity	plants and animals to other ecosystems and provides ecosystem
	<u></u>	connectivity.
	Nutrient cycle	The living organisms in the agricultural ecosystem play a important role in the decomposition of plant and animal organimatter and the cycle of carbon, oxygen, nitrogen, etc. elements.
	Role in food webs	Agricultural ecosystem connects several food chains. It also
	and prey/predator	causes communication between different species (such a
	relationships	coexistence, competition and hunting and hunter).
	Providing and	The agricultural ecosystem provides suitable habitats for th
	maintaining habitats	life, reproduction of all kinds of plant and animal species
	(Biodiversity)	invertebrates and vertebrates.
		The consumption of carbon dioxide by plants in the process of
	Primary production	photosynthesis causes the production of organic substances, whic in addition to plant growth, also produces oxygen.

Table 2 continued

Functions	Services	Description
	Local and regional climate regulation	The plants of the agricultural ecosystem can create a more addictive microclimate by creating shade and lowering the temperature.
	Improve air quality	Carbon storage by plants causes reduction of greenhouse gas and consequently improves air quality.
	Hydrological cycle and groundwater maintenance (including regulation of surface water flow; groundwater recharge; basin drainage)	In the agricultural ecosystem, the high rate of water infiltration causes the regulation of surface flows and maintaining the flow of underground water.
	Regulating water quality (water purification)	The vegetation of the agricultural ecosystem causes its filtration by breaking down and removing nutrients and other water pollutants.
	Pollination and seed dispersal	Wind causes seeds to disperse by moving plants in the agricultural ecosystem.
Regulating services	Pest and disease control (biological pest control)	Some agricultural plants help to regulate and control the abundance of pathogens.
	Smell reduction, noise reduction, visual screening	Vegetation reduces noise pollution in addition to creating visual appeal and creating a pleasant smell, agricultural.
	Natural hazard regulation	Agricultural vegetation prevents soil erosion and landslides and prevents floods by absorbing rain.
gulatii	Soil erosion control	Vegetation increases resistance to erosion; It also prevents soil erosion by keeping sediments.
Reg	Soil formation	Agricultural vegetation facilitates soil formation by depositing organic matter.
	Regulating soil moisture and maintaining soil fertility	Agricultural vegetation regulates soil moisture and maintains soil fertility.
	Ecosystem connectivity	The agricultural ecosystem provides the migration paths of plants and animals to other ecosystems and provides ecosystem connectivity.
	Nutrient cycle	The living organisms in the agricultural ecosystem play an important role in the decomposition of plant and animal organic matter and the cycle of carbon, oxygen, nitrogen, etc. elements.
	Role in food webs and prey/predator relationships	Agricultural ecosystem connects several food chains. It also causes communication between different species (such as coexistence, competition and hunting and hunter).
	Providing and maintaining habitats (Biodiversity)	The agricultural ecosystem provides suitable habitats for the life, reproduction of all kinds of plant and animal species, invertebrates and vertebrates.
	Primary production	The consumption of carbon dioxide by plants in the process of photosynthesis causes the production of organic substances, which in addition to plant growth, also produces oxygen.

Table 2 continued

Table 2 continued

Functions	Services	Description
	Water supply	Water supply systems are very important for the proper functioning of communities. It can be achieved with various engineering projects such as wells or reservoirs.
	Food supply	Commercial and subsistence production of food and crops
	Energy production (Renewable)	Production of fuel energy
rvices	Fiber, fuel, fodder	Providing renewable and extractable raw materials for fuel and fiber, including plant stumps, shrubs and fodder and wood (fuel wood); providing fiber from plants (water hyacinth, straw, etc.); Charcoal production from the processing of many plants.
ing se	Biological materials (Biotics)	The use of agricultural plants as building materials, the production of various secretions such as gum, resin, handicrafts, etc.
Provisioning services	Providing genetic materials, natural medicines and biochemistry (Biochemical)	Including the extraction of genetic material from plants in the agricultural ecosystem for biomass production, biochemical, industrial and pharmaceutical processes (such as drugs, fermentation, detoxification), breeding programs (examination of genes for resistance to plant pathogens)
	Creating a green belt (Protective walls)	The agricultural ecosystem with diverse vegetation plays a very important role in beauty and reducing the amount of air pollution and preventing floods and soil erosion, etc.
	Carbon sequestration	The agricultural ecosystem with diverse vegetation reduces the concentration of carbon dioxide in the atmosphere.
	Fauna and Flora habitat and shelter	The agricultural ecosystem is home to some small rodents that feed on invasive and non-native plants.
	Spiritual, religious and therapeutic services	Agricultural ecosystem has spiritual and religious value in many religions, some plant species have spiritual importance.
	Recreation and ecotourism	The agricultural ecosystem provides opportunities for recreational activities such as hiking, hunting, observing plant and animal species, recreational camps, nature watching, etc.
	Cultural heritage values and sense of place	The agricultural ecosystem represents the culture and civilization of many years of indigenous communities located around it.
	Conservation values	Endangered native species are preserved in the agricultural ecosystem and its margins.
S.	Aesthetic, inspiring culture, art and design	The existence of spectacular landscapes is one of the aesthetic aspects of the agricultural ecosystem.
al services	Health and Mental Wellbeing	Reducing stress by spending time near the agricultural ecosystem, enjoying recreational activities such as group camps in the vicinity of the agricultural ecosystem.
Cultura	Education and Research	Agroecosystem can be used to develop many research and education (educational ecosystem services mean formal and informal educational opportunities created by access to particular ecosystems such as providing condition for education and research about ecosystem services such as biotechnology research, thesis research, toxicology research on the ecosystem services and etc).
	Existence values	People feel pleasure and satisfaction from the plant and animal species in and around it.
	Employment (Creating job)	The agricultural ecosystem directly by creating employment in field of agricultural products, crops, livestock, fish, and aquaculture and indirectly by attracting investments and businesses that support tourism and eco-tourism to help contributes to the economy of the region
	Meetings and social relations	Agricultural ecosystem connects people, places and other forms of life and causes social interaction. Also, agricultural ecosystem is a suitable place for holding ceremonies.

Table 3. Calculating the AEFS weight in northern Iran using the SWARA technique.

Functions	Services	W_{j}
	Local and regional climate regulation	0.0305
	Improve air quality	0.0309
so.	Hydrological cycle and groundwater maintenance	0.0306
	Regulating water quality (Water purification)	0.0279
	Pollination and seed dispersal	0.0311
ice	Pest and disease control (Biological pest control)	0.0252
Regulating services	Smell reduction, noise reduction, visual screening	0.0267
50 50	Natural hazard regulations	0.0270
iti	Soil erosion control	0.0319
nla	Soil formation	0.0286
Seg	Regulating soil moisture and maintaining soil fertility	0.0267
щ	Ecosystem connectivity	0.0248
	Nutrient cycle	0.0275
	Role in food webs and prey/predator relationships	0.0288
	Providing and maintaining habitats (Biodiversity)	0.0290
	Primary production	0.0301
_	water supply	0.0163
ces	food supply	0.0397
Provisioning services	Energy production (Renewable)	0.0304
Se	Fiber, fuel, fodder	0.0290
ing	Biological materials (Biotics)	0.0238
10T	Providing genetic materials, natural medicines and biochemistry (Biochemical)	0.0367
.ZIS	Creating a green belt (Protective walls)	0.0338
Pro	Carbon sequestration	0.0346
	Fauna and Flora habitat and shelter	0.0239
	Spiritual, religious and therapeutic services	0.0154
	Recreation and ecotourism	0.0221
S	Cultural heritage values and sense of place	0.0236
ice	Conservation values	0.0236
Cultural services	Aesthetic, inspiring culture, art and design	0.0323
al s	Health and mental well-being	0.0161
in i	Education and research	0.0365
July Total	Existence values	0.0260
)	Employment	0.0384
	Meetings and social relations	0.0257
	Security	0.0148

Northern Iran with the SWARA Technique the results of AEFS weighting are indicated in Table 3. The weighing findings showed that the food supply, employment, supply of genetic materials, and educational and research services have the highest weight, respectively.

According to the results of Table 4, the provisioning function has the highest weight among other functions of the agricultural ecosystem in northern Iran (Table 4).

Determining the Priority of the AEFS in Northern Iran

The results obtained from the implementation of ARAS, TOPSIS and SAW models to determine the priority of the AEFS are presented in Tables 5 and 6.

The final weight of the agricultural ecosystem functions with ARAS, TOPSIS and SAW models is indicated in Table 7.

Function	W_{i}	Rank
Provisioning	0.0298	1
Regulating	0.0286	2
Cultural	0.0250	3

Table 5. Final weights of the AEFS in northern Iran.

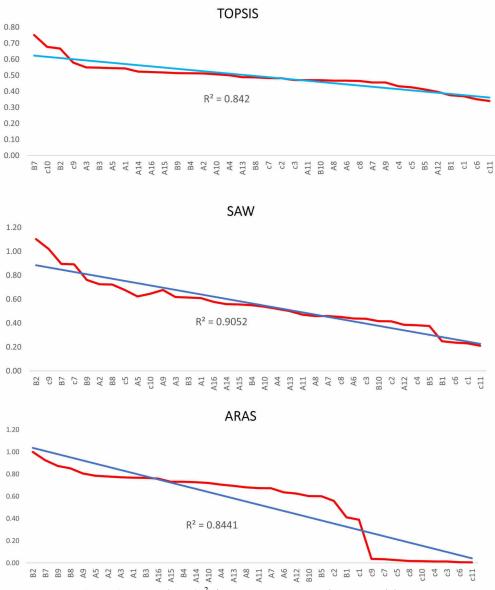
Code	Services	Services Models		
	Regulating services	ARAS	SAW	TOPSIS
A_1	Local and regional climate regulation	0.7679	0.6091	0.5422
A_2	Improve air quality	0.7782	0.7252	0.5114
A_3	Hydrological cycle and groundwater maintenance	0.7713	0.6179	0.5493
A_4	Regulating water quality (Water purification)	0.7048	0.5198	0.5000
A_5	Pollination and seed dispersal	0.7850	0.6772	0.5449
A_6	Pest and disease control (Biological pest control)	0.6365	0.4392	0.4661
A_7	Smell reduction, noise reduction, visual screening	0.6724	0.4586	0.4551
A_8	Natural hazard regulations	0.6809	0.4590	0.4661
A_9	Soil erosion control	0.8055	0.6226	0.4551
A_{10}	Soil formation	0.7201	0.5369	0.5061
A_{11}	Regulating soil moisture and maintaining soil fertility	0.6741	0.4705	0.4696
A_{12}	Ecosystem connectivity	0.6246	0.3864	0.3965
A_{13}	Nutrient cycle	0.6945	0.5013	0.4878
A_{14}	Role in food webs and prey/predator relationships	0.7270	0.5593	0.5228
A_{15}	Providing and maintaining habitats (Biodiversity)	0.7304	0.5561	0.5174
A_{16}	Primary production	0.7594	0.5782	0.5199
	Provisioning services	ARAS	SAW	TOPSIS
B_1	Water supply	0.4113	0.2487	0.3754
B_2	Food supply	1.0000	1.1024	0.6667
\mathbf{B}_3	Energy production (Renewable)	0.7662	0.6138	0.5469
B_4	Fiber, fuel, fodder	0.7304	0.5503	0.5124
B_5	Biological materials (Biotics)	0.6007	0.3764	0.4120
	Providing genetic materials, natural medicines and biochemistry			
B_7	(Biochemical)	0.9249	0.8950	0.7509
B_8	Creating a green belt (Protective walls)	0.8515	0.7227	0.4871
B_9	Carbon sequestration	0.8737	0.7623	0.5135
B_{10}	Fauna and Flora habitat and shelter	0.6024	0.4157	0.4690
	Cultural services	ARAS	SAW	TOPSIS
C_1	Spiritual, religious and therapeutic services	0.3891	0.2314	0.3696
C_2	Recreation and ecotourism	0.5580	0.4149	0.4815
C_3	Cultural heritage values and sense of place	0.0141	0.4369	0.4706
C_4	Conservation values	0.0141	0.3826	0.4313
C_5	Aesthetic, inspiring culture, art and design	0.0263	0.6772	0.4255
C_6	Health and mental well-being	0.0065	0.2376	0.3512
C_7	Education and research	0.0337	0.8917	0.4824
C_8	Existence values	0.0170	0.4522	0.4645
C_9	Employment	0.0371	1.0207	0.5796
C_{10}	Meetings and social relations	0.0167	0.6456	0.6772
C_{11}	Security	0.0055	0.2102	0.3392

 Table 6. Prioritization of agricultural ecosystem services in northern Iran.

	8	
ARAS	SAW	TOPSIS
B_2	B_2	B_{7}
B_7	C_9	\mathbf{C}_{10}
\mathbf{B}_{9}	\mathbf{B}_7	B_2
B_8	\mathbf{C}_7	C_9
A_9	B_{9}	A_3
A_5	A_2	B_3
A_2	B_8	A_5
A_3	C ₅	\mathbf{A}_1
$\mathbf{A_{l}}$	A_5	A_{14}
\mathbf{B}_3	C_{10}	A_{16}
A_{16}	A_9	A_{15}
A_{15}	A_3	\mathbf{B}_{9}
B_4	B_3	B_4
A_{14}	A_1	A_2
A_{10}	A_{16}	A_{10}
${ m A}_4$	A_{14}	A_4
A_{13}	A_{15}	A_{13}
A_8	B_4	B_8
A_{11}	A_{10}	C_7
A_7	A_4	C_2
\mathbf{A}_{6}	A_{13}	C_3
A_{12}	A_{11}	A_{11}
B_{10}	A_8	B_{10}
B_5	\mathbf{A}_7	A_8
C_2	C_8	A_6
\mathbf{B}_1	A_6	C_8
C_1	C_3	\mathbf{A}_7
C ₉	B_{10}	A_9
C_7	C_2	C_4
C_5	A_{12}	C_5
C_8	C_4	\mathbf{B}_{5}
C_{10}	B_5	A_{12}
C_4	B_1	\mathbf{B}_1
C_3	C_6	\mathbf{C}_1
C_6	\mathbf{C}_{1}	C_6
C ₁₁	C ₁₁	C_{11}

Table 7. The final weight and priority of the agricultural ecosystem functions in northern Iran.

Functions	Final weight			Priorities		
	TOPSIS	SAW	ARAS	TOPSIS	SAW	ARAS
Provisioning	0.5260	0.6319	0.7512	1	1	1
Regulating	0.4944	0.5448	0.7208	2	2	2
Cultural	0.4611	0.5092	0.1016	3	3	3


The finding showed that the provisioning functions have gained more weight among other functions at the three models (Table 7).

Statistical Analysis of Selecting the Appropriate Model for Prioritizing the AEFS in Northern Iran.

In order to compare the models for prioritizing the AEFS in northern Iran, the

curve slope (R²) of the factor weight was used in the three models (Figure 3). The slope curve of the relative proximity of the weights in the SAW model is a descending exponential function with an explanatory degree of 0.90, which indicates the obvious difference between the AEFS in northern Iran.

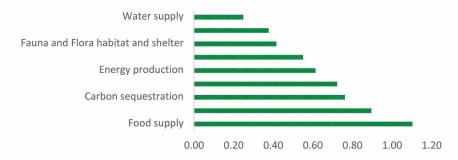
The R² in the SAW model is higher and

Figure 3. Curve slope (R²) in ARAS, TOPSIS and SAW models.

closer to one than the other models. Based on the findings and the consensus of some experts, the result prioritization of the AEFS in northern Iran in the SAW model is closer to reality. Therefore, the SAW model is suggested as a suitable model for prioritizing the AEFS in northern Iran.

-Prioritizing the AEFS in Northern Iran Based on Suitable Model (SAW Model)

Based on the results of the best model for prioritizing the AEFS in northern Iran (SAW model), provisioning, regulating and cultural functions are, respectively, the most important functions of the agricultural ecosystem in that area (Figure 4).


The findings of prioritizing agricultural ecosystem services in northern Iran with the SAW model are presented in Figures 5, 6, and 7. The results indicated that food supply, employment, air quality improvement services of provisioning, and cultural regulating functions had, respectively, the first priority compared to other agricultural ecosystem services in the north of Iran.

DISCUSSION

Although the primary goal of agriculture is

Figure 4. The priority of the functions of agricultural ecosystem in northern Iran with SAW model.

Figure 5. The priority of the provisioning services.

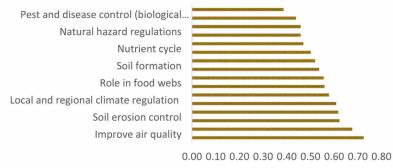
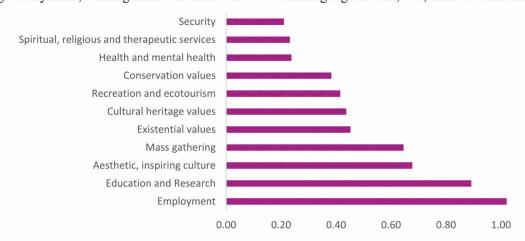



Figure 6. The priority of regulating services.

to produce food, the importance of agriculture is beyond the production of crops (Swinton et al.., 2015). And a set of ecosystem services that human life depends on is provided by agriculture (Rabbinge and Bindraban, 2012). The knowledge and skills of farmers in managing agro ecosystems can play an essential role in improving the balance between ecosystem services. Based on this, the management approach of each agro ecosystem is very sustainable important, so that agro ecosystems are involved with ecosystem services. However, the management approach plays a fundamental role in any agroecosystem, and in sustainable agroecosystems, management focuses on maintaining ecosystem services for the benefit of future generations (Altieri, 2018).

The AEFS prioritization results in northern Iran using MCDM models indicated that the provisioning and regulating functions have the first priority among all the prioritization models. In other words, provisioning and regulating functions are the most important functions of the agricultural ecosystem in northern Iran. According to the agricultural experts' opinions in northern Iran, the higher priority of the provisioning function is due to the fact that the agricultural ecosystem in northern Iran was one of the richest ecosystems in terms of providing food, genetic material, carbon sequestration, creating a green belt, etc., each of which has

Figure 7. The priority of cultural services.

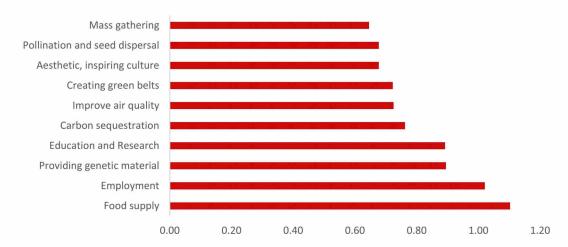


Figure 8. The most important agricultural ecosystem services in northern Iran.

many benefits for the local communities (Figure 8). The result is in accordance with the findings of Jia *et al.* (2021) and Heinze *et al.* (2022). Also, De Groot *et al.* (2012) stated regulating services include maintaining essential ecological processes and environmental protection systems. The study results showed that the agricultural ecosystem regulating services such as air quality improvement, pollination and seed dispersal, and soil erosion control have the highest priorities compared to the other services in that area.

Cultural services provide opportunities for spiritual, aesthetic, educational and scientific enrichment. In this regard, the results obtained from the prioritization agricultural ecosystem services in the north of Iran indicated that the services of creating employment, education and research are the most important agricultural ecosystem cultural services. In other words, the agricultural ecosystem of northern Iran has created many employment, educational and research opportunities for various academic researchers. Also, the presence of beautiful landscapes on the edge of the agricultural ecosystem of northern Iran has provided a suitable potential for tourism and ecotourism. The improvement recreational conditions and tourism facilities provided tourism income for investment in this area, which is one of the reasons for getting higher priority of employment creation services from the point of view of communities on the edge of the agricultural ecosystem. These results confirm Sohrabi's et al. (2021) in Iran and Assandri's et al. (2018) in Trentino, Italy. The findings showed that the cultural function was one of the most important functions of the agricultural ecosystem.

Unfortunately, the lack of information and insufficient recognition of the positive services of the agricultural ecosystem in northern Iran has caused increase in the amount of damage to the ecosystem and decrease in its habitat desirability. Meanwhile, of most the economic researches published in developing countries are focused on the direct benefits of the agricultural ecosystem. The lack of proper understanding of these functions and the services produced by them is considered a serious danger for the society. Therefore, it is suggested to inform the communities about the importance of the positive services of the agricultural ecosystem in northern Iran in order to protect them.

As seen, the current research has been done at a relatively limited level. Therefore, it is necessary to pay attention to the agricultural ecosystem services in a large area. In addition to the opinions of experts, the opinions of native and non-native communities should be considered in determining priority. Because knowing, classifying, and prioritizing the services will be the guidance for policy making, management, and how to use the agricultural ecosystem (De Groot et al., 2010). Also, it is necessary for future researchers to pay more attention to the role and importance of the functions and services and to survey the environmental behaviors of people in relation to the northern areas in Iran AEFS. Because the concept of agricultural ecosystem services, including all social, economic, and ecological dimensions, is a suitable framework for integration in the planning and management of these areas.

ACKNOWLEDGEMENTS

The present study was done at Sari Agricultural Sciences and Natural Resources University (SANRU). We thank and appreciate the cooperation of experts and specialists in the field of agricultural ecosystem management at the SANRU and Agricultural Jihad Organization in Iran for cooperation in this research.

REFERENCES

 Majeed, R. A. and Breesam, H. K. 2021. Application of SWARA Technique to Find Criteria Weights for Selecting Landfill Site in Baghdad Governorate. *IOP Conf. Ser.*:

- Mater. Sci. Eng., 1090(1): 012045.
- Altieri, M. A. 2018. Agroecology: The Science of Sustainable Agriculture. 2nd Edition, Westview Press, Boulder, CO, USA, (October 13, 1995).
- Ben Amor, W. D., Martinez Lopez, L. and Frikha, H. M. 2022. A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making. World Academy of Science, Engineering and Technology. *Int. J. Comput. Sci. Eng.*, 16(8): 357-362.
- Assandri, G., Bogliani, G., Pedrini, P. and Brambilla, M. 2018. Beautiful Agricultural Landscapes Promote Cultural Ecosystem Services and Biodiversity Conservation. Agriculture, 256: 200-210.
- Ayan, B., Abacıoğlu, S. and Basilio, M. P. A. 2023. Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. *Information*, 14(5): 1-28.
- 6. Azaiez, N., Alleoua, A., Baazaoui, N. and Qhtani, N. 2020. Assessment of Soil Loss in the Mirabah Basin: An Overview of the Potential of Agricultural Terraces as Ancestral Practices (Saudi Arabia). *Open J. Soil Sci.*, **10**: 159–180.
- Bishop, J. T. 1999. Valuing Forests: A Review of Method and Application in Developing Countries. International Institute for Environment and Development (IIED), WC1 ODD, London, UK, PP. 53-67.
- Chen, T. -C. and Yu, S. -Y. 2022. Study on the Risk Level of Food Production Enterprise Based on TOPSIS Method. Food Sci. Technol. (Campinas), 42: 1-6
- Czúcz, B., I., Arany, M., Potschin-Young, K., Bereczki, M., Kertész, M. and Haines-Young, R. 2018. Where Concepts Meet the Real World: A Systematic Review of Ecosystem Service Indicators and Their Classification Using CICES. *Ecosyst. Serv.*, 29: 145-157.
- CICES., 2018. Common International Classification of Ecosystem Services (CICES). https://cices.eu/.
- Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, Sh., O'Neill, R., Paruelo J., Raskin R., Sutton P. and Belt M., 1998. The Value of the World's Ecosystem Services and Natural Capital. *Ecol. Econ.*, 25: 67-72.

- De Groot, R. S., Alkemade, R., Braat, L., Hein, L. and Willemen, L., 2010. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex., 7: 260– 272
- 13. De Groot, R., Brander, L. and Ploeg, S., 2012. Estimates of the Value of Ecosystems and Their Services in Monetary Units. *Ecosyst. Serv.*, 1: 50–61.
- 14. Debnath, B., Baria, M., Haqa, M., Pachecob, J. and Khan. M., 2023. An Integrated Stepwise Weight Assessment Ratio Analysis and Weighted Aggregated Sum Product Assessment Framework for Sustainable Supplier Selection in the Healthcare Supply Chains. Supply Chain Analytics, 1: 1-11
- 15. Dick, J., Turkelboom, F. and Woods, H., Iniesta-Arandia, I., Primmer, E., Saarela, S. R., Bezák, P., Mederly, P., Leone, M., Verheyden, W., Kelemen, E., Hauck, J., Andrews, C., Antunes, P., Aszalós, R., Baró, F., Barton, D. N., Berry, P., Bugter, R., Carvalho, L., Czúcz, B., Dunford, R., Garcia Blanco, G., Geamănă, N., Giucă, R., Grizzetti, B., Izakovičová, Z., Kertész, M., L., Langemeyer, Kopperoinen, Montenegro Lapola, D., Liquete, C., Luque, S., Martínez Pastur, G., Martin-Lopez, B., Mukhopadhyay, R., Niemela, J., Odee, D., Luis Peri, P., Pinho, P., Patrício-Roberto, G. B., Preda, E., Priess, J., Röckmann, C., Santos, R., Silaghi, D., Smith, R., Vădineanu, A., van der Wal, J. T., Arany, I., Badea, O., Bela, G., Boros, E., Bucur, M., Blumentrath, S., Calvache, Carmen, E., Clemente, P., Fernandes, J., Ferraz, D., Fongar, C., García-Llorente, M., Gómez-Baggethun, E., Gundersen, V., Haavardsholm. Ο., Kalóczkai, Khalalwe, T., Kiss, G., Köhler, B., Lazányi, O., Lellei-Kovács, E., Lichungu, R., Lindhjem, H., Magare, C., Mustajoki, J., Ndege, C., Nowell, M., Girona, S. N., Ochieng, J., Often, A., Palomo, I., Pataki, G., Reinvang, R., Rusch, G., Saarikoski, H., Smith, A., Massoni, E. S., Stange, E., Traaholt, N. V., Vári, Á., Verweij, P., Vikström, S., Yli-Pelkonen, V. and Zulian, G. 2018. Stakeholders' Perspectives on the Operationalisation of the Ecosystem Service Concept: Results from 27 Case Studies. Ecosyst. Serv., 29(Part C): 552-

- 565.
- Dumont, B., Ryschawy, J., Duru, M., Benoit, M., Chatellier V., Delaby L., Donnars, C., Dupraz, P., Lemauviel-Lavenant, S. Méda B., Vollet D. and Sabatier, R. 2019. Associations among Goods, Impacts and Ecosystem Services Provided by Livestock Farming. *Animal*, 13(8): \1773-1784.
- 17. EEA. 2016. Climate Change, Impacts and Vulnerability in Europe 2016. European Environment Agency.
- 18. FAO. 2018. Incentives for Ecosystem Services: Supporting the Transition to Sustainable Food Systems. Food and Agriculture Organization, PP. 1-6.
- Fan, J., Han, D. and Wu, M. 2023. Picture Fuzzy Additive Ratio Assessment Method (ARAS) and VIseKriterijumska Optimizes I Kompromisno Resenje (VIKOR) Method for Multi-Attribute Decision Problem and Their Application. *Complex. Intell. Syst.*, 9: 5345–5357.
- Haines-Young, R. and Potschin, M. 2013.
 Common International Classification of Ecosystem Services (CICES), Version 4.3.

 Report to the European Environment Agency. (download: www.cices.eu)
- Heinze, A., Bongers, F., Ramírez Marcial, N., García Barrios, L. E. and Kuyper T. W. 2022. Farm Diversity and Fine Scales Matter in the Assessment of Ecosystem Services and Land Use Scenarios. *Agric.* Syst., 196: 1-15.
- Hosseini, S., Amirnejad, H. and Azadi, H. 2025. Impacts of Hyrcanian Forest Ecosystem Loss: The Case of Northern Iran. *Environ. Dev. Sustain.*, 27: 14397–14418.
- Hosseini, S., Oladi, J. and Amirnejad, H. 2021. The Evaluation of Environmental, Economic and Social Services of National Parks. *Environ. Sci. Dev.*, 23: 9052-9075.
- Jaukovic Jocic, K., Jocic, G., Karabasevic, D., Popovic, G., Stanujkic, D., Zavadskas, E. K. and Thanh Nguyen, P. 2020. A Novel Integrated PIPRECIA-Interval-Valued Triangular Fuzzy ARAS Model: E-Learning Course Selection. Symmetry (Basel), 12(6): 1-14.
- 25. Jia, Y., Liu, Y. and Zhang, S. 2021. Evaluation of Agricultural Ecosystem Service Value in Arid and Semiarid Regions of Northwest China Based on the Equivalent Factor Method. Environ.

- *Process.*, **8:** 713–727.
- MEA (Millennium Ecosystem Assessment).
 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, World Resources Institute, Washington DC, 155 PP.
- Mengual-Andrés, S., Roig-Vila, R. and Mira, J. B. 2016. Delphi Study for the Design and Validation of a Questionnaire about Digital Competences in Higher Education. *Int. J. Educ. Technol. High.* Educ., 13(12): 1-12.
- Prayogo, M. A., Suseno, J. E., Nugraheni,
 D. M. K., 2019. Selecting Palm Oil Cultivation Land Using ARAS Method. In International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), PP. 358-362.
- Rabbinge, R. and Bindraban P. S. 2012.
 Making More Food Available: Promoting Sustainable Agricultural Production. J. Integr. Agric., 11: 1–8.
- Ramón-Canul, L., Margarito-Carrizal, D., Limón-Rivera R., Morales-Carrrera, U. A., Rodríguez-Buenfil, I. M., Ramírez-Sucre, M. O., Cabal-Prieto, A., Herrera-Corredor, J A. and de Jesús Ramírez-Rivera, E. 2021. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method for the Generation of External Preference Mapping Using Rapid Sonometric Techniques. J. Sci. Food Agric., 101(8): 3298-3307.
- Schmidt, M., Weißhuhn, P., Augustin, J., Funk, R., Häfner, K., König, H., Loft, L., Merz, C., Meyer, C., Piorr, A., Reutter, M., Stachow, U., Stein-Bachinger, K. and Matzdorf, B. 2017. Evaluation of the Ecosystem Services Approach in Agricultural Literature. One Ecosyst., 2: 1-17.
- Sohrabi, S., Veisi, H. and Khoshbakht, K. 2021. A Comparative Analysis of Ecosystem Services Valuation in Alternative Agricultural Systems (Case of Dezful County, Khuzestan Province). Environ. Res., 11(22): 45-56.
- 33. Sun, Q., Qi, W. and Yu, X. 2021. Impacts of Land Use Change on Ecosystem Services in the Intensive Agricultural Area of North China Based on Multi-Scenario Analysis. *Alex. Eng. J.*, **60(1):** 1703–1716.
- Swinton, S. M., Jolejole-Foreman, C. B., Lupi, F., Ma, S., Zhang, W. and Chen, H. 2015. Economic Value of Ecosystem Services from Agriculture. The Ecology of

- Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford University Press, New York, New York, USA.
- 35. TEEB. 2010.The Economics of Ecosystems and Biodiversity. 84 p.
- Wang, Y., Liu, G., Cai, Y., Giannetti, B., Agostinho, F., Almeida, C. M. V. B. and Casazza, M. 2022. The Ecological Value of Typical Agricultural Products: An Emergy-Based Life-Cycle Assessment Framework. Front. Environ. Sci., 10: 1-20
- Yücenur, G. N. and Ipekçi, A. 2021.
 SWARA/WASPAS Methods for a Marine Current Energy Plant Location Selection

- Problem. Renew. Energy, 163: 1287–1298
- 38. Zavadskas, E. and Turskis, Z., 2010. A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision-Making, *Technol. Econ. Dev. Econ.*, **16(2):** 159-172.
- Zolfani S. and Saparauskas J. 2013. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System. INZ EKON., 24(5): 408-414.
- Xu, Z. and Peng, J. 2022. Ecosystem Services-Based Decision-Making: A Bridge from Science to Practice. *Environ. Sci. Policy*, 135: PP. 6-15.

بررسی کارکردها و خدمات اکوسیستم کشاورزی در شمال ایران

ساره حسینی، و فهیمه کریمپور

چکیده

اکوسیستم کشاورزی کارکردها و خدمات مختلفی را برای انسان فراهم می کند. لذا بررسی نقش و اهمیت آنها در برنامهریزی و مدیریت اراضی کشاورزی یکی از اهداف تحقیق می باشد. برای شناسایی کارکردها و كالاها و خدمات اكوسيستم كشاورزي از طبقهبندي مشترك بين المللي خدمات اكوسيستمي (CICES) استفاده گردید. همچنین جهت وزن دهی و اولویت بندی کارکردها و خدمات اکوسیستم کشاورزی از تکنیک تصمیم گیری شامل تحلیل نسبت ارزیابی چند معباره وزندهی تدریجی (SWARA) به منظور محاسبه وزن کارکردها و خدمات، و مدلهای مجموع ساده وزين (SAW)، ارزيابي نسبت جمعي (ARAS) و تكنيك ترجيحات بر اساس مشابهت به راه حل ايدهآل (TOPSIS) برای اولویتبندی آنها استفاده شده است. در این مطالعه داده های پژوهش به صورت پیمایش میدانی، نمونه گیری تصادفی و با تکمیل پرسشنامه دلفی توسط ٤٠ نفر از خبرگان کشاورزی در شمال ایران استخراج گردید تا نمایان شود کدامیک از کارکردها و خدمات مثبت اکوسیستم کشاورزی دارای اهمیت بیشتری در مدیریت بهینه آن می باشند. همچنین برای مقایسه مدلهای اولویت بندی از ضریب \mathbb{R}^2 استفاده شد. یافتههای تکنیک SWARA نشان داد که کارکردهای تامینی، تنظیمی و فرهنگی به ترتیب با کسب وزنهای ۰/۰۲۸۸، ۲۸۲۸، و ۰/۰۲۵۰ بیشترین وزن را به خود اختصاص داده اند. همچنین نتایج نشان داد که مدل SAWبا كسب ۱/۹۰ = R2 به عنوان مدل مناسب انتخاب گردید. طبق نتایج اولویتبندی این مدل، کارکردهای تامینی، تنظیمی و فرهنگی با وزنهای ۲۳۱۹، ۱۸۶۸، و ۱/۰۰۹۲، به ترتیب در اولویت اول تا

سوم جهت مدیریت بهینه اکوسیستم کشاورزی شمال ایران قرار گرفتند. همچنین در میان خدمات اکوسیستمی، خدمات تامین غذا، اشتغال، تأمین مواد ژنتیکی و خدمات آموزشی و پژوهشی جزء خدمات مهم و مثبت اکوسیستم کشاورزی شمال ایران نسبت به سایر خدمات میباشند. لذا پیشنهاد میشود برنامهریزی و تحقیقات مناسب توسط سازمانهای ذیربط جهت مدیریت پایدار اکوسیستمهای کشاورزی صورت پذیرد. و واژگان کلیدی: کارکردها و خدمات اکوسیستم کشاورزی، طبقهبندی مشترک بینالمللی خدمات اکوسیستم، ارزیابی وزنی.

Investigating the Effects of Microcredit on Food Security of Rural Households: Evidence from Zehak County, Iran

Alireza Sani Heidary¹, Mahmoud Daneshvar Kakhki^{1*}, Mahmoud Sabouhi Sabouni¹, and Hosein Mohammadi¹

ABSTRACT

Microcredit plays a vital role in rural households' food security. However, the effects of microcredit on improving the food security of households have not yet been well studied and understood in Iran. Thus, the purposes of this research was to analyze the success of microcredit programs on enhancing the food security of rural households in Zehak County, Iran, using the propensity score matching method and bootstrap algorithm. Therefore, two food security indices, including Food Consumption Score (FCS) and Household Food Insecurity Access Scale (HFIAS) were used. The results revealed that 100% of the households faced food insecurity. The prevalence of food insecurity was 20.0, 42.5, and 37.5% for mild, moderate, and severe food insecurity, respectively. In addition, 30% of households were in poor status of food consumption. Our findings emphasize the positive and significant role of microcredit in improving food security and demonstrated that microcredit decreased the HFIAS index of the recipient households by 24.3-27.8% and increased the FCS index by 25.8-31.4%. Therefore, policy- and decision-makers should promote and strengthen governmental and non-governmental organizations providing microcredit. It is also recommended to provide information and reduce collateral restrictions to increase households' access to microcredit.

Keywords: Bootstrap algorithm, Food consumption score, Household food insecurity access scale, Propensity score matching.

INTRODUCTION

Since food security is important for human well-being, its realization is one of the most important goals of development plans at the national and international levels (World Bank, 2008; Dehbidi *et al.*, 2022; Bahiru *et al.*, 2023). Food security means that all people can obtain sufficient, safe, and nutritious food materially and economically at any time to meet their dietary needs and food preferences and live an active and healthy life. Therefore, food availability, food accessibility, food utilization, and stability over time are four important components to food security (Dehbidi *et al.*, 2022).

Food insecurity has been one of the major global problems in the last two decades, especially in developing countries. Food security is affected by climate change and extremes (Schillerberg and Tian, 2023; Kandel et al., 2024), resource consumption (Chowdhury et al., 2017; Liu et al., 2020), degradation (Gomiero, population growth (Liu et al., 2020), and urbanization (Boltana et al., 2023). Among them, climate change seems to have a significant impact on activities related to food security in agriculture-dependent countries. The agricultural sector plays a vital role in food supply, i.e. food production, and is strongly influenced by climate variability (Ghalibaf et al., 2023).

Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: daneshvar@um.ac.ir

For this reason, the destructive effects of climate change are greater for the rural community and lead to an increase in food insecurity. In the long term, the adverse effects of climate change and other factors will pose major challenges to the nutrition and food security of rural communities (Ehtesham Majd *et al.*, 2019; Salman *et al.*, 2023).

Therefore, ensuring food security, especially in vulnerable rural areas, requires government changing systems through institutions, regional development institutions, and non-governmental organizations (Boltana et al., 2023). In this regard, microcredit is one of the key measures proposed to reduce food insecurity (Salima et al., 2023).

Microcredit is a form of microloans that are granted to poor rural households who usually lack collateral, verifiable credit history, and steady employment. In addition, there are micro-loans specifically intended for the creation and development of incomegenerating rural businesses.

Microcredit has a high potential to enhance food security, improve living standards, and reduce poverty by supporting entrepreneurship and creating incomegenerating activities (Bakare *et al.*, 2023).

In Iran, a new approach to microfinance was developed by the United Nations International Fund for Agricultural Development to provide access to formal and informal loans for the poor and lowincome rural groups to create and develop rural businesses, empower them to cope with many shocks, improve livelihoods and food security, reduce vulnerability, and break out of the cycle of poverty. These programs have great potential to improve household food security by diversifying rural incomeactivities (Ministry generating Cooperatives, Labour, and Social Welfare, 2018).

As a developing country, Iran faces the challenge of food insecurity, particularly in rural areas. Based on FAO, IFAD, UNICEF, WFP, and WHO (2022), 42.4% of Iran's population is affected by moderate or severe

food insecurity. For this reason, ensuring food security has become one of the most important goals of Iran's national development plans in the last two decades. In this regard, various measures have been taken to improve rural households' food security, of which microcredit is one of the most important ones.

However, few studies investigated the effects of microcredit on household food security. These studies are divided into three groups. First, most of the studies revealed that microcredit increases the per capita consumption of calories, increases the number of meals and increases the access to food, which results in improving the food security of households (Islam et al., 2016; Devereux, 2016; Berhanu et al., 2021; Boltana et al., 2023), particularly femaleheaded households (Hamad and Fernald, 2012; Bocher et al., 2017; Haque, 2021; Kianersi et al., 2021; Wongnaa et al., 2023). Secondly, a small number of studies did not find a significant effect of the role of microcredit on improving households' food security, and they stated that receiving credit was not successful in improving households' food security (Banerjee et al., 2015; Seng, 2018; Mahmud et al., 2022; Salima et al., 2023). Thirdly, a limited number of studies showed that excessive debt, loan repayment pressure, women's lack of control over the use of loans, and frequent loans with highinterest rates lead to food insecurity in households, especially with female heads (Ahmed et al., 2001; Develtere and Huybrechts, 2005; Aromolaran, 2010; Ganle et al., 2015; Namayengo et al., 2018).

In general, this study can contribute to the literature on the effects of microfinance programs on improving household food security in three ways. Firstly, this study investigates the effects of implementing an effective economic program (such as microcredit) on reducing household vulnerability to food insecurity. Considering household food security is subject to change, it is necessary to examine the effects of food security improvement programs such as microcredit to predict future shocks and understand how households respond to food insecurity. Secondly, this study can help to understand why microcredit has positive and negative effects in different situations or times by generating empirical evidence and documenting the evaluation of its effects. Thirdly, the studies show that there is no consensus or global pattern on the effects of microcredit, and to find if it can be beneficial or harmful, local policy-makers and decision-makers must see evidence of the effects of its implementation in a specific region.

In this regard, this study can help local policy-makers gain a clearer picture and better understanding of the effects of implementing microcredit programs on improving the food security of rural households and take them into account when defining and changing their policies and programs.

Therefore, this study seeks to answer three key questions. First, what is the food security situation of the target rural households? Secondly, what factors influence the access of target households to microcredit? And thirdly, has the microcredit program improved the food security of the target households or not?

MATERIALS AND METHODS

Study Area and Data

Zehak County is a poor county, which is

located in the north of Sistan and Baluchestan Province, Iran, and consists of two districts: Central and Jazinak, and four rural districts: Zehak, Khajeh-Ahmad, Jazinak, and Khamak (Figure 1). There are 20,055 households in this county, of which 16,817 are rural (Statistical Center of Iran, 2016). Rural households in Zehak face problems such as lack of financial resources, poverty, high vulnerability, and food insecurity. In addition, this county suffers from climatic events such as drought, excessive heat, low rainfall, and 120-day winds. Considering the high poverty and deprivation in this county, climate disasters have increased the vulnerability and food insecurity of the households, particularly rural ones. The food security situation of rural households in this county indicates that a high proportion of households are in a state of food insecurity and use the most difficult strategies to cope with this situation (Okati et al., 2020). According to the document on economic development and employment generation in rural areas of Sistan and Baluchestan Province, one of the effective measures to reduce household vulnerability, create employment, improve food security, and diversify economic and production activities is to support the establishment and development microfinance funds to increase rural households' access microcredit to (Ebrahimzadeh and Paidar, 2019). This county's most important organizations providing microfinance services include the Agricultural Bank, the Welfare Organization

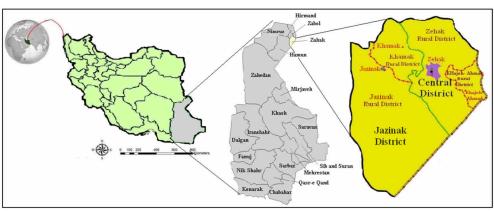


Figure 1. Geographical location of the study area.

and, the Kara System (governmental organizations), the Barkat Foundation, and the Alavi Foundation (non-governmental organizations). The total microcredit payments to rural households from 1397 to 1400 was about 1459 billion rials, of which about 3 percent was paid by the government organizations and 97 percent by the nongovernmental organizations. Therefore, conducting this study in Zehak County can be a suitable platform for evaluating the performance of microcredit programs on food security rural households' for appropriate and well-functioning local policymaking and planning.

To obtain the needed data, Stratified Random Sampling was applied. According to Cochran's formula, the sample size was estimated to be 376 rural households. A multidimensional questionnaire and semi-structured interview were used to obtain the necessary data to calculate food security indicators, socio-economic, and demographic characteristics, farm and livestock characteristics, and experiences of shocks.

Food Security Index

Two food security indices, including the Household Food Insecurity Access Scale (HFIAS) and Food Consumption Score (FCS), were used to understand households' food security status in this study. The HFIAS index was developed by the Food and Nutrition Technical Assistance II (FANTA) project between 2001 and 2006 (Coates et al., 2007; Salman et al., 2023). This index is measured based on a short questionnaire that determines the behavioral and psychological characteristics households from access to food insecurity in 30 days (Kolog *et al.*, 2023). The questionnaire consists of two types of questions: there are nine "occurrence" questions and nine "frequency occurrence". The respondent is first asked whether he or she has experienced a certain situation (0= No, 1= Yes) and if so, how

often it has been experienced (1= Rarely, 2= Sometimes, 3= Often). To calculate the HFIAS index, each of the nine Questions (Q_ia) is given a score between 0 and 3, and finally the scores of all questions are summed together using Equation (1). The calculated HFIAS score for each household ranges from 0 to 27, which indicates the degree of food insecurity experienced by the households (Coates *et al.*, 2007).

$$HFIASscore = \sum Q_i a,$$
 $i = 1, 2, ... 9$ (1)

Where, the HFIAS questionnaire provides information on the Domains and Prevalence of household food insecurity (Appendix 1).

The FCS index was developed by the World Food Programme (WFP) in 1996. This index measures diet quality and food intake (Baumann $et\ al.$, 2013). The respondent reports the frequency of household consumption of 8 different food groups (X_i) (Appendix 2) during a 7-day reference period. The frequency of consumption of each food group is

multiplied by an assigned weight (α_i) for each group and the resulting scores are summed to calculate the FCS using Equation (2) (Jones *et al.*, 2013):

$$FCS = \sum \alpha_i X_i$$
, $i = (1, 2, ..., 8)$ (2)

The households are classified into three groups of food consumption: poor, borderline, and acceptable. The maximum score for a household is 112. This score can only be reached if a household consumes food from each food group every day (Baumann *et al.*, 2013).

Propensity Score Matching

This study used the propensity score matching algorithms to investigate the effect of microcredit on food security indices. This method is included in the group of methods for assessing the impact of an action or policy on two groups, affected and unaffected. In other words, Propensity Score Matching (PSM) is an intuitive approach to estimating the effects of implementing an

action or policy that broadly evaluates its success. This method has attracted the attention of researchers to evaluate the effect of development programs such as microcredit on households' food security and living standards (Berhanu *et al.*, 2021; Mahmud *et al.*, 2022; Boltana *et al.*, 2023; Wongnaa *et al.*, 2023).

The PSM method is one of the methods that can eliminate the problem of selection bias due to observed factors in the framework of observational data without functional and distributional assumptions (Gitonga et al., 2013). This method is based on the assumption that selection bias due to the observed factors can be eliminated by matching each recipient household with one or more non-recipient households that are similar in observable characteristics. The PSM method identifies a causal relationship between microcredit receipt and outcome variables by comparing the means between recipient households (treatment group) and non-recipient households (control group) based on the Wilcoxon rank test (Gitonga et al., 2013; Luan and Bauer, 2016). This method does not require time series data to evaluate the success of a policy or action and can be estimated only with data from a single point in time (Sani Heidary et al., 2020). One of the important limitations of PSM is that it cannot exploit selection bias caused by unobserved factors (latent bias). In this regard, in the PSM method, the degree of sensitivity of the results to latent bias should be determined using the sensitivity analysis proposed by Rosenbaum (2002).

The matching method was conducted through two main stages to investigate the effect of microcredit on food security. The first stage is to determine the factors influencing the household decision to use microcredit using the logit model. This model is usually preferred over the probit model for reasons such as: (a) Simple interpretability of estimated coefficients; (b) greater flexibility in fitting data, and (c) Being resistant to outliers and providing more stable results (Greene, 2012).

A household may apply for microcredit based on its expected costs and benefits (Luan and Bauer, 2016; Boltana *et al.*, 2023). The logit model can be written as follows:

$$AMC_i^* = \beta X_i + \varepsilon_i, \ \forall \ i = 1, 2, ..., N$$
(3)

Where, AMC_i^* is the microcredit status of the household. AMCi equals one if the household took at least one microcredit in the previous 36 months, and otherwise zero. X_i is a set of independent variables (Appendix 3), and ε_i is an error term following the normal distribution, and N is the Number of households.

In the second step, recipients and non-recipients of microcredit were matched by their propensity scores using three matching estimators, including nearest neighbor, kernel, and radius matching. In the nearest neighbor method, each household in the control group is matched to the nearest household in the treatment group. C(Pi) represents the set of households in the Control group matched to households in the treatment group, which have Propensity scores Pj and Pi, respectively. Therefore, the nearest neighbor matching algorithm is defined as follows (Becker and Ichino, 2002):

$$C(P_i) = \min_{j} \left\| P_i - P_j \right\| \tag{4}$$

In the radius method, households in the control and treatment groups are matched within a certain distance of the Propensity score of the treatment group household (Pi). Therefore, matching based on the radius method is defined as follows (Becker and Ichino, 2002):

$$C(P_i) = \left\{ p_j \mid \left\| p_i - p_j \right\| < r \right\} \tag{5}$$

Where, all propensity scores of the control group households are matched with unit i of the treatment group household at a distance r from pi.

In core matching, each treatment group household is matched with a weighted average of each control group household

that has a similar propensity score; but more weight is given to the households with a closer propensity score. Assuming that T and C are the sets of Treatment and Control group households, respectively, and YiT and YjC are the observed outcomes for their groups, core matching algorithms are defined in standard terms as follows (Becker and Ichino, 2002):

$$T^{K} = \frac{\sum_{j \in C} Y_{j}^{C} G(\frac{p_{j} - p_{i}}{h_{n}})}{\sum_{k \in C} G(\frac{p_{k} - p_{i}}{h_{n}})}$$
(6)

Where, $G(\cdot)$ is a kernel function and hn is a bandwidth parameter.

The effect of microcredit on food security indices is estimated by the Average Treatment Effects on the Treated (ATT), which is expressed as follows (Luan and Bauer, 2016; Boltana *et al.*, 2023):

$$ATT = E(Y^1|D=1) - E(Y^0|D=1)$$
 (7)
Where, E (Y1| D= 1) and E (Y0| D= 1) denote outcomes for microcredit accessed households and the hypothetical outcome that would have resulted if the accessed household had not taken microcredit, respectively.

The degree of sensitivity of the results to the bias caused by unobserved factors was investigated using the sensitivity analysis (Boltana *et al.*, 2023).

This analysis can determine to what extent the existence of latent bias in the study will have no effect on the results (Rosenbaum, 2002). The odds ratio of two identical households i and j to receive the credit is defined as Equation (8) (Guo and Fraser, 2014):

$$\frac{1}{\Gamma} \le \frac{P_i (1 - P_j)}{P_i (1 - P_i)} \le \Gamma \tag{8}$$

Where, Pi/(1- Pi) and Pj/(1- Pj) represent the odds of households i and j receiving the credit, Γ denots the degree of a study's bias to latent bias. Sensitivity analysis at different values of Γ examines how changes in Γ lead to changes in the outcome of the participation effect in microcredit. A study is sensitive if values of Γ close to 1 can lead to very different inferences from the obtained results (i.e., the probability level at Γ = 1 is significant). If larger values of Γ are required to change the inference, the study is insensitive (Guo and Fraser, 2014).

Additionally, the bootstrap algorithm was also used to improve the standard error of the PSM method (Austin and Small, 2014).

RESULTS AND DISCUSSION

Descriptive Statistics

Table 1 provides the descriptive statistics of variables for microcredit recipients and nonrecipients. Of the 376 households' heads, 177 (47%) were microcredit recipients and 199 (53%) were non-recipients. Compared to nonrecipient households, microcredit recipients were younger, more educated, had more people who could help them in times of crisis, had larger families, lower dependency ratios, more social interactions (in terms of membership in social groups and the number of visits to agricultural extension services), had a higher level of awareness and access to information about strategies for adapting to climate change, greater access to local and lower savings. Recipient households had larger agricultural land compared to non-recipients. They had experienced more shocks and, consequently, were more exposed to various shocks; therefore, they had suffered greater losses in agricultural and livestock products. These households were located at a shorter distance from microcredit disbursing institutions.

Households' Food Security Status

Table 2 shows the results of the HFIAS and FCS indices. Our findings show that 100% of the households experienced anxiety and uncertainty related to food insecurity. Also, approximately 94.7% of the households experienced insufficient and poor quality food, and about 80.0% suffered

Table 1. Descriptive statistics of variables, measurements, and expected signs.

Variables	Unit	Non-	Recipien	Expecte
variables	Onit	recipient	t	d sign
Age of household heads	Years	63.784	53.243	+/-
Membership of the head of the household in social groups	Number	1.829	2.960	+
Education of household heads	Years	4.864	6.740	+
Household size	Persons	4.719	6.198	+
The number of people known who could be asked for help	Persons	13.890	19.158	+
The contacts with agricultural extension	Number	4.055	7.881	+
Saving	Million Rials (IRR)	18.658	13.073	-
Dependency ratio: The ratio of household members without income to household income earners	(%)	0.423	0.278	-
Total land size	Hectare	3.262	6.090	+
Experience of various natural shocks in the last three years	Number	10.302	11.616	+
Cropsshock: The value of losses of agricultural products due to various shocks	Million Rials	98.719	118.446	+
Animalshock: Livestock lost due to various shocks	Number	4.025	6.616	+
Awareness of adaptation strategies	Quality: Score from 1 to 3	1.714	2.678	+
Access to information on climate change	1 = Yes; 0 = No	0.428	0.718	+
Distance to the lending institution	Minutes	32.281	20.232	-
Access to the local market	1 = Yes; 0 = No	0.745	0.802	+
Number of observations	-	199	177	

Table 2. Summary information on household food insecurity access (a) domains, (b) prevalence, and FCS.

Index	Categories	Frequency	Percentage
HFIAD	Insufficient food intake and physical consequences	301	80
	Insufficient quality	356	94.7
	Anxiety and uncertainty	376	100
HFIAP	severely food insecure	141	37.5
	moderately food insecure	160	42.5
	mildly food insecure	75	20
	food secure	0	0.0
FCS	Acceptable	97	26.8
	Borderline	166	44.1
	Poor	113	30.1

Source: research findings

from insufficient food intake and its physical consequences. In addition, the results reveal that 100% of the households are food insecure, and 37.5% of them suffer from severe food insecurity. The results of the FCS index indicate that 44.1 and 30.1% of the total households are at borderline and poor food consumption levels, respectively. Table 3 presents the regional analysis of food security. The results show that food insecurity is more in the central district than Jazinak district. Among the rural districts,

food insecurity is more severe in Zehak Rural District.

Propensity Score Matching

Table 4 provides the logit model results. The findings reveal that 1% increase in the age of the head of the household decreases the probability of access to microcredit by 6.1%. (Luan and Bauer, 2016; Sani Heidary *et al.*, 2020), which shows that older household heads have less access to

Table 3. Summary of the estimated values for HFIAS and FCS indices.

Region	Villages (Number)	Households (Number)	HFIAS	FCS
Central District	28	278	17.10	24.00
Zehak Rural District	20	212	17.80	23.00
Khajeh-Ahmad Rural District	8	66	16.30	25.00
Jazinak District	16	98	13.75	27.75
Khamak Rural District	9	53	13.30	28.50
Jazinak Rural District	7	45	14.20	27.00
Average scores of total observations	44	376	15.85	25.36
minimum scores of total observations	44	376	5.00	17.00
maximum scores of total observations	44	376	23.00	75.50

Source: research findings

innovations and financial information. However, this finding contradicts the results by Akotey and Adjasi (2016) for Ghana. A 1% increase in household savings leads to decrease the probability of access to microcredit by 8.5%. Similarly, the studies by Luan and Bauer (2016) in Vietnam and Sani Heidary et al. (2020) in Iran revealed that household savings were used to invest in future productions and meet essential needs. A 1% increase in the dependency ratio of households reduces the probability of their access to microcredit by 0.330%. Households with more dependents are generally exposed to more credit constraints. These findings is consistent to the results of Thanh et al. (2019) and inconsistent with the results of Li et al. (2011). The probability of receiving microcredit by the households with high awareness of climate change adaptation strategies is 12.9% more than the households with low awareness. This result is consistent with the findings of the previous research (Luan and Bauer, 2016; Ojo et al., 2019), which indicated that microcredit is a critical tool for improving adaptation strategies. However, our findings do not confirm the results obtained by Bakare *et al.* (2023).

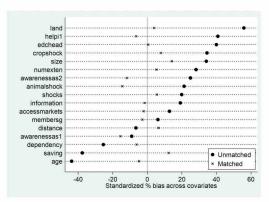
A 1% increase in the household head's education increases the probability of access to microcredit by 1.4%. Similarly, the studies by Thanh *et al.* (2019) and Berhanu *et al.* (2021) revealed that educated household heads were more willing to receive microcredit to reduce the financial imbalance. The results reveal that 1%

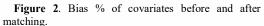
increase in households' contacts with agricultural extension institutions increases the probability of microcredit access by 2.1%. In addition, 1% increase in the number of helpers increases the probability of access of microcredit by 9.5%. These findings are similar to previous research (Luan and Bauer, 2016; Sani Heidary et al., 2020; Berhanu et al., 2021), which indicated that increasing the social connections of households through their connections with institutions leads to an increase in their information about important rural issues, financial particularly resources, influences their demand for access to credit. Additionally, increasing the number of people, who can help households in critical situations such as loan repayment, leads to an increase in their demand for credit, and can even be considered as social guarantors of households for credit-paying institutions. The results of these two variables emphasize the effective social communications and interactions of households that facilitate their access to the necessary resources, particularly credit.

A 1% increase in household size increases the probability of access to microcredit by 4.5%. The studies by Akotey and Adjasi (2016) in Ghana and Berhanu *et al.* (2021) in Ethiopia revealed that larger households have sufficient labor force to participate in rural micro-businesses, which increases the need for household credit to establish businesses. In addition, larger households have greater food needs for sustainable consumption and, therefore, require more

Table 4. The results of logit model.

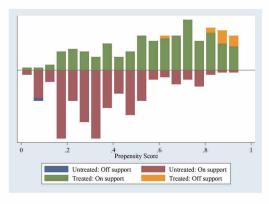
Variable		Coefficients (std. err)	Z-value	Marginal Effect
Age of household heads		-0.244	-2.07**	-0.061**
		(0.118)		
Saving		-0.339	-1.93**	-0.085**
5		(0.176)		
Distance to the lending institution		-0.636	-0.82	-0.158
8		(0.772)		
Dependency ratio		-1.326	-1.91**	-0.330**
1		(0.695)		
Awareness of adaptation strategies	Medium	-0.196	-0.81	-0.049
		(0.244)		
	High	0.521	2.16**	0.129^{**}
	C	(0.241)		
Education of household heads		0.055	2.15**	0.014^{**}
		(0.026)		
The contacts with agricultural extension		0.084	2.03**	0.021**
<u> </u>		(0.041)		
The number of people known who could be	e asked for help	0.384	2.53**	0.095^{**}
	•	(0.151)		
Household size		0.182	2.14**	0.045**
		(0.085)		
Total land size		0.205	3.59***	0.051***
		(0.057)		
Crops shock		0.049	2.31**	0.013**
•		(0.021)		
Animals hock		0.094	2.13**	0.023**
		(0.044)		
Experience of various natural shocks		0.090	0.94	0.022
•		(0.096)		
Membership in social groups		0.031	0.38	0.008
		(0.082)		
Access to information on climate change		0.488	1.90^{*}	0.120^{*}
8		(0.256)		
Access to the local market		0.311	1.20	0.077
		(0.293)		
Intercept		-3.492	-2.16**	-
-		(1.615)		
LR chi2 (17)		100.80***		
Pseudo R2		0.194		
Correctly classified (%)		76.06		
Hosmer–Lemeshow chi2 (8)		5.55		
Prob > Hosmer–Lemeshow chi2		0.236		
Number of observations (No credit)		199		
Number of observations (Credit accessed)		177		
Number of observations (All sample)		376		


^{***} Significant at P< 0.01; ** Significant at P< 0.05; * Significant at P< 0.05.


financial resources for sustainable household food consumption, which microcredit can meet.

A 1% increase in household farm size increases the probability of access to microcredit by 5.1%. This result is consistent with previous studies (Luan and Bauer, 2016; Sani Heidary *et al.*, 2020),

demonstrating that access to larger agricultural land increases the use of key inputs, and, consequently, increasing the need for capital and credit. A 1% increase of losses in the production of agricultural products and loss in livestock populations increases the probability of households' access to microcredit by 1.3 and 2.3%,



respectively. The greater the losses caused by various shocks, the more the households use microcredit as an immediate tool to increase coping ability (Luan and Bauer, 2016; Berhanu *et al.*, 2021).

The results show that the mean of bias decreased and covariates became insignificant after matching. The bias percentage of covariates after matching has been significantly reduced compared to before. (Figure 2). Visual inspection of propensity score distributions showed that the common support condition was met, a high indicating overlap between microcredit recipients and non-recipients (Figure 3). This shows that the matching of the two groups is appropriate and the PSM results are highly reliable. In Figure 3, "On support" refers to the households that were present in the compliance of the two treatments and the control groups, and "Off support" refers to the households that were not present in the compliance of the two treatments and the control groups.

Table 5 provides the effects of microcredit on the HFIAS and FCS indices using three matching algorithms (nearest neighbor, kernel, and radius). The findings demonstrate that microcredit has a negative and significant effect on HFIAS for the three matching estimators. Households receiving microcredit have lower food insecurity (9.80 - 9.99)scores than non-recipient households (12.95-13.83). Microcredit has reduced the HFIAS score by 24.3-27.8% for the recipient households compared to the

Figure 3. The distribution of Propensity Scores (PS) and common support for estimating PS.

non-recipient households. The findings indicate that microcredit has a significant positive effect on FCS for all matching algorithms. The FCS score is higher for recipient households (45.82-46.23) than non-recipient households (35.17-36.56). This means microcredit has increased the FCS score by 25.9-31.4% for recipient households compared to the non-recipient households. These results are consistent with the existing literature (Hamad and Fernald, 2012; Islam et al., 2016; Devereux, 2016; Bocher et al., 2017; Kianersi et al., 2021; Haque, 2021; Berhanu et al., 2021; Bahiru et al., 2023; Woleba et al., 2023; Kolog et al., 2023; Wongnaa et al., 2023; Boltana et al., 2023). They reveal that microcredit help to enhance food security of households through investing in income-generating activities, creating diverse income streams and safe networks, reducing vulnerability to health shocks, and improving the flow of information on household health and nutrition programs. However, some studies showed that microcredit had no significant effect on food security (Banerjee et al., 2015; Seng, 2018; Mahmud et al., 2022; Salima et al., 2023). In addition, other studies have shown that microcredit may push households into food insecurity situations by creating excessive debt and loan repayment pressure (Develtere and Huybrechts, 2005; Aromolaran, 2010; Ganle et al., 2015; Namayengo et al., 2018; Ahmed *et al.*, 2021).

Table 5. Impact of microcredit accessed on HFIAS and FCS indices.^a

					D = atatus =		Matched observations		
Outcome	Matching	Controls	Treated	ATT	Bootstrap SE	T-stat	All	Credit	No
				SE		sample	accessed	Credit	
LIELAC	Neighbor	13.538	9.848	-3.690	0.649	-5.686***	369	171	198
HFIAS	Kernel	12.954	9.797	-3.157	0.460	-6.864***	376	177	199
	Radius	13.834	9.986	-3.847	0.580	-6.635***	376	177	199
ECC	Neighbor	35.871	45.819	9.947	2.733	3.640***	369	171	198
FCS	Kernel	36.564	46.023	9.458	2.530	3.738***	376	177	199
	Radius	35.168	46.229	11.061	1.587	6.970^{***}	376	177	199

^a Bootstrap SE: Bootstrap Standard Error with 1000 times simulations. *** Significant at P< 0.01.

Table 6. Sensitivity analysis of outcome variables.

Gamma	HFIAS		FCS	
(Γ)	Significant-	Significant+	Significant-	Significant+
1	0.00	0.00	0.00	0.00
1.2	0.00	0.00	0.00	0.00
1.4	0.00	0.00	0.00	0.00
1.6	0.00	0.00	0.00	0.00
1.8	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00
2.2	0.00	0.00	0.00	0.00
2.4	0.00	0.00	0.00	0.00
2.6	0.00	0.00	0.00	0.00
2.8	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00

[&]quot; F: Log odds of unobserved differential assignment; Significant-: Lower bound significance level, Significant+: Upper bound significance level.

Sensitivity Analysis for Hidden Bias

Table 6 shows the results of checking hidden bias by sensitivity analysis. Our findings reveal that the effect of microcredit interventions on HFIAS and FCS indices does not change, and the households are allowed to differ in their odds of treatment by 200% [(3-1)×100)= 200] at Γ = 3 in terms of unobserved covariates in both groups. Therefore, it can be concluded that the results of ATT for all output variables are not sensitive to unobserved hidden bias, and the estimated effect is a pure effect of using microcredit. This finding is consistent with the results of Berhanu *et al.* (2021) and Boltana *et al.* (2023).

CONCLUSIONS

This study seeks to answer how microcredit plans lead to enhance the households' food security by developing the PSM method through the bootstrap algorithm. The findings emphasize the positive role of microcredit in reducing the HFIAS and increasing the FCS. However, a large number of target households are food insecure and do not have a good condition in terms of food consumption; because a significant number of households did not have access to or did not receive microcredit for various reasons.

The results showed that the access of households to microcredit was positively influenced by high awareness of adaptation strategies, access to climate change information. the household head's education, the number of helpers, the number of household contacts with agricultural extension institutions, household size, agricultural land size, the value of crop losses and the number of lost livestock. However, the household head's age, households' savings, and dependence ratio have a negative effect on the access of households to microcredit.

Based on these findings, this study proposes the following policy implications. First, non-governmental organizations and local social associations should be further promoted and strengthened to increase households' access to rural microcredit. In addition, they should be flexible in accepting natural guarantees, such as agricultural land household livestock, and social guarantees, such as membership in social groups, to increase the level of households' access to microcredit. Secondly, nongovernmental and governmental organizations providing microcredit should emphasize the organizing effective training programs to increase households' knowledge and skills. This leads to improved households' food security through individual development and collective participation. These organizations should target educated rural youth with suitable incentive programs. Educated youths have capacities for correctly microcredit in income-generating activities, which can provide a basis for improving food security in rural communities.

Although this study has provided several new insights about the effect of microcredit on food security, some limitations need to be considered in the future research. First, future studies can expand the subject of this study using other food security indices such as the Household Dietary Diversity Score (HDDS) (Wongnaa *et al.*, 2023; Borku *et al.*, 2024), and other methods like the Endogenous Switching Model (Salima *et al.*, 2023). Secondly, considering the limited data availability, this study uses a cross-section sample. Future research can achieve more comprehensive findings using panel data (Islam *et al.*, 2016).

REFERENCES

 Ahmed, F., Islam, A., Pakrashi, D., Rahman, T. and Siddique, A. 2021. Determinants and Dynamics of Food Insecurity during COVID-19 in Rural Bangladesh. Food Policy, 101: 102066.

- 2. Ministry of Cooperatives, Labour, and Social Welfare. 2018. *Microfinance Program with a Linkage Banking Approach in Iran*. Deputy for Entrepreneurship and Employment Development (Office of Employment Policy and Development). https://karafarini.mcls.gov.ir/fa/filepool/download/3abfe3a28bcd4f1ea4648b36ee963edd Akotey, J. O. and Adjasi, C. K. 2016. Does Microcredit Increase Household Welfare in the Absence of Micro-Insurance? *World Dev.*, 77: 380-394.
- Aromolaran, A. B. 2010. Does Increase in Women's Income Relative to Men's Income Increase Food Calorie Intake in Poor Households? Evidence from Nigeria. Agric. Econ., 41: 239–249.
- 4. Austin, P. C. and Small, D. S. 2014. The Use of Bootstrapping When Using Propensity-Score Matching without Replacement: A Simulation Study. *Stat. Med.*, **33(24)**: 4306-4319.
- Bahiru, A., Senapathy, M. and Bojago, E. 2023. Status of Household Food Security, Its Determinants, and Coping Strategies in the Humbo District, Southern Ethiopia. *J. Agric. Food Res.*, 11: 100461.
- Bakare, A. Y., Ogunleye, A. S. and Kehinde, A. D. 2023. Impacts of Microcredit Access on Climate Change Adaptation Strategies Adoption and Rice Yield in Kwara State, Nigeria. World Dev. Sustain., 2: 100047.
- Banerjee, A., Duflo, E., Glennerster, R. and Kinnan, C. 2015. The Miracle of Microfinance? Evidence from a Randomized Evaluation. Am. Econ. J. Appl. Econ., 7(1): 22-53.
- Baumann, S. M., Webb, P. and Zeller, M. 2013. Validity of Food Consumption Indicators in the Lao Context: Moving toward Cross-Cultural Standardization. Food Nutr. Bull., 34(1): 105-119.
- Becker, S. O. and Ichino, A. 2002. Estimation of Average Treatment Effects Based on Propensity Scores. Stata J., 2(4): 358-377.
- Berhanu, A., Amare, A., Gurmessa, B., Bekele, Y. and Chalchisa, T. 2021. Does Microcredit Use Help Farmers Win Battle against Food Insecurity: Evidence from Jimma Zone of Southwest Ethiopia. Agric. Food Secur., 10(1): 1-17.

- Bocher, T. F., Alemu, B. A. and Kelbore, Z. G. 2017. Does Access to Credit Improve Household Welfare? Evidence from Ethiopia Using Endogenous Regime Switching Regression. Afr. J. Econ. Manag. Stud., 8(1): 51-65.
- Boltana, A., Tafesse, A., Belay, A., Recha, J. W. and Osano, P. M. 2023. Impact of Credit on Household Food Security: The Case of Omo Microfinance Institution in Southern Ethiopia. *J. Agric. Food Res.*, 14: 100903.
- Borku, A. W., Utallo, A. U. and Tora, T. T.
 2024. The Level of Food Insecurity among Urban Households in Southern Ethiopia: A Multi-Index-Based Assessment. J. Agric. Food Res., 101019.
- Chowdhury, R. B., Moore, G. A., Weatherley, A. J. and Arora, M. 2017. Key Sustainability Challenges for the Global Phosphorus Resource, Their Implications for Global Food Security, and Options for Mitigation. J. Clean. Prod., 140: 945-963.
- Coates, J., Swindale, A. and Bilinsky, P. 2007. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide: Version 3.
- Dehbidi, N. K., Zibaei, M. and Tarazkar, M. H. 2022. The Effect of Climate Change and Energy Shocks on Food Security in Iran's Provinces. Reg. Sci. Policy Practice, 14(2): 417-438.
- 17. Develtere, P., & Huybrechts, A. 2005. The impact of microcredit on the poor in Bangladesh. *Alternatives*, **30(2)**, 165-189.
- Devereux, S. 2016. Social Protection for Enhanced Food Security in Sub-Saharan Africa. Food Policy, 60: 52-62.
- Ebrahimzadeh, E. and Paidar, A. 2019.
 Planning of Rural Economic Development and Employment Based on the Propulsion and the Chain of the Past Case Study; Abolfazl Mosque Village in Iranshahr. Geogr. Dev., 17(57): 1-30.
- Ehtesham Majd, S., Omidi Najafabadi, M., Lashgarara, F. and Mirdamadi, S. M. 2019. Gender Disparity in Food Security Status of Rural Households Based on Sustainable Livelihoods in Kermanshah County. J. Agric. Sci. Technol., 21(7): 1691-1704.
- FAO, IFAD, UNICEF, WFP and WHO.
 The State of Food Security and

- Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable. Rome, FAO.
- Ganle, J. K., Afriyie, K. and Segbefia, A. Y.
 Microcredit: Empowerment and Disempowerment of Rural Women in Ghana. World Dev., 66: 335-345.
- Ghalibaf, M. B., Gholami, M. and Ahmadi, S. A. 2023. Climate Change, Food System, and Food Security in Iran. *J. Agric. Sci. Technol.*, 25(1): 1-17.
- Gitonga, Z. M., De Groote, H., Kassie, M. and Tefera, T. 2013. Impact of Metal Silos on Households' Maize Storage, Storage Losses and Food Security: An Application of a Propensity Score Matching. Food Policy, 43: 44-55.
- Gomiero, T. 2016. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability, 8(3): 281
- Greene, W. H. 2012. Econometric Analysis.
 71e. Stern School of Business, New York University, PP. 721-723.
- Guo, S. and Fraser, M. W. 2014. Propensity Score Analysis: Statistical Methods and Applications. Vol. 11. SAGE publications.
- 28. Hamad, R. and Fernald, L. C. 2012. Microcredit Participation and Nutrition Outcomes among Women in Peru. *J. Epidemiol. Commun. Health*, **66(6)**: 1-7.
- Haque, S. 2021. Role of Microcredit in Improving the Food Security Status of the Rural Poor Women: Evidence from Bangladesh. J. Bus., 6(2): 01-14.
- Islam, A., Maitra, C., Pakrashi, D. and Smyth,
 R. 2016. Microcredit Programme
 Participation and Household Food Security in
 Rural Bangladesh. J. Agric. Econ., 67(2): 448-470.
- 31. Jones, A. D., Ngure, F. M., Pelto, G. and Young, S. L. 2013. What Are We Assessing when We Measure Food Security? A Compendium and Review of Current Metrics. *Adv. Nutr.*, **4(5)**: 481-505.
- 32. Kandel, G. P., Bavorova, M., Ullah, A. and Pradhan, P. 2024. Food Security and Sustainability through Adaptation to Climate Change: Lessons Learned from Nepal. *Int. J. Disaster Risk Reduction*, **101**: 104279.
- Kianersi, S., Jules, R., Zhang, Y., Luetke, M. and Rosenberg, M. 2021. Associations

- between Hurricane Exposure, Food Insecurity, and Microfinance; a Cross-Sectional Study in Haiti. World development, 145: 105530.
- 34. Kolog, J. D., Asem, F. E. and Mensah-Bonsu, A. 2023. The State of Food Security and Its Determinants in Ghana: An Ordered Probit Analysis of the Household Hunger Scale and Household Food Insecurity Access Scale. Sci. Afr., 19: e01579.
- 35. Li, X., Gan, C. and Hu, B. 2011. Accessibility to Microcredit by Chinese Rural Households. *J. Asian Econom.*, **22(3)**: 235-246.
- Liu, X., Shi, L.J., Engel, B. A., Sun, S.K., Zhao, X.N., Wu, P. T. and Wang, Y. B. 2020. New Challenges of Food Security in Northwest China: Water Footprint and Virtual Water Perspective. J. Clean. Prod., 245.
- Luan, D. X. and Bauer, S. 2016. Does Credit Access Affect Household Income Homogeneously across Different Groups of Credit Recipients? Evidence from Rural Vietnam. J. Rural Stud., 47: 186-203.
- 38. Mahmud, K. T., Parvez, A., Ahmed, S. S. and Rafiq, F. 2022. Microcredit and the Household Food Security of the Fish Farmers: Evidence from Rural Bangladesh. *Dev. Practice*, **32(8)**: 1091-1100.
- 39. Marincioni, F., Appiotti, F., Pusceddu, A. and Byrne, K. 2013. Enhancing Resistance and Resilience to Disasters with Microfinance: Parallels with Ecological Trophic Systems. *Int. J. Disaster Risk Reduction*, 4: 52-62.
- Namayengo, F. M., Antonides, G. and Cecchi, F. 2018. Microcredit and Food Security: Evidence from Rural Households in Uganda. J. Afr. Econ., 27(4): 457-482.
- Ojo, T. O., Baiyegunhi, L. J. S. and Salami, A. O. 2019. Impact of Credit Demand on the Productivity of Rice Farmers in South West Nigeria. *J. Econ. Behav. Stud.*, 11(1), 166-180.
- 42. Okati, M., Ahmadpour Borazjani, M. and Sarani, V. 2020. Recognizing the Factors Affecting on Food Security in Rural Areas (Case Study of Villages in Zehak Region in Sistan and Baluchestan Province). *Rural Dev. Strategies*, **7(2)**: 199-209.

- 43. Rosenbaum, P. R. 2002. Overt Bias in Observational Studies. Springer New York, PP. 71-104.
- Salima, W., Manja, L. P., Chiwaula, L. S. and Chirwa, G. C. 2023. The Impact of Credit Access on Household Food Security in Malawi. *J. Agric. Food Res.*, 11: 100490.
- 45. Salman, M., Haque, S., Hossain, M. E., Zaman, N. and Hira, F. T. Z. 2023. Pathways toward the Sustainable Improvement of Food Security: Adopting the Household Food Insecurity Access Scale in Rural Farming Households in Bangladesh. Res. Global., 7: 100172.
- 46. Sani Heidary, A., Daneshvar Kakhki, M., Shanoushi, N. and Sabouhi Sabouni, M. 2020. Analysis of the Effect of Microcredit on Rural Sustainable Development Components: Application of Propensity Score Regression Approach and Bootstrap Algorithm. *Agric. Econ.*, 14(1): 47-87.
- Schillerberg, T. and Tian, D. 2023. Changes in Crop Failures and Their Predictions with Agroclimatic Conditions: Analysis Based on Earth Observations and Machine Learning over Global Croplands. *Agric. For. Meteorol.*, 340: 109620.
- 48. Seng, K. 2018. Revisiting Microcredit's Poverty-Reducing Promise: Evidence from Cambodia. *J. Int. Dev.*, **30(4)**: 615-642.
- Statistical Center of Iran. 2016. National Population and Housing Census. Statistical Center of Iran, Tehran.
- Thanh, P. T., Saito, K. and Duong, P. B.
 Impact of Microcredit on Rural Household Welfare and Economic Growth in Vietnam. *J. Policy Model.*, 41(1): 120-139.
- Woleba, G., Tadiwos, T., Bojago, E. and Senapathy, M. 2023. Household Food Security, Determinants and Coping Strategies among Small-Scale Farmers in Kedida Gamela District, Southern Ethiopia. *J. Agric. Food Res.*, 12: 100597.
- 52. Wongnaa, C. A., Abudu, A., Abdul-Rahaman, A., Akey, E. A. and Prah, S. 2023. Input Credit Scheme, Farm Productivity and Food Security Nexus among Smallholder Rice Farmers: Evidence from North East Ghana. *Agric. Fin. Rev.*, 83(4/5): 691-719.

53. World Bank. 2008. World Development Report 2008: Agriculture for Development . World Bank.

Appendix 1. Measurement of HFIAD and HFIAP.

Index	Category		Calculation ^a		
HFIAD	Insufficient food intake	and	Number of respondents to Q5 to Q9= 1		
	physical consequences				
	Anxiety and uncertainty		Number of respondents to Q2 to Q4= 1		
v	Insufficient quality		Number of respondents to Q1= 1		
HFIAP	Severely food insecure		Number of respondents to Q5a= 3 or Q6a= 3 or Q7a= 1 or 2 or		
			3; or Q8a= 1 or 2 or 3; or Q9a= 1 or 2 or 3.		
	Moderately food insecure		Number of respondents to Q3a= 2 or 3; or Q4a= 2 or 3; or		
			Q5a=1 or 2; or Q6a=1 or 2.		
	Mildly food insecure		Number of respondents to Q1a= 2 or 3; or Q2a= 1 or 2 or 3; or		
			Q3a=1 or Q4a=1.		
	Food secure		Number of respondents to Q1a=0 or 1.		

^a Q1 to Q9 denotes occurrence questions, while Q1a to Q9a represents their frequency. Source: Coates et al. 2007.

Appendix 2. Summary of weights for each food group.

Food group	Weight
Staple foods	2
Meat and fish	4
Fruit and vegetables	1
Dairy products	4
Pulses	3
Oil and sugar	0.5

Appendix 3. Demographic background of the sampled households.

Variables	Group	Frequency	Percentage
Age of the household head	35-45	70	19
	46-55	100	27
	56-65	118	31
	65>	88	23
Education level of household	Not able to read and write	133	35
heads	primary education	84	22
	secondary education	102	27
	higher education	57	15
Sex of household head	Female	74	20
	Male	302	80
Economic activities of	Farming	144	38
households	Livestock farming	148	39
	shopkeeper	24	6
	Handicrafts	47	13
	Employee	13	3
Fields of microcredit receipts	Consumption	38	10
of households	Working capital	56	15
	Agriculture	113	30
	Livestock	169	45
Loan size of households [Million Rials (IRR)]			
Consumption	150-300	38	10
Working capital	350-500	56	15
Agriculture	450-700	113	30
Livestock	700-1000	169	45

ارزیابی اثرات اعتبارات خرد بر وضعیت امنیت غذایی خانوارهای روستایی: مطالعه تجربی از روستاهای شهرستان زهک، ایران

علیرضا ثانی حیدری، محمود دانشور کاخکی، محمود صبوحی صابونی، و حسین محمدی

چکیده

اعتبارات خرد نقش حیاتی در امنیت غذایی خانوارهای روستایی دارد. با این حال، اثرات اعتبارات خرد بر بهبود امنیت غذایی خانوارها هنوز در ایران به خوبی مورد مطالعه و درک قرار نگرفته است. لذا این پژوهش با هدف بررسی موفقیت برنامههای اعتبارات خرد در ارتقای امنیت غذایی خانوارهای روستایی شهرستان زهک با استفاده از روش تطبیق امتیاز گرایش و الگوریتم بوت استرپ انجام شده است. برای این منظور از دو شاخص امنیت غذایی شامل مقیاس دسترسی به ناامنی غذایی خانوار (HFIAS) و امتیاز مصرف غذا (FCS) استفاده میشود. نتایج نشان داد که 100 درصد خانوارها با ناامنی غذایی مواجه هستند. شیوع ناامنی غذایی برای ناامنی غذایی خفیف، متوسط و شدید به ترتیب 20، 42.5 و 37.5 درصد بود. علاوه بر این، 30 درصد خانوارها در وضعیت نامناسب مصرف مواد غذایی قرار دارند. یافتههای ما بر نقش مثبت و قابل خوجه اعتبار خرد در بهبود امنیت غذایی تاکید میکند. نتایج نشان داد اعتبار خرد امتیاز شاخص FCS توجه اعتبار خرد در بهبود امنیت غذایش داده است. بنابراین، سیاست گذاران و تصمیم گیران باید و ابین 37.35-45.18 درصد افزایش دهنده اعتبارات خرد را ترویج و تقویت کنند. همچنین ارائه سازمانهای دولتی و غیردولتی ارائه دهنده اعتبارات خرد را ترویج و تقویت کنند. همچنین ارائه میشود.

Predicting Farmers' Behavioral Intentions towards Adoption of Essential Oil Extraction Practices Using Structural Equation Modeling

Fouzia Anjum¹, Sher Muhammad^{1*}, Badar Naseem Siddiqui², Farhat Ullah Khan¹, Muhammad Yaseen³, and Muhammad Shahbaz Anjum⁴

ABSTRACT

Smallholder farmers in northern Punjab struggle to adopt sustainable practices like essential oil extraction, despite their potential to improve livelihoods. Core elements from theory of planned behavior, technology acceptance model, and innovation diffusion theory are amalgamated to develop an adoption model that is subsequently analyzed using structural equation model. The results unveil significant mediating effects involving attitudes (perceived usefulness, easiness), normative concerns (social influence), and indicating maximum variation (R2) regarding by-product preparation (0.76) and steam distillation (0.65). The model successfully accounts moderating effects of socioeconomic variables, indicating a robust association among latent variables. Hence, improving the adoption behavior among smallholders necessitates a focus on socio-psychological and socioeconomic factors.

Keywords: Aromatic growers, Decision-making, Innovation Diffusion.

INTRODUCTION

Worldwide demand for essential oils is increasing due to growing interest and commercial importance. Currently, Pakistan heavily relies on imported essential oils, with over 90% of local industry demand being met through imports. Research by Riaz *et al.*, (2021) shows imports (\$9.2 million) exceeding exports (\$3.2 million) threefold, indicating a need for local production initiatives. Favorable climatic conditions in Pakistan make it conducive for high-value essential oil production, with potential benefits for both awareness and education (Khalid *et al.*, 2020). Utilizing essential oils alongside herbal and

agro-based materials presents an eco-friendly and cost-effective approach to co-composting (Greff et al., 2021). Among many, Eucalyptus globules, the most prevalent species used for Essential Oil Extraction (EOE), possesses insect repellent properties, offering innovative applications in bio-pesticides and composting (Dhakad et al., 2018). Eucalyptus leaves, often discarded, hold potential for Essential Oil Extraction (EOE), serving domestic and industrial purposes (Barbosa et al., 2016). Steam distillation efficiently extracts oils, preserving their properties to a minimum (Ndiaye et al., 2018). Steam-distilled eucalyptus oil enriches composting and improves soil fertility. Moreover, it acts as a bio-pesticide, against garden pests (Regnault-

¹ Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University, Islamabad, Pakistan.

² Department of Agricultural Extension, Faculty of Crop and Food Sciences, PMAS-Arid Agriculture University Rawalpindi, Pakistan.

³ Department of Agricultural Extension and Rural Studies, College of Agriculture, University of Sargodha, Pakistan.

⁴ Department of Computer Sciences, Allama Iqbal Open University, Islamabad, Pakistan.

^{*} Corresponding author; e-mail: shermuhammadnioa@yahoo.com

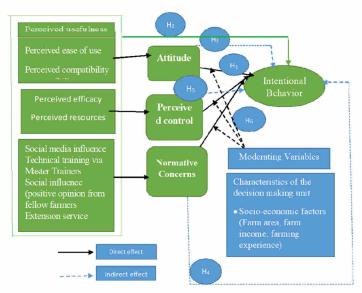
_Anjum et al.

Roger et al., 2012).

The pace of agricultural technology adoption among end users in developing nations remains sluggish, driven by economic potential, but not always profit maximization (Ikram et al., 2021). Analyzing farmers' perceptions aids decision-making (Liu et al., 2018). Socio-psychological factors, often analyzed through the Theory of Planned Behavior (TPB), shape adoption behavior (Dessart et al., 2019). Understanding communication channels improves integration and predicts agricultural technique adoption, including EOE (Mohd Israfi et al., 2022). Hence, this study aims to grasp eucalyptus growers' behavioral intentions to promote EOE practices, focusing on (i) Steam distillation, and (ii) Byproduct preparation like bio-pesticides and bio-compost.

The present study contributes significantly in several ways. Recent research has integrated TPB/Technology Acceptance Model (TAM) with Structural Equation Modeling (SEM), or combined both methodologies, to understand agricultural technology adoption and model farmers' behavior towards implementing good agricultural practices (Dong et al., 2022). However, these studies often overlook the economic potential of cultivating aromatic plants among smallholders. Firstly, this study fills this gap by employing a combination of TPB, TAM, Innovation Decision Theory (IDT), and SEM to assess aromatic crop growers' intention towards adopting EOE Secondly, besides mediation practices. analysis using Partial Least Square (PLS)-SEM, moderation analysis, incorporating socioeconomic variables, predicts relationship direction between exogenous and internal variables. Thirdly, the study also examines direct effects of latent and observed variables on behavioral intention (Bi) and, finally, evaluates predictive efficacy using PLS-SEM to enhance model robustness.

Theoretical Background


To deepen understanding of innovation adoption, Rogers' Innovation Decision Theory (IDT) elucidates the link between farmers' adoption and their knowledge-based perception of an innovation (Bakkabulindi, 2014). Despite EOE technology being perceived as new among aromatic crop growers due to limited knowledge, its global adoption and economic efficacy from aromatic plants are well-documented (Chhetri et al., 2021). An empirical model integrating TPB (Ajzen, 1991), Rogers' IDT (Miller, 2015), and TAM by Silva (2015) (Figure 1) was developed to examine the cause-and-effect relationships variables influencing adoption behavior.

While no universally accepted model exists, TPB and TAM are commonly applied technology adoption agricultural (Marangunić and Granić, 2015). This study's eucalyptus growers' model explains intention through attitude into Perceived usefulness (Pu) and ease of use (Peou) from TAM, and Perceived compatibility (Pc) from Rogers' IDT, perceived control into self-efficacy and Perceived resources (Pr), and normative concerns, further enriched with elements from Social media (Sm). influence (Si), Technical training (Tt), and Extension services (Es) to capture social and communication pressure source (Momani, 2020).

Generation of Hypotheses for the Proposed Adoption Model

H₁= Attitude, perceived control, and normative concerns have significant and positive effects on the growers' intentions toward EOE practices.

H₂= All observed variables (Pu, Peou, Pc, Tt, Si, Sm, Es, Pe, Pr) have significant and positive effects on the growers' Bi concerning EOE practices.

Figure 1. Extended proposed adoption model of the study (conceptual framework for behavioral intention of eucalyptus growers towards EOE practices). The proposed adoption model for EOE practices is a fusion of three different theories; Theory of Planned Behavior (TPB) by (Ajzen, 1991), Technology Acceptance Model (TAM) by (Davis, 1989), and Innovation Diffusion Theory by (Rogers, 2003).

H₃= Attitude facilitates the positive effects of perceived usefulness, ease of use, and compatibility on EOE adoption intentions.

H₄= Normative concerns mediate the effects of social media, technical training, and extension services on the growers' intentions towards EOE practices.

 ${
m H}_5=$ Perceived control mediates self-efficacy and resources positively on growers' intended behavior towards EOE adoption.

H₆= Socioeconomic factors moderate positive relationships between variables towards EOE adoption.

MATERIALS AND METHODS

Study Area

The universe of study was Pothwar Region of Punjab Pakistan (Northern Punjab) with longitude 73.07° E, latitude 33.6° N and elevation of 517 m from mean sea level located between the Indus and Jhelum rivers comprising four main districts, namely,

Chakwal, Attock, Jhelum and Rawalpindi (Figure 2). The study focuses on steam distillation and by-product preparation for essential oil extraction, as they are practical, widely used, and easier to adopt, offering greater benefits to farmers' livelihoods.

Selection of Sample Size and Data Collection

A list of 942 registered eucalyptus growers was obtained from the Director of Agriculture (Extension and Adaptive Research), Rawalpindi and Punjab Forestry Department. A sample size of 274 was obtained by using the table developed by Krejcie and Morgan (1970) from a homogenous finite population using simple random sampling from each district (Table 1). Initially, master trainers were used to disseminate the targeted information about EOE practices among the sampled respondents during training sessions. Further, the data were collected through personal (face-to-face) interviews of the

respondents using a structured research instrument.

Implementation of an Extended Proposed Adoption Model of Study

The proposed adoption model was employed to test the aligned hypotheses. The model was analyzed using PLS-SEM, which was further subdivided into measurement and structural model.

Structure of the Adoption Model (Research Instrument)

The variables examined were latent (unobserved) and assessed through observable statements. About 84 statements were used in the questionnaire for both EOE practices. The statements were loaded into 13 factors. The factors including Bi, At, Nc, Pct, self-efficacy, and Pr were weighted by six, four, four, three, two, and two recorded statements, respectively, while the

remaining factors were loaded by three statements under each practice.

Partial Least Squares-Structural Equation Modeling (Assumptions and Estimation)

Structural Equation Modeling (SEM), a statistical method blending factor analysis and multiple regression, analyzes cause-effect relationships among latent variables. These variables, not directly measured, are inferred from observed variable responses. However, the variance-based PLS-SEM approach was chosen to assess the adoption model for the following several reasons (Leguina, 2015):

- (i) Maximizing explained variability (R₂) in the criterion variable
- (ii) Flexibility regarding data structure normality
- (iii) Accommodating underlying variables with few items
- (iv) Favoring prediction over theory

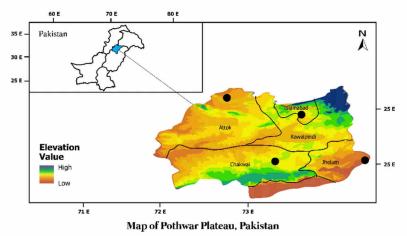


Figure 2. Map of study area.

Table 1. Estimation of sample size from each selected district of the study area.

District	Population	Percentage	Sample size (n)
Attock	349	36.81	101
Chakwal	277	29.22	80
Jhelum	210	22.15	61
Rawalpindi	112	11.81	32
Total	948	100.00	274

testing

This methodological choice allows for a comprehensive examination of relationships in the adoption model, prioritizing practical relevance and prediction accuracy. The PLS-SEM adoption model underwent evaluation in two steps using SMART-PLS. First, assessing the relationship between indicators and inferred variables (measurement model), and second, examining causal relationships among inferred variables (structure model) (Khoi and Van Tuan, 2018). Hence, Each PLS path item is a linear function with errors:

Xi =

Λjξj + ε (exogenuos latent variable ξj) (1)

Xl =

 $\Lambda k\xi l + \delta$ (endogenuos latent variable ξl) (2)

Here, ξ_j = Set of the exogenous (external) underlying variables

 ξ_i = Set of the endogenous (internal) underlying variables.

 X_j and X_l = Associated set of indicators $(X_1,..., X_j; X_1, ..., X_l)$ of the external variable ξ_j and internal variable ξ_l , respectively.

 Λ_j and Λ_l = Loading coefficient matrices $(\Lambda_1, ..., \Lambda_m)$, k= No. of indicators (items)

 ϵ and δ = Set of error terms for the items Furthermore, indicator reliability, convergent validity, and discriminant validity using Heterotrait-Monotrait (HTMT) were assessed for the measurement model. Factor loadings should surpass 0.7, Average Variance Extracted (AVE) > 0.5, Composite Reliability (CR) > 0.7 (Annex A).

Before proceeding to the structure model estimation phase, multicollinearity issues were assessed using Variation Inflation Factors (VIF) for each variable (Annex B). An iterative sequence of least square regressions was then utilized to estimate model parameters, maximizing explained variance (R^2) (Monecke and Leisch, 2012). Hence, the structure model links the internal (ξ_k) and external (ξ_j) implied variables and can be expressed as:

$$\xi_{k} = B \xi_{k} + \Gamma \xi_{i} + \zeta \tag{3}$$

Where, B = Coefficient matrix indicating the causal effects between internal implied variables, Γ = Coefficient matrix of the causal effects of the external implied variable ξ_i on the internal inferred variable ξ_k . In the structural model, an inferred endogenous variable can also act as an exogenous variable for another endogenous variable, with ζ representing the residuals or error terms. A bootstrapping process with 5,000 subsamples calculated P-values and effect sizes (f²- value) (Purwanto, 2021). Furthermore, moderating variables like farm area, farming experience, and farm income were assessed through bootstrap multi-group analysis (Tian et al., 2021). Predictive relevance Q² for the endogenous variable (Bi) was also estimated using PLS-Predict (Hossan et al., 2020).

RESULTS

Estimation Results of the Extended Proposed Adoption Model of the Study

Measurement Model

Annex-A results indicate no Heterotrait-Monotrait (HTMT) ratio surpassing the critical level of 0.9 for each variable under each EOE practice. Table 2 displays mean and factor loading results for each variable. CR values above 0.7 denote favorable internal consistency within the adoption model for each practice. The lowest CR value, 0.724, was observed for extension services in the use of a steam distillation unit for EOE. The highest CR value, 0.895, was found for the implied variable 'Bi' in byproduct preparation. Cronbach's alpha (α) for each variable was also assessed, with the highest values (0.863 and 0.798) for 'Bi' in by-product preparation and usage of a steam distillation unit, respectively. Convergent validity, measured by AVE, exceeded 0.5 for each inferred variable. Each variable can account for over 50% of the indicator variance. The latent variable "self-efficacy

Table 2. Results for the measurement model concerning first practice (Usage of steam distillation unit for essential oil extraction) and second practice (By-products preparation) in the study.^a

Variable	Statements				1st ₁	oractice	
	(Indicator)			4.77	CD	4 7 750	G 16 P 1
		Mean	αz	AFL	CR	AVE	Cramer-von Mises P value
Behavioral intentions	6	3.525	0.772	0.769	0.887	.579	0.000
Attitudes	4	3.511	0.772	0.756	0.843	0.607	0.000
Perceived controls	4	3.240	0.779	0.841	0.879	0.602	0.000
Normative concerns	4	3.324	0.794	0.782	0.859	0.640	0.000
Perceived usefulness	3	3.136	0.725	0.715	0.779	0.574	0.000
Perceived ease of use	3	3.229	0.750	0.794	0.837	0.710	0.000
Perceived compatibility	3	3.949	0.745	0.730	0.783	0.614	0.000
Perceived efficacy	2	2.934	0.777	0.701	0.776	0.550	0.000
Perceived resources	3	2.951	0.760	0.734	0.779	0.508	0.000
Social influence	3	3.128	0.787	0.755	0.799	0.512	0.000
Social media	3	3.897	0.756	0.732	0.779	0.508	0.000
Technical training	3	3.694	0.798	0.778	0.861	0.675	0.000
Extension service	3	2.656	0.795	0.796	0.724	0.513	0.000
Variable	Statements				2nd	practice	
	(Indicator)					•	
		Mean	α	AFL	CR	AVE	Cramer-von Mises P value
Behavioral intentions	6	3.725	0.863	0.770	0.895	0.695	0.000
Attitudes	4	3.446	0.756	0.756	0.843	0.673	0.000
Perceived controls	4	3.582	0.793	0.841	0.879	0.707	0.000
Normative concerns	4	3.556	0.783	0.726	0.859	0.606	0.000
Perceived usefulness	3	3.305	0.775	0.734	0.779	0.543	0.000
Perceived ease of use	3	4.066	0.708	0.845	0.837	0.632	0.000
Perceived compatibility	3	4.176	0.709	0.856	0.783	0.656	0.000
Perceived efficacy	2	4.130	0.701	0.705	0.774	0.677	0.000
Perceived resources	3	2.044	0.796	0.838	0.708	0.626	0.000
Social influence	3	3.882	0.723	0.746	0.799	0.570	0.000
Social media	3	4.024	0.794	0.803	0.779	0.545	0.000
Technical training	3	3.997	0.804	0.878	0.826	0.618	0.000
Extension service	3	2.848	0.704	0.685	0.776	0.575	0.000

under 1st practice" had the lowest AVE (0.512), confirming convergent validity. VIFs below 5 indicate no multicollinearity for these variables (Annex B).

Structure Model

Table 3 displays SEM outcomes, including path coefficients, p-values, and effect sizes (f2-value). Behavioral intention predicts approximately 79% for by-product preparation and 65% for using a steam distillation unit. Attitude, perceived control, and normative concerns are significant predictors of Pothwar Region growers' EOE adoption intention. Respondents with

positive attitudes, indicated by standardized coefficients, tended to show stronger intentions towards adopting by-product preparation (β = 0.48) and steam distillation usage (β = 0.23) compared to others. The variance (R^2) of normative concerns extracted by assigned variables was 50% for by-product development and 40% for steam distillation usage. The latent variable 'perceived controls' encompassed both personal efficacy and perceived resources, predicting 84% (by-product preparation) and 40% (steam distillation usage) of available variance. The findings supported the Hypotheses (H₁), indicating favorable At, Pc, and Nc significantly influence Pothwar growers' adoption intentions.

Table 3. PLS-SEM results for the structure model for 1st practice (usage of steam distillation unit for essential oil extraction) and 2nd practice (by-product preparatory methods) (n= 274).

Model	Variable's path	Path-	P-	F-	Path-	P-	F-
		coefficient β	value	square ^a	coefficient β	value	square a
		1st practice		_	2nd pra	ctice	
Behavior	At -> Bi	0.23	0.000	0.15	0.48	0.000	0.34
intention (Bi)							
	Nc-> Bi	0.53	0.003	0.24	0.55	0.004	0.64
	Pct-> Bi	0.17	0.000	0.17	0.21	0.000	0.15
	Perceived usefulness	0.224	0.000		0.721	0.000	
	Perceived ease of use	0.258	0.000		0.34	0.031	
	Perceived compatibility	0.097	0.015		-0.248	0.228	
	Technical training	0.256	0.000		1.709	0.006	
	Social media	0.314	0.000		0.319	0.037	
	Social influence	0.229	0.001		0.031	0.017	
	Extension service	-0.029	0.663		-0.272	0.070	
	Personal efficacy	0.177	0.009		0.168	0.048	
	Perceived resources	0.105	0.395		0.302	0.000	
Attitude (At)	Perceived usefulness-> Attitudes	0.28	0.009	0.07	0.31	0.006	0.24
	Perceived ease of use-> Attitudes	0.17	0.048	0.13	0.19	0.003	2.70
	Perceived compatibility-> Attitudes	0.22	0.008	0.15	0.20	0.035	0.11
Normative concerns (Nc)	Technical training -> Nc	0.34	0.000	0.66	0.83	0.027	2.17
` /	Social media-> Nc	0.28	0.046	0.20	0.13	0.049	0.06
	Social influence->	0.15	0.244	0.02	0.12	0.040	0.18
	Extension service-> Nc	0.04	0.695	0.03	-0.10	0.308	0.04
Perceived controls (<i>Pct</i>)	Personal efficacy-> Pct	0.14	0.071	0.12	0.17	0.009	0.02
	Perceived resources- > Pct	0.19	0.039	0.28	0.22	0.001	0.03

^a 1st practice: Bi ($R^2 = 0.65$), At ($R^2 = 0.43$), Nc ($R^2 = 0.44$), Pc ($R^2 = 0.40$). 2nd practice: Bi ($R^2 = 0.79$), At ($R^2 = 0.64$), Nc ($R^2 = 0.77$), Pc ($R^2 = 0.37$). Bi: Behavior intention; At: Attitude; Nc: Normative concern; Pct: Perceived control.

Results show perceived usefulness and ease of use positively affect farmers' intended behavior. while perceived compatibility negatively impacts intentions for the 2nd practice (-0.248). Normative concerns, including technical training, social media, and social influence, have significant direct effects on growers' intentions for both practices. However, extension services have negative indirect effects on adoption behavior. Perceived controls, like perceived resources and self-efficacy, significantly affect intentions, except for resources in the first practice (p = 0.395). These findings support H2, suggesting positive direct effects of observed variables on intentions, except for perceived resources and extension services.

Mediation Analysis

Table 3 illustrates the mediation results of inner or structure model PLS-SEM for both **EOE** practices. Attitude explains approximately 64 and 43% of available variance (R²) in respondents' attitudes towards the second and first practices, respectively. Attitudes improved by 19% and 17% for by-products and steam distillation usage, respectively. Thus, the findings support the H₃, indicating attitudes mediate the positive effect of Pu and Peou on growers' intentions for both EOE practices.

Normative concerns, reflecting peer groups and external factors, show significant

_Anjum et al.

positive effects on each EOE practice, except for extension services. Technical training had a notably higher coefficients (β = 0.83) for by-product preparation than for the other practice. However, extension services lacked a substantial effect on farmers' normative concerns regarding either practice. Thus, H₄, stating positive and significant mediating effects of technical training and social media influence on growers' intentions through normative concerns was supported for both practices, while extension services did not demonstrate a positive mediation effect on intentions.

Positive and significant indirect effects of perceived resources influence individuals' intention towards EOE practices, mediated perceived control. Self-efficacy demonstrates positive indirect effects, except for the first practice's non-significant effect. Hypothesis (H₅) proposed perceived control mediates positive effects of personal willingness and resources on intentions, except for self-efficacy's non-significant effect in the second practice. Moreover, large-sized effects were observed for Peou on At (f2= 2.70) (2nd practice), Tt on Nc (f2=0.66) (1st practice), and Nc on Bi (f2=0.64) (2nd practice).

Moderation Analysis

Table 4 illustrates results from bootstrap multi-group analysis, indicating socioeconomic variables' moderation effects for both EOE practices. Notably, normative concerns exhibit the most positive and significant path coefficient (β = 0.545) on intention towards adopting steam distillation usage under medium-level farm income (PKR, Official Currency of Pakistan) 40,001-120,000). Similarly, a positive standardized path coefficient (β = 0.389) is observed for normative concerns on intended behavior under high-level farm income (PKR 120,001 and above) in byproduct preparation. The model also predicts significant coefficients (β = 0.664) for normative concerns on growers' intentions

with medium farm area (9-24 kanal) for steam distillation usage. Additionally, ' β = 0.378' is significant for perceived control on intentions in by-product preparation with high farming experience (11-15 years). These findings support H6, indicating socioeconomic variables moderate positive and significant effects between exogenous and endogenous latent variables.

PLS-SEM Model Predict

The Q2 value for all predicted measured variable 'Bi' surpassed zero, indicating adequate predictive relevance. Errors in the PLS-SEM_MAE model were fewer than in the linear model (LM_MAE) for all Bi indicators, demonstrating high predictive power for by-product preparation (1st practice), with medium prediction power for steam distillation (1st practice) (Annex C).

DISCUSSIONS

estimation results under the measurement scale reflect significant values concerning reliability and validity as supported by Henseler et al. (2015) that the discriminant validity of the model must not exceed a value of 0.9 for all constructs. Furthermore. internal consistency, measured by CR, indicates the extent to which items effectively measure an underlying variable and should surpass a threshold of 0.7 (Mohd Dzin and Lay, 2021). Further, Cronbach's alpha presents another estimate of internal consistency similar to CR value, but less precise than CR measured under PLS-SEM (Hair et al., 2019). The results are also in line with Cheah et al. (2018) that AVE must surpass a value of 0.5 depicted convergent validity of the model. VIF values over 5 indicate significant collinearity in the formative model, requiring evaluation to avoid indicator insignificance (Wong, 2013).

Table 4. PLS-SEM results for the moderation effect for 1st practice (usage of steam distillation unit for essential oil extraction) and for 2nd practice (By-products preparation) (n= 274).

Moderating	Path	Coefficient	Coefficient β	Coefficient	P-value	P-value	P-value
Variable		β (Low)	(Medium)	β (High)	(Low)	Medium	(High)
		1st practic	e				
Income (PKR)	At -> Bi	0.197	0.189	0.339	0.060	0.045*	0.001***
	Nc -> Bi	0.467	0.545	0.485	0.000***	0.000***	0.000***
	Pc-> Bi	-0.002	0.220	0.313	0.988	0.028*	0.002***
Farm area (Kanal)	At -> Bi	0.067	0.276	0.133	0.716	0.000***	0.196
	Nc -> Bi	0.454	0.664	0.483	0.032*	0.000	0.000***
	Pc-> Bi	0.085	0.236	0.212	0.467	0.002	0.149
Farm experience	At -> Bi	0.109	0.220	0.367	0.131	0.003	0.001***
(Year)	Nc -> Bi	0.429	0.491	0.453	0.000***	0.000***	0.001***
	Pc-> Bi	0.148	0.214	0.327	0.266	0.011***	0.001***
		2nd practic	e				
Income (PKR)	At -> Bi	0.181	0.397	0.233	0.008	0.001***	0.000***
	Nc -> Bi	-0.031	0.156	0.381	0.882	0.226	0.000***
	Pc-> Bi	0.348	0.593	0.622	0.001	0.000***	0.000***
Farm area (Kanal)	At -> Bi	0.162	0.223	0.293	0.303	0.005***	0.000***
	Nc -> Bi	0.372	0.251	0.292	0.149	0.199	0.003***
	Pc-> Bi	0.240	0.359	0.440	0.297	0.016**	0.001***
Farm experience	At -> Bi	0.311	0.246	0.458	0.000	0.000***	0.001***
(Year)							
	Nc -> Bi	0.120	0.101	0.543	0.199	0.120	0.000***
	Pc-> Bi	0.125	0.367	0.378	0.678	0.035*	0.007***

^a Bi: Behavior intention; At: Attitude; Nc: Normative concern; Pct: Perceived control. Farm income (PKR) (Low = 40,000/-; Medium= 40,001–120,000/-; High= > 120,001 and above). Farm area (*kanal*) (Low= 1-8 and 9-24; Medium= 25-44; High=> 45). Farm experience (Year) (Low=< 5; Medium= 6-10; High= > 11 and above). P< 0.001 (P< 0.01; P< 0.05) is inferred by *** (**, *).

The proposed adoption model vielded positive and significant results from mediation-moderation analysis among specific variables derived from Rogers' IDT. TAM by Ajzens' TPB. The reported R² values of 0.67, 0.33, and 0.19 for PLS-SEM indicate substantial, modest, and weak explanatory power, respectively (Kock and Hadaya, 2018). Thus, the R^2 of the proposed model can be characterized as substantial and modest for all inferred variables. Additionally, Hair et al. (2019) reported that f^2 -values exceeding 0.02, 0.15, and 0.35 indicate small, medium, and large effects of the external on the internal variable, respectively, while Q² values surpassing 0 indicate adequate predictive relevance of the proposed model (Shmueli et al., 2019). Furthermore, a high R² in the PLS-SEM indicates the model effectively captures key

factors influencing respondents' decisions in adopting EOE practices. Farmers' intentions to adopt EOE practices are shaped by attitudes, perceived control, and normative concerns. These findings align with Riaz et al. (2021), who found that perceived usefulness, ease of understanding, and low complexity influence farmers' intentions toward sustainable and aromatic plant cultivation. These factors matter in both developed countries and aromatic plant farming in developing ones. The adoption of EOE interventions, such as combining eucalyptus farming and essential oil extraction, is likely influenced by technical training provided to growers through master trainers. Thus, training and social influence, including positive opinions from peers, may alleviate growers' uncertainty about the economic potential of cultivating high-value

crops (Roussy et al., 2017). Similarly, this applies to the preparation of by-products like bio-compost and bio-pesticides derived from distillation waste of aromatic plants (Lalthazuali and Mathew, 2017; Zaccardelli et al., 2021). While extension services are often considered significant in improving farmers' perceptions towards adopting innovative practices (Labarthe and Laurent, 2013). However, in this study, they showed a non-significant effect on normative about concerns eucalyptus growers' intentions towards both EOE practices. This could be due to the limited access of extension personnel to potential technology users (Gatdet, 2022), preferably during the growing season of the targeted crop, or lack of field expertise within the particular research area. Additionally, an increase in external resources is associated with an increase in perceived behavioral control, suggesting that barriers such as shortage of economic resources may impede practice adoption. These findings are consistent with those of some authors (Dessart et al., 2019; Zeweld et al., 2017) who argued that resource conditions perspectives, compatibility greatly impact technology adoption.

CONCLUSIONS

This study examines the adoption of two Essential Oil Extraction (EOE) practices distillation and by-product steam preparation—for eucalyptus. Key drivers include socio-psychological factors, attitudes and particularly normative concerns, which enhance intentions to adopt practices. Attitudes improve perceptions of usefulness and ease of use, while normative concerns influence the effects of training and social support. Perceived resources do not significantly affect adoption intentions, and socioeconomic factors such as farm size, experience, and income moderate the adoption, as confirmed by the PLS-SEM model. This study has few limitations and

recommends future research on alternative extraction methods beyond steam distillation and by-product preparation. Employing covariance-based CB-SEM and exploring similar agro-climatic regions could enhance the model, while broader sampling may improve predictions of the relationship between intention and actual adoption.

ACKNOWLEDGEMENTS

The author(s) acknowledge the statistical support of Prof. Muhammad Hanif for study model conceptualization.

REFERENCES

- 1. Ajzen, I. 1991. The Theory of Planned Behavior. *Organ. Behav. Hum. Decis. Process.*, **50(2):** 179-211.
- Bakkabulindi, F. E. K. 2014. A Call for Return to Rogers' Innovation Diffusion Theory. Mak. J. High. Educ., 6(1): 55–85-55–85.
- Barbosa, L. C. A., Filomeno, C. A. and Teixeira, R. R. 2016. Chemical Variability and Biological Activities of *Eucalyptus* Spp. Essential Oils. *Molecules*, 21(12): 1671.
- Cheah, J.-H., Sarstedt, M., Ringle, C. M., Ramayah, T. and Ting, H. 2018. Convergent Validity Assessment of Formatively Measured Constructs in PLS-SEM: On Using Single-Item versus Multi-Item Measures in Redundancy Analyses. Int. J. Cont. Hos. Mgt., 30(11): 3192-3210.
- Chhetri, V. T., Shrestha, S., Thapa, S. and Timilsina, S. 2021. Status and Role of Medicinal and Aromatic Plants (MAPs) in Nepalese Livelihood. Int. J. Environ., 10(1): 112-136.
- Davis, F. D. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 319-340.
- Dessart, F. J., Barreiro-Hurlé, J. and van Bavel, R. 2019. Behavioural Factors Affecting the Adoption of Sustainable Farming Practices: A Policy-Oriented

- Review. Europ. Rev. Agric. Econ., **46(3)**: 417-471.
- Dhakad, A. K., Pandey, V. V., Beg, S., Rawat, J. M., and Singh, A. 2018. Biological, Medicinal and Toxicological Significance of Eucalyptus Leaf Essential Oil: A Review. J. Sci. Food Agric., 98(3): 833-848.
- Dong, H., Wang, H. and Han, J. 2022. Understanding Ecological Agricultural Technology Adoption in China Using an Integrated Technology Acceptance Model—Theory of Planned Behavior Model. Front. Environ. Sci., 10: 927668.
- Gatdet, C. 2022. The Ethiopian Agricultural Extension Services: A Mixed Perspective. Cog. Food Agri., 8(1): 2132848.
- Greff, B., Lakatos, E., Szigeti, J. and Varga,
 L. 2021. Co-Composting with Herbal Wastes: Potential Effects of Essential Oil Residues on Microbial Pathogens during Composting. Crit. Rev. Environ. Sci. Technol., 51(5): 457-511.
- 12. Hair, J. F., Risher, J. J., Sarstedt, M., and Ringle, C. M. 2019. When to Use and How to Report the Results of PLS-SEM. *Europ. Buis. Rev.*, **31(1)**: 2-24.
- Henseler, J., Ringle, C. M. and Sarstedt, M. 2015. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. *J. Acad.* Mark. Sci., 43: 115-135.
- 14. Hossan, D., Aktar, A. and Zhang, Q. 2020. A Study on Partial Least Squares Structural Equation Modeling (PLS-SEM) as Emerging Tool in Action Research. LC-JSTEM, 1(4): 130-146.
- Ikram, M., Sroufe, R., Awan, U. and Abid, N. 2021. Enabling Progress in Developing Economies: A Novel Hybrid Decision-Making Model for Green Technology Planning. Sustainability, 14(1): 258.
- 16. Khalid, K. A., Ahmed, A. M. and El-Gohary, A. E. 2020. Effect of Growing Seasons on the Leaf Essential Oil Composition of Citrus Species that Are Cultivated in Egypt. J. Essent. Oil Res., 32(4): 296-307.
- 17. Khoi, B. H. and Van Tuan, N. 2018. Using SmartPLS 3.0 to Analyse Internet Service Quality in Vietnam. In: "Econometrics for Financial Applications", (Eds.): Anh, L.,

- Dong, L., Kreinovich, V. and Thach, N. ECONVN 2018, Studies in Computational Intelligence, Vol 760, Springer, Cham.
- Kock, N. and Hadaya, P. 2018. Minimum Sample Size Estimation in PLS-SEM: The Inverse Square Root and Gamma-Exponential Methods. *Inf. Sys. J.*, 28(1): 227-261.
- 19. Krejcie, R. V. and Morgan, D. W. 1970. Determining Sample Size for Research Activities. *Educ. Psychol. Meas.*, **30(3)**: 607-610.
- Labarthe, P. and Laurent, C. 2013. Privatization of Agricultural Extension Services in the EU: Towards a Lack of Sdequate Knowledge for Small-Scale Farms? Food Policy, 38: 240-252.
- 21. Lalthazuali and Mathew, N. 2017. Mosquito Repellent Activity of Volatile Oils from Selected Aromatic Plants. *Parasitol. Res.*, **116(2):** 821-825.
- 22. Leguina, A. 2015. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). *Int. J. Res. Method Educ.*, **38(2)**: 220-221.
- 23. Liu, T., Bruins, R. J., and Heberling, M. T. 2018. Factors Influencing Farmers' Adoption of Best Management Practices: A Review and Synthesis. *Sustainability*, 10(2): 432.
- Marangunić, N. and Granić, A. 2015.
 Technology Acceptance Model: A
 Literature Review from 1986 to 2013.
 Univers. Access Inf. Soc., 14: 81-95.
- Miller, R. L. 2015. Rogers' Innovation Diffusion Theory (1962, 1995). In: "Information Seeking Behavior and Technology Adoption: Theories and Trends", (Eds.): Al-Suqri, M. Al-Aufi, A. IGI Global Scientific Publishing, PP. 261-274.
- Mohd Dzin, N. H. and Lay, Y. F. 2021.
 Validity and Reliability of Adapted Self-Efficacy Scales in Malaysian Context Using PLS-SEM Approach. Educ. Sci., 11(11): 676.
- Mohd Israfi, N. A., Mohd Ali, M. I. A., Manickam, S., Sun, X., Goh, B. H., Tang, S. Y., Ismail, N., Abdull Razis, A. F., Ch'ng, S. E. and Chan, K. W. 2022. Essential Oils and Plant Extracts for

- Tropical Fruits Protection: From Farm to Table. *Front. Plant Sci.*, **13:** 999270.
- Momani, A. M. 2020. The Unified Theory of Acceptance and Use of Technology: A New Approach in Technology Acceptance. Int. J. Sociotechnology Knowl. Dev., 12(3): 79-98.
- Monecke, A. and Leisch, F. 2012. semPLS: Structural Equation Modeling Using Partial Least Squares. J. Stat. Softw., 48(3): 1–32
- Ndiaye, E. H. B., Diop, M. B., Gueye, M. T., Ndiaye, I., Diop, S. M., Fauconnier, M. -L. and Lognay, G. 2018. Characterization of Essential Oils and Hydrosols from Senegalese *Eucalyptus camaldulensis* Dehnh. *J. Essent. Oil Res.*, 30(2): 131-141.
- 31. Purwanto, A. 2021. Partial Least Squares Structural Squation Modeling (PLS-SEM) Analysis for Social and Management Research: A Literature Review. *J. Ind. Eng. Manag.*, **2(4)**: 114-123.
- Regnault-Roger, C., Vincent, C. and Arnason, J. T. 2012. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. *Annu. Rev. Entomol.*, 57: 405-424.
- 33. Riaz, U., Iqbal, S., Sohail, M., Samreen, T., Ashraf, M., Akmal, F., Siddiqui, A., Ahmad, I., Naveed, M. and Khan, N. 2021. A Comprehensive Review on Emerging Importance and Economical Potential of Medicinal and Aromatic Plants (MAPs) in Current Scenario. Pak. J. Agric. Res., 34(2): 381-392.
- 34. Rogers, E. 2003. *Diffusion of Innovations*. Fifth Edition. Free Press, New York.
- 35. Roussy, C., Ridier, A. and Chaib, K. 2017. Farmers' Innovation Adoption Behaviour:

- Role of Perceptions and Preferences. *Int. J. Agric. Resour. Gov. Ecol.*, **13(2):** 138-161.
- Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. -H., Ting, H., Vaithilingam, S. and Ringle, C. M. 2019. Predictive Model Assessment in PLS-SEM: Guidelines for Using PLSpredict. Euro. J. Mark., 53(11): 2322-2347.
- 37. Silva, P. 2015. Davis' Technology Acceptance Model (TAM) (1989). In: "Information Seeking Behavior and Technology Adoption: **Theories** and Trends", (Eds.): Al-Suqri, M. and Al-Aufi, A. IGI Global Scientific Publishing, PP. 205-219.
- 38. Tian, H., Iqbal, S., Anwar, F., Akhtar, S., Khan, M. A. S. and Wang, W. 2021. Network Embeddedness and Innovation Performance: A Mediation Moderation Analysis Using PLS-SEM. Bus. Process Manag. J., 27(5): 1590-1609.
- 39. Wong, K. K. -K. 2013. Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. *Mark. Bull.*, **24(1)**: 1-32.
- 40. Zaccardelli, M., Roscigno, G., Pane, C., Celano, G., Di Matteo, M., Mainente, M., Vuotto, A., Mencherini, T., Esposito, T. and Vitti, A. 2021. Essential Oils and Quality Composts Sourced by Recycling Vegetable Residues from the Aromatic Plant Supply Chain. Ind. Crops Prod., 162: 1-8.
- 41. Zeweld, W., Van Huylenbroeck, G., Tesfay, G. and Speelman, S. 2017. Smallholder Farmers' Behavioural Intentions towards Sustainable Agricultural Practices. *J. Environ. Manag.*, **187:** 71-81.

پیش بینی نیت های رفتاری کشاورزان نسبت به پذیرش شیوههای استخراج اسانس با استفاده از مدل سازی معادلات ساختاری

فوزیه انجوم، شیر محمد، بدر نسیم صدیقی، فرهت اله خان، محمد یاسین، و محمد شهباز انجوم

چکیده

کشاورزان خرده پا در شمال پنجاب، با وجود استعداد بالای این روش ها برای بهبود معیشت، در اتخاذ شیوه های پایدار مانند استخراج روغنهای ضروری با مشکل مواجه هستند. عناصر اصلی نظریه رفتار برنامه ریزی شده، مدل پذیرش فناوری و نظریه اتشار نوآوری برای توسعه یک مدل پذیرش که متعاقباً با استفاده از مدل معادلات ساختاری تجزیه و تحلیل می شود، ادغام شده اند. نتایج آزمون، اثرات واسطه ای قابل توجهی را شامل نگرشها (سودمندی ادراکشده، سهولت)، نگرانی های هنجاری (نفوذ اجتماعی) و نشان دادن حداکثر تغییر (R²) در مورد آماده سازی محصول جانبی (۷۰۷۰) و تقطیر با بخار (۷۰۵۰) آشکار کرد. این مدل با موفقیت اثرات تعدیل کننده متغیرهای اجتماعی –اقتصادی را در نظر می گیرد و نشاندهنده ارتباط قوی بین متغیرهای پنهان است. از این رو، بهبود رفتار پذیرش در بین کشاورزان خرده پا مستلزم تمرکز بر عوامل اجتماعی –روانشناختی و اجتماعی –اقتصادی است.

Strategies for Enhancing Water Security in Iran's Agricultural Sector under Climate Change

Majid Gholami¹, Bahareh Heidary¹*, Maryam Afkhami¹, and Mohammad Ali Kiani²

ABSTRACT

The issue of climate change and its associated water security challenges has become a growing concern for Iran, particularly in its agricultural sector. Increasing population, rising demand for agricultural products, and the need for food security exacerbate these challenges. This study highlights the risks posed by reduced precipitation, rising temperatures, and inefficient water management practices, including heavy reliance on groundwater and outdated irrigation systems. It emphasizes the urgent need for modern irrigation technologies, such as water recycling (NEWater), and robust governance reforms to improve water use efficiency, analyzed through the HES framework. The study concludes that adopting a comprehensive, long-term strategy, incorporating technological innovations, localized water management practices, and enhanced governance can mitigate the impacts of climate change and ensure the sustainable use of water resources in Iran's agricultural sector.

Keywords: Agriculture, Climate change, HES analysis, Iran, NEWater, Water security.

INTRODUCTION

It is undeniable that climate change and water security are fundamental global challenges for sustainable development and human security. Water is essential for life and is a crucial aspect of the goals and challenges of sustainable development. Moreover, climate change can exacerbate water tensions and lead to a scarcity crisis, provoking both positive and negative shifts globally (Zhou et al., 2021). Scholars, including Patrick (2022), have documented the impact of these twin challenges on human security and development. In Iran, these challenges are further intensified by multiple vulnerabilities, such as population growth, poverty, governance deficiencies, and the effects of economic sanctions Habibpour, 2017; (Farzanegan and Pourezzat et al., 2018; Shahriyari et al., 2018; Abdoli, 2020). Similarly, Biswas and Tortajada's (2022) study on the estimated

economic losses caused by climate-related disasters shows that economic losses as a percentage of GDP are significantly higher for low-income countries compared to high-income. This disparity may exacerbate inequality both between rich and poor nations and within low- and middle-income countries (Biswas and Tortajada, 2022). Reports from Iran indicate that a 1% increase in the temperature across the country's provinces could lead to a 0.12% decrease in GDP growth, contributing to a climate-induced reduction in Iran's overall economic growth (Salehi Komroudi and Abounoori, 2019).

The escalating population growth in Iran presents significant challenges, particularly in meeting the increasing demand for essential resources such as food, water, and energy. With the population projected to reach 200 million by 2050, the strain on existing resources will intensify, further complicating efforts to tackle climate

¹ Faculty of Governance, University of Tehran, Tehran, Islamic Republic of Iran.

² Faculty of Geography, University of Tehran, Tehran, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: bahareh_heidary@ut.ac.ir

Gholami et al.

change. As the population grows, pressure on agricultural systems to produce more food increases, leading to higher water consumption and energy use. In the context of climate change, this demand becomes even more critical, as rising temperatures and decreasing precipitation threaten the availability of these vital resources. Moreover, the relationship between climate and agriculture is inherently bidirectional. Human activities, particularly intensive agricultural practices, contribute greenhouse gas emissions, accelerating climate change. In turn, these climatic shifts exacerbate agricultural vulnerabilities by increasing water requirements, reducing crop yields, and diminishing overall productivity. This reciprocal relationship highlights the need for sustainable solutions that address both climate change mitigation and adaptation in the agricultural sector.

The growing emphasis on sustainable pathways toward improving water security led Grey and Sadoff (2007) to define water security as "the availability of an acceptable quantity and quality of water that is essential to health, livelihoods, ecosystems, and production, and at the same time the extent of the risks that water poses to people, the environment, and the economy". This definition underscores that water is not only vital for human survival but also serves as the economic foundation for millions of enterprises, farms, power plants, and industries, all of which rely on dependable water quality and availability (Gunda et al., 2019).

In this regard, some researchers argue that the scope of social challenges in achieving and maintaining sustainable water security is influenced by several factors, including the followings (Grey and Sadoff, 2007):

- 1. The hydrological environment, which is a natural heritage;
- The socio-economic environment, reflecting the economic structure and behavior of its actors, as well as the natural, cultural, and political heritage;

3. Future environmental changes, notably climate change.

Consequently, addressing water security concerns requires not only policymaking, planning, comprehensive technological innovations, and sectoral collaboration but also consideration of their profound impacts on both natural and social environments. Even if complete water security cannot be fully achieved, policy instruments should be expanded to enhance water security. These tools may include governance strategies, institutional reforms. market-based approaches, adaptive capacity-building, and information exchange (World Bank, 2015; OECD, 2013; United Nations University, 2013).

Given the interconnectedness of these vulnerabilities and the dynamic nature of the challenges Iran faces, managing these concerns becomes increasingly complex. By consuming natural resources, we generate more greenhouse gases, which contribute to global warming and further climate change through various pathways. These issues increase the range of secondary problems that can seriously affect food production, energy needs, usage patterns, and water management.

This has often been a recurring issue, where solutions to one problem can create significant challenges in other areas. As such, it is essential to ensure that solutions deemed effective for addressing one major problem do not create issues in other contexts. Instead of focusing solely on isolated problems, it is crucial to develop solutions that consider and evaluate the interconnected challenges.

This research fills a significant gap in the literature by exploring the interplay between climate change and water security in Iran's agricultural sector—a topic that has received limited scholarly attention. While existing studies often address climate change or water security separately, this research uniquely examines their combined effects within the context of Iran, focusing on the sector-specific challenges of agriculture. It

identifies the lack of localized strategies tailored to Iran's unique climatic, socioeconomic, and governance realities as a key research gap (Mansouri Daneshvar *et al.*, 2019; Mirzaei *et al.*, 2019).

Additionally, the study highlights the underexplored potential of integrating recycled water (NEWater) (highly treated reclaimed wastewater through microfiltration, and reverse osmosis ultraviolet radiation by brand name of technologies NEWater) into Iran's practices, agricultural drawing on international examples such as those implemented in Singapore and Namibia (Tortajada and van Rensburg, 2019). By doing so, it bridges the gap between global best practices and local applicability. Furthermore, the research incorporates socio-economic and policy dimensions, addressing gaps in the governance and planning frameworks that currently hinder optimal water resource management in Iran (Jamali Jaghdani and Kvartiuk, 2021). This comprehensive approach positions the study as a critical contribution to the discourse on sustainable water management in arid and semi-arid regions.

Climate change has had significant impacts on Iran, manifested in rising temperatures, altered precipitation patterns, increased frequency of droughts, sudden floods, and intensified dust storms. Over the past three decades, the average temperature in Iran has increased by approximately 1°C per decade, with projections indicating a further rise of 2.6°C by the end of the century. This steady increase in temperature has accelerated evaporation rates, exacerbating water shortages nationwide.

Precipitation patterns have also undergone significant shifts. Around 67% of climate stations in Iran report decreasing annual rainfall, with regions in the northern and northwestern parts of the country experiencing declines of up to 15% in yearly precipitation. Conversely, short-term, intense rainfall events have increased in arid and semi-arid regions, leading to flash floods. Recent data reveals that 50% of

monitored stations have recorded an increase in 24-hour maximum precipitation, causing devastating floods that affect urban infrastructure and agricultural productivity (Salehi *et al.*, 2020).

Droughts have become more frequent and prolonged, impacting over 90% of the country to varying degrees. Between 2001 2022, Iran and experienced unprecedented reduction in groundwater reserves, losing approximately 130 billion cubic meters, primarily due to unsustainable agricultural practices. This decline has placed additional strain on food security and rural livelihoods (Barati et al., 2023). These reductions in precipitation, groundwater, and renewable resources underscore the urgent need for targeted climate adaptation strategies. Addressing these challenges will require a multidimensional approach that integrates advanced water management practices. effective governance. community-level interventions.

This article explores the challenges of climate change and water security in Iran's agricultural sector, aiming to identify optimal strategies for managing water consumption in the face of escalating climate change and water insecurity. As climate change is expected to result in rainfall decreased and increased years, temperatures in the coming implementing effective water management strategies in agriculture. To achieve this, the article first introduces the concept of water security, followed by an examination of its implications within the context of climate change in Iran. It then highlights the significance and extent of water consumption in Iran's agricultural sector. Finally, the article discusses key strategies for enhancing water resource management in the country.

MATERIALS AND METHODS

This research adopts a comprehensive and innovative methodology to address the challenges of water security and climate

Gholami et al.

change within Iran's agricultural sector. A qualitative approach is utilized, combining systematic review, discourse analysis, scenario modeling, and stakeholder analysis to provide a multidimensional perspective.

During the data collection phase, both primary and secondary data are gathered from various sources. A systematic review of academic articles and reports is conducted to understand the relationship between Human-Environment Systems (HES) and water security in the context of climate change. In total, 68 articles were reviewed and analyzed to understand the interplay between HES and water security in the context of climate change, with 22 of these specifically exploring how human activities, such as agricultural practices, groundwater extraction, and governance frameworks, affect environmental feedback loops and the sustainability of water resources. The review also emphasizes the role of advanced irrigation technologies, governance reforms, and climate-resilient agricultural practices in improving water security under changing climatic conditions. By synthesizing these perspectives, the study establishes the HES framework as a conceptual foundation for exploring adaptive, resilient, and contextspecific water resource management semi-structured strategies. Additionally, interviews were conducted with experts in agriculture, climate change, and water policy to gather specialized insights and indigenous knowledge. Quantitative and statistical data—including temperature fluctuations, precipitation patterns, and agricultural water consumption—were sourced from national and international organizations, providing a solid empirical foundation for the study.

In the analysis phase, discourse analysis was applied to policy documents, academic literature, and media reports, revealing patterns, contradictions, and thematic trends related to water security and agriculture in Iran. Scenario modeling was employed to simulate the impacts of climate change on water productivity and agricultural practices, with projections for temperature increases and reduced precipitation. Moreover,

stakeholder network analysis examined the interactions and influence of key actors, such as government agencies, farmers, and the private sector, to understand their roles in water management.

The final stage of the research focuses on the development of practical and sustainable solutions. A policy framework is proposed to optimize water resource management in agriculture, emphasizing the adoption of advanced technologies, modern irrigation systems, and water recycling methods such as NEWater. These solutions are validated through expert consultations and feedback from key stakeholders. To enhance resilience, adaptive decision-making tools are developed to assist policymakers in responding to rapidly changing climatic conditions.

This research is innovative in several ways. First, it integrates multiple analytical methods to offer a holistic understanding of the challenges. Secondly, it bridges global practices, such as **NEWater** technologies, with localized solutions tailored to Iran's specific context. Thirdly, it adopts a participatory approach incorporating the perspectives and interactions of various stakeholders. By addressing current challenges and proposing forward-looking strategies, this study makes a significant contribution to the discourse on sustainable water management in arid and semi-arid regions.

A scoping review was seen as a method for synthesizing evidence-based research, focusing on identifying research priorities and gaps to inform policy reviews and future studies (Hosea and Khalema, 2020). This approach allows complex issues or underexamined topics to be treated as specific projects (Gutierrez-Bucheli et al., 2022). The scoping review led to the compilation of grey literature, studies, and available online reviews on "climate change," "water security," and "Iranian agriculture," sourced from Scopus and other scholarly search engines. Using these keywords, the search revealed 460,847 articles related to climate change, of which 120,165 discussed both climate change and water. Of these, only 5,252 articles addressed the intersection of water security and climate change. When focusing specifically on Iran, just 68 articles covered both climate change and water security in the Iranian context. Furthermore, 24 of these articles incorporated an agricultural dimension in their discussion of climate change and water security in Iran (See https://www-scopus-com). A purposive sampling technique was employed to ensure the inclusion of high-quality, contextually relevant studies. Articles were selected based on their geographical focus on Iran, methodological rigor, and relevance to the themes of climate change, water security, and agricultural practices. Additionally, local studies and reports were incorporated to capture region-specific insights and challenges.

RESULTS

Climate Change in Iran

Temperature and precipitation are two of the most critical climatic parameters influencing food production in Iran. Among countries in the west Asia, Iran is projected to experience a 2.6°C rise in mean temperatures and a 35% decline in precipitation over the coming decades (Mansouri Daneshvar et al., 2019). Evidence shows that Iran, like many other countries, has witnessed rapid warming in recent decades. Using meteorological data from fifteen ground stations across Iran over a 63period (1951-2013),Alizadeh-Choobari and Najafi (2017) examined minimum, maximum, and daily near-surface air temperatures. Their findings indicated that annual minimum, maximum, and average near-surface air temperatures have all increased in most regions of Iran. Thus, it can be concluded that Iran, like most countries, has been warming rapidly over the past few decades. In particular, temperatures in many regions of Iran began to show a significant shift in the 1980s or 1990s, with temperatures average rising approximately 1.2°C after these turning points (Alizadeh-Choobari and Najafi, 2017).

As a result of this warming, Iran has experienced a downward trend in annual precipitation. The decrease in precipitation, coupled with rising temperatures, suggests

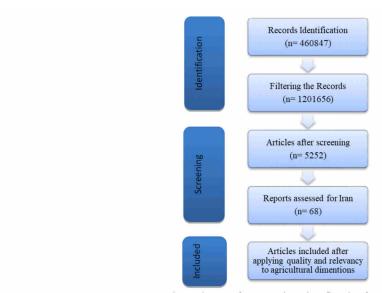


Figure 1. Preferred Reporting Items for Systematic Reviews flow chart for the systematic literature review.

Gholami et al.

that Iran has become drier and more vulnerable to droughts in recent decades (Alizadeh-Choobari and Najafi, 2017). Additionally, Bazrkar *et al.* (2015) predicted an increase in monthly temperatures for Iran in the coming years, based on the IPCC's SRES scenarios.

When considering precipitation, several critical parameters influence food production, such as the quantity and variability of rainfall. In Iran, annual precipitation is declining at 67% of climate stations, while 50% of the stations are experiencing an increase in the 24-hour maximum precipitation (Salehi et al., 2020; Bazrkar et al., 2015). The decline in annual rainfall is most prominent in northern and northwestern regions, while the increase in maximum 24-hour rainfall is observed mainly in arid and semi-arid areas. Although regional variations in annual precipitation are substantial, they are insufficient to compensate for the increasing 24-hour rainfall events. These changing precipitation patterns began in the 1970s across most climate stations, signaling the initial stages of climate change in Iran.

The decreasing annual precipitation could eventually lead to significant changes in Iran's water supply, particularly increasing demand for agricultural and urban water in arid and semi-arid regions. Conversely, the increasing intensity of 24-hour maximum rainfall poses a risk of accelerating soil degradation, which could contribute to desertification in these already vulnerable areas.

Recent studies highlight the growing prevalence of rainfall variability and climate change in Iran, which has resulted in more frequent floods and droughts, the two most significant climate-related challenges affecting food production (Vaghefi *et al.*, 2019). Abeysekera *et al.* (2015) observed substantial increases in rainfall variability in the dry zones during both cultivation seasons. These changes led to fluctuations in moisture conditions during the reproductive stage of crops, impacting both the quantity and quality of crop yields. A recent study

also showed an increase in extreme rainfall during the cropping season, which can result in excessive humidity during critical stages of crop development, ultimately affecting yield quality and quantity (Abeysekera *et al.*, 2015).

Extreme precipitation events have become critical factors in managing erosion and flood risks. Maleksaeidi et al. (2021) note that, over the past years (2013–2017), extreme weather events with varying impacts on crop production have become more frequent. Rice, a staple crop that accounts for 15% of Iran's agricultural production, has been particularly affected. A comparison between agricultural production data from 2011-2012 and 2018-2019 reveals a troubling trend: agricultural production in Iran has stagnated, and the agricultural sector's share of the GDP is expected to decrease significantly. The studies conducted in western Iran further indicate water scarcity and low productivity, with environmental and climate-related disasters identified as the major concerns of participants—two of which are directly linked to climate change (Maleksaeidi et al., 2021).

According to Iran Meteorological Organization, the average surface temperature in Iran has risen by 1 to 1.5°C over the past 30 years, with an average increase of approximately 0.05°C per year. Each 1°C increase in temperature results in a 5-7% rise in evapotranspiration. Iran currently has around 106 billion m³ of renewable water, with 75% lost to evapotranspiration, 16% as runoff, and 8% percolating into aguifers. However, only 30% of this renewable water is accessible, amounting to around 31 b.m3. Over the next 50 years, annual precipitation is projected to decline from approximately 357 to 218 b m³. Groundwater and renewable water resources are expected to decrease significantly, from 45.7 and 106 b m³, respectively, to 8.64 and 37.9 b m³. This disparity between the projected 38.9% decline in precipitation and the 81 and 64% reductions in groundwater and renewable resources indicates a future intensification of water scarcity (Barati *et al.*, 2023; Cline, 2007; Mansouri Daneshvar *et al.*, 2019; Babaeian *et al.*, 2015). Figure 2 illustrates the predicted climate change scenarios.

The implications of this decline in precipitation, coupled with rising temperatures, cannot be overstated. Water insecurity is becoming increasingly probable (Patrick, 2021). Consequently, the effects of climate change on food production and agricultural sector at large are emerging as critical policy and security issues.

Water Security in Iran

Water security is defined in various ways across cultural, academic, and practical contexts. At the Second World Water Forum in March 2000, held in The Hague, water characterized security was as the enhancement and protection of freshwater and coastal ecosystems, promoting sustainable development and political stability. It also involves ensuring safe and affordable water for all and protecting vulnerable populations from water-related

hazards.

The Centre for Water Security defines water security as the ability of communities to maintain access to sufficient, quality water for human and ecosystem health, while efficiently protecting lives and property from water hazards (Centre for Water Security, 2014). Similarly, the UN (United Nations, 2013) emphasizes the importance of water security in ensuring sustainable livelihoods, promoting sociodevelopment, economic preserving ecosystems, and ensuring stability. The UN's definition focuses on adequate water to sustain livelihoods while safeguarding against pollution and waterrelated disasters.

Despite these varying definitions, they all aim to ensure access to safe and quality water for both social and economic needs. However, achieving consensus on water security at the transnational level remains challenging due to the lack of authoritative international legal frameworks and competing national interests. The diverse uses of water—along with the significance of local context and cultural perspectives—

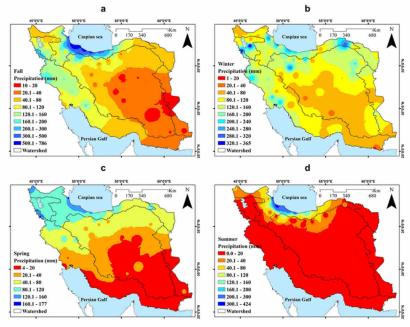


Figure 2. Long-term (2020 - 2050) mean precipitation in Iran (Behzadi et al., 2022).

Gholami et al.

further complicate this understanding. Consequently, a comprehensive approach to defining and achieving water security is essential.

The Middle East, situated in an arid and semi-arid region, faces significant water security challenges exacerbated by the effects of climate change (Sowers, Vengosh and Weinthal, 2011; Lelieveld et al., 2012; Osman et al., 2017; Mansouri Daneshvar et al., 2019; Nazemi et al., 2020). Researchers have linked drought-induced water scarcity to political unrest and social instability, particularly in Syria (Kelley et al., 2015; Almer et al., 2017), as well as in Afghanistan and Iran (Dehgan et al., 2014). Also, researchers determined the water security indicators and the situation of water security in Iran and their main watersheds (Zakeri et al., 2022). Several studies have examined the complex interplay between water scarcity, drought, and conflict in the region, highlighting the potential for water shortages to escalate tensions and trigger conflicts (Gleick, 2014; Michel, 2020; Czulda, 2022).

Iran faces severe water shortages and significant climate change impacts, which are further exacerbated by challenges in water management and increasing consumption (Danaei et al., 2019; Mirzaei et al., 2019; Gürsoy and Jacques, 2014). Poor management practices, including excessive groundwater extraction, dam overflows, and inadequate wastewater treatment have brought Iran closer to the brink of "water bankruptcy" (Mirzaei et al., 2019). These challenges threaten national security, as rising water stress may heighten the potential for conflicts (Farinosi et al., 2018).

Iran's agricultural self-sufficiency projects, initiated as a response to economic sanctions, present a dilemma for water security. While these projects are essential for ensuring food independence, they place significant strain on the country's renewable water resources due to excessive consumption driven by heavily subsidized water use (Jamali Jaghdani and Kvartiuk, 2021). Policymakers must find a balance

between achieving agricultural independence and maintaining sustainable water use. This balance will require reforms that promote advanced agricultural technologies, reduce water consumption, and optimize crop production.

Historically, water in Iran has been used for agriculture, industry, and domestic purposes. Biswas and Tortajada (2022) argue that ensuring water security requires addressing the long-term needs of all these sectors. This article reviews the historical context of water consumption in Iran, focusing particularly on agricultural use and the role of climate change in shaping water security challenges.

Water security is a multifaceted concept, encompassing a variety of indicators that measure the availability, quality, efficiency, and sustainability of water resources. This section explores the key water security indicators, their calculation methodologies, and their implications for water management in Iran, as well as providing comparative insights from both developing and developed countries.

Key Indicators and Their Methodologies

Per Capita Water Availability

This indicator measures the total renewable freshwater resources divided by the population. In Iran, per capita water availability has decreased from 7,000 m³ in 1956 to less than 1,400 m³ in recent years, crossing the water stress threshold of 1,700 m³ per capita (UNESCO, 2021). This sharp decline is attributed to rapid population growth and overexploitation of water resources.

Agricultural Water Use Efficiency

Defined as the ratio of water effectively used by crops to the total water applied, this indicator highlights irrigation inefficiencies. In Iran, irrigation efficiency averages 35%, significantly lower than in the developed countries such as Australia and the United States, where efficiencies range between 70–90% due to the adoption of modern technologies like drip and precision irrigation (Mirzaei *et al.*, 2019).

Groundwater Depletion Rates

Groundwater resources are crucial for Iran, accounting for over 50% of its agricultural water supply. Between 2001 and 2021, Iran lost approximately 130 B.m³ of groundwater due to unsustainable extraction (Nazari *et al.*, 2020). By comparison, developed countries have implemented strict regulations and monitoring systems to control groundwater usage, reducing depletion rates significantly.

Water Recycling and Reuse

This indicator reflects the percentage of wastewater treated and reused for agricultural, industrial. or domestic purposes. Iran recycles less than 10% of its whereas countries wastewater, Singapore have achieved recycling rates of over 30% through technologies like NEWater, ensuring a sustainable water supply (Tortajada and van Rensburg, 2019). Developing countries like Iran significant challenges in achieving water security compared to developed nations. The key differences lie in the followings:

- Technological Integration: Developed countries widely adopt advanced technologies such precision irrigation, desalination, and water recycling. In contrast, developing countries struggle with limited financial resources and access to such innovations.
- Policy and Governance: Developed nations have established robust governance frameworks to regulate

- water use and enforce sustainability practices, whereas developing countries often face fragmented policies and weak enforcement mechanisms.
- Climate Resilience: Developed countries have invested in adaptive measures to combat climate change impacts, while developing nations like Iran are more vulnerable due to inadequate infrastructure and limited financial support.

These comparisons underscore the need for tailored approaches in addressing water security. For Iran, improving irrigation efficiency and implementing wastewater recycling programs can bridge the gap, while effective governance reforms can create an enabling environment for sustainable water management.

Water Consumption in Iran's Agricultural Sector

Globally, water consumption in Iran's agricultural sector is among the highest, accounting for over 90% of the country's freshwater resources (Nazari et al., 2018). Rural households are heavily dependent on agriculture. which remains traditional and is supported by government subsidies for inexpensive water. Despite agriculture contributing only about 10% of Iran's GDP, it remains the dominant user of water, far exceeding the global average for renewable water resources. However, Iran's annual rainfall is less than one-third of the global average, resulting in unsustainable groundwater extraction across all provinces (Golian et al., 2021).

This growing groundwater depletion, often referred to as a sign of "water bankruptcy," poses a significant threat to Iran's long-term food security (Mirzaei *et al.*, 2019). Groundwater storage has dramatically declined, with some regions losing up to –4,400 Mm³ between 2002 and 2017 (Safdari *et al.*, 2022). The situation is

exacerbated by increased agricultural water use, which reached 103 B.m³ in 2021, far surpassing the national water consumption estimate of 88.5 B.m³ (Yousefi *et al.*, 2021).

Although the agricultural sector's share of total water consumption has been gradually decreasing, the absolute demand continues to rise. This trend, which began around 2013, is evident in Figure 3, which shows that despite attempts to curb overall consumption, agricultural water demand remains on an upward trajectory. With 90% of Iran's freshwater allocated to agriculture and an irrigation efficiency of only 35%, Iran lags behind developed countries, where irrigation systems typically achieve efficiencies between 70 and 90%. This inefficiency is a major challenge for Iran, especially when compared to international standards (Nazari et al., 2018; FAO, 2016). Currently, only 2.4 M.ha of Iran's total 16.5 M.ha of agricultural land benefit from modern irrigation systems.

The inefficiency of Iran's irrigation practices underscores the urgent need for modernization in agricultural water management. Critics, including Mirchi *et al.* (2010), and Islam and Madani (2017) point to significant failures in Iran's water management systems, which lack comprehensive planning that accounts for the ecological context of water use. Improved water management practices could allow Iran

to achieve similar agricultural outputs with far less water consumption. Without substantial improvements, Iran faces a future where water scarcity—exacerbated by climate change and poor management—could severely affect its agricultural productivity and overall socioeconomic stability.

NEWater, Continuous Return of Water to the Recycling Cycle

Technological advances illustrate that optimal water management can effectively mitigate water scarcity by recycling this vital resource (Tortajada and van Rensburg, 2019). Through efficient collection. treatment, and reuse of wastewater, treated water can be cycled back into consumption, including drinking water, without limitations on quality or quantity. NEWater refers to high-grade reclaimed water produced through advanced purification processes, including microfiltration, reverse osmosis, and ultraviolet disinfection. This technology, pioneered in Singapore, recycles wastewater into potable water, significantly reducing dependency traditional on freshwater sources. In the context of this study, NEWater serves as a potential model for addressing water scarcity in Iran through wastewater recycling. Successful examples

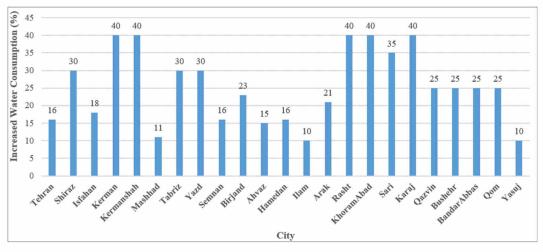


Figure 3. Increased water consumption in Iran in different states (Iran's Energy Balance, 2020).

of this practice exist worldwide, one notable case being Windhoek, Namibia, where innovative management of domestic wastewater has resolved long-standing drinking water issues over the past 50 years. Despite Namibia's arid conditions, its citizens have reported no health problems from using recycled drinking water (Tortajada and van Rensburg, 2020).

While Namibia may not be well-known in Iran, its leadership in recycled water use offers valuable lessons. Singapore is another exemplary case, with over 30% of its water demand met through recycled sources. Countries like Japan, Germany, and US (California) have also adopted similar strategies (Voulvoulis, 2018; EPA, 2017). Despite these successes, public acceptance of recycled water, especially NEWater, which is perceived as superior to regular tap water, remains a challenge due to psychological barriers (Bai et al., 2020; Tortajada and Buurman, 2017). This reluctance has generated significant opposition, ultimately causing the U.S. government to halt major recycled water initiatives (Hartley, 2006).

In Iran, the total municipal wastewater generated is 6.5 b m³ annually, with only 42% treated and recycled, raising

environmental and public health concerns. The conventional activated sludge process dominates this treatment, and operational costs average \$0.20 per cubic meter (FAO, 2017). With total water withdrawal in Iran estimated at 93.3 billion cubic meters per year, treating wastewater could fulfill 6% of the nation's water needs.

Reducing water consumption positively impacts the environment by lowering energy use and greenhouse gas emissions, which is particularly crucial in the context of climate change. While it is challenging to quantify the precise effects of a 6% reduction in water usage, it is evident that this strategy is vital for ensuring sustainable water supplies and mitigating climate impacts in Iran.

Importance of Human-Environmental System in Increasing Water Security against Climate Change

Human-Environmental Systems (HES) are complex, paired systems that require specialized methods and interdisciplinary approaches to understand and manage. Human-environmental interactions represent the difference between harmful and beneficial interactions (Pahl-Wostl, 2015). Figure 4 shows the HES framework for water security. This framework and its relevant principles are designed to facilitate

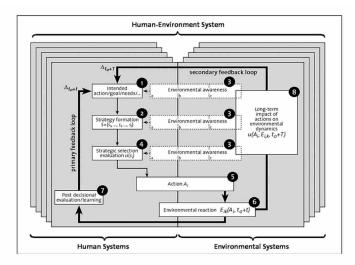


Figure 4. HES framework of water security.

Gholami et al.

research on and address complex humanenvironmental issues. Typically, in the early stages of tackling a complex environmental problem, the issue often appears unstructured and cannot always be clearly defined. The principles identified in the HES framework (denoted by numbers) serve as key elements for understanding and transforming the water security issue.

The framework adopts a hierarchical view of the human system. At each hierarchical level, different regulatory mechanisms are in place concerning the environmental system. Understanding these mechanisms helps identify intervening regulatory mechanisms. The framework also focuses on the conceptualization of human behavior through goal setting, strategy selection, action, and learning, with particular attention to immediate (primary) and delayed (secondary) responses to the environmental system.

In this context, and according to the definition of water security, awareness of human and environmental stimuli, along with the primary and secondary feedback loops between the human and environmental systems, results from the interaction between ecosystem services, such as the production and supply of water—and environmental hazards, such as floods and droughts. These interactions ultimately influence the strategies adopted to ensure water security in the basin (Scholz, 2011).

The research findings provide a structured foundation that logically leads to the model presented in Figure 4, illustrating the interconnectedness of human-environmental systems (HES) and their relevance to water security in Iran's agricultural sector. The findings identify critical challenges such as the impacts of climate change, including rising temperatures and reduced precipitation, water insecurity, inefficient irrigation practices, and governance shortcomings. These challenges highlight the complexity of interactions between human and environmental factors, which is central to the HES model.

The study demonstrates how human activities, such as over-extraction of groundwater and reliance on traditional agricultural methods. exacerbate environmental stress. These interactions are captured in the HES model, which links human goals (e.g., achieving food security) with environmental constraints (e.g., water scarcity). Furthermore, the research underscores the need for holistic solutions, such as improving irrigation efficiency, adopting water recycling technologies like NEWater, and reforming governance structures. These solutions align closely with the principles of the HES model, which emphasizes feedback loops and regulatory mechanisms between human and environmental systems.

By proposing actionable strategies, such as better water management, technological adoption, and farmer education, the findings align with the hierarchical structure and feedback-based approach of the HES model. The review also highlights the critical role of the human-environmental system (HES) in addressing water security challenges in the context of climate change. Human activities, such as unsustainable irrigation practices and groundwater over-extraction, have intensified environmental stressors, thereby reducing water availability. Conversely, the implementation of advanced technologies (e.g., precision irrigation and water recycling systems) demonstrates how human interventions can mitigate these impacts.

The reviewed studies highlight feedback loops within the HES framework, where climate changes exacerbate agricultural water demand, and inefficient human responses further degrade the environment. For instance, 75% of the analyzed articles identified groundwater depletion as a direct consequence of unregulated extraction, while 60% emphasized the potential of governance reforms to create adaptive water management systems. These findings underscore the importance of integrating human-environmental systems into water resource management strategies to enhance resilience against climate change.

DISCUSSION

This study examines the critical challenges of water security in Iran's agricultural sector, particularly in the context of climate change. The findings highlight the significant risks posed by the rising air temperatures, reduced precipitation, and inefficient water management practices. Climate change exacerbates existing vulnerabilities in the agricultural sector, including heavy reliance on groundwater and outdated irrigation methods, which collectively account for over 90% of freshwater consumption in Iran.

The research emphasizes the urgent need for adopting modern irrigation systems to address these inefficiencies, as Iran's current irrigation efficiency is only 35%, well below global standards. Technological solutions, such as water recycling (e.g., NEWater) and the expansion of greenhouse cultivation, offer promising strategies to reduce water demand while maintaining agricultural productivity. However, implementing these solutions requires robust governance reforms to regulate water usage, curb illegal activities like unregulated well drilling, and optimize resource allocation.

Additionally, the study stresses the importance of localized approaches to water resource management, considering Iran's diverse regional climates and socioeconomic conditions. Addressing these challenges necessitates collaborative efforts from policymakers, farmers, and the private sector to implement sustainable practices, enhance farmer education on advanced techniques, and foster innovation in agriculture.

In conclusion, this research underscores the interconnected nature of climate change and water security challenges in Iran's agricultural sector. By adopting a holistic approach, incorporating technological advancements, governance reforms, and sustainable practices, Iran can mitigate the

impacts of climate change and ensure the long-term sustainability of its agricultural sector. These actions are essential for maintaining food security and preserving vital water resources for future generations. A conceptual summary of the research findings is presented in Table 1.

Also, some of the most important effective ways to improve water security in Iran's agricultural sector in the current water shortage situation can be introduced as follows:

- Lack of a specific cultivation pattern in the country based on the National Agricultural Plan,
- Quantitative and qualitative development of greenhouse cultivation,
- Transferring the growing season of some agricultural products from spring to autumn and winter,
- Increase the use of modern irrigation systems and educate farmers in this regard,
- Repair of canals,
- Preventing the drilling of illegal wells
- Consolidation of agricultural lands in one area,
- Modification of the traditional pattern of agricultural water consumption,
- Prevent contamination of surface and groundwater resources,
- Attention to climate diversity in water resources management,
- Utilizing operational research in order to achieve the goal of reducing the level and increasing agricultural production,
- Paying attention to the production of strategic products for the country's self-sufficiency,

Gholami et al.

Table 1. Comprehensive summary of research findings.

Dimension	Findings	Implications
Climate Change Impact	- Mean temperature to rise by 2.6°C by 2100 Precipitation decline of 35%, leading to intensified droughts and floods.	Reduced water availability for agriculture. Increased vulnerability of crops to extreme weather.
Water Usage in Agriculture	- 90% of water is consumed in agriculture Groundwater depletion at alarming rates (e.g., -4400 Mm³ between 2002-2017).	Threatens long-term food security. - Risks of desertification and land subsidence.
Irrigation Efficiency	of 16.5 million hectares of farmland.	- High Water Wastage Immediate need for adoption of advanced irrigation techniques.
Governance Challenges	 Lack of specific cultivation patterns aligned with National Agricultural Plans. Weak enforcement of water usage laws and excessive subsidies. 	- Unsustainable agricultural practices persist Potential for socio-economic conflicts.
Technological Gaps	 Recycling municipal wastewater only meets 6% of national water needs. Low adoption of technologies like NEWater. 	water management.
Socio-Economic Factors	- Limited private sector investment due to government price controls Farmers lack knowledge in advanced agricultural methods.	- Stagnation in productivity and innovation Inefficiency in resource allocation.

- Quantitative and qualitative development of conversion industries in the agricultural sector,
- Improving the quality and nutritional value of products produced,
- Use of intelligent methods to store water in dry areas and
- Use of soilless or hydroponic cultivation methods.

This article underscores the critical importance of effective water resource management in ensuring water security in Iran's agricultural sector. It emphasizes that improving water management practices is directly linked to Iran's ability to secure adequate water for its agricultural needs. The article also highlights the potential of strategies such as NEWater, a water recycling initiative, to enhance water management in the agricultural sector.

Moreover, the article stresses the necessity for long-term planning and a sustained commitment from government officials to prioritize water security within agriculture. While short-term and medium-term solutions are essential, the article argues that long-term plans are crucial to address water security effectively. This requires a shift from seeking immediate responses to embracing a more sustained strategic approach.

In addition to long-term planning, the article advocates for promoting a culture of optimal water consumption within the agricultural sector. This includes improving the cultural infrastructure around water usage and conducting national research to develop cultivation models better suited to Iran's diverse climatic conditions. By integrating these measures, along with strengthening law enforcement, the article posits that water security in Iran's agricultural sector can be achieved in the future.

CONCLUSIONS

Based on the research findings, several recommendations are put forward for future studies aimed at tackling water security challenges in Iran's agricultural sector. Future research should focus on regional water management, recognizing the varied climatic and agricultural conditions across Iran. Comparative studies could help develop tailored strategies for sustainable water use in different regions. Additionally, research into the impact of modern irrigation technologies, such as drip and sprinkler systems, on water use efficiency and crop yields is essential. Field trials and case studies would provide valuable insights into the feasibility and scalability of these methods. Integrating renewable energy sources like solar and wind power into water recycling and desalination processes is another critical area for investigation. This could improve the sustainability of water management while systems reducing reliance conventional on energy. Furthermore, future studies should include economic analyses of agricultural water subsidies to evaluate their effects on water consumption, agricultural productivity, and farmers' incomes. This would provide a foundation for potential policy reforms aimed at improving water use efficiency. Understanding farmers' attitudes toward adopting advanced technologies sustainable practices is equally important. Research could assess the effectiveness of training programs and identify barriers to behavioral change. Additionally, developing and testing climate-resilient crop varieties that require less water and are better suited to Iran's changing climate is a promising area for innovation. Time series analyses studies on the implementation of water recycling technologies, such as NEWater, insights would provide into environmental. economic. and health impacts over time. Moreover, evaluating the effectiveness of existing water governance frameworks and proposing integrated models involving local, regional, and national stakeholders could strengthen policy and management systems. These recommendations address the gaps identified in the study and offer valuable directions for advancing both knowledge and practical

solutions to ensure sustainable water security in Iran's agricultural sector.

REFERENCES

- Abdoli, A. 2020. Iran, Sanctions, and the COVID-19 Crisis. J. Med. Econ., 23(12): 1461-1465.
- Abeysekera, A. B., Punyawardena, B. V. R. and Premalal, K. H. M. S. 2015. Recent Trends of Extreme Positive Rainfall Anomalies in the Dry Zone of Sri Lanka. *Trop. Agric.*, 163: 1–23.
- 3. Ali, H. S. 2021. Analytical Level of Discourse Analysis. *Soc. Sci. Humanit.*, 1(1): 28-37.
- Alizadeh-Choobari, O. and Najafi, M. S. 2017. Trends and Changes in Air Temperature and Precipitation over Different Regions of Iran. *J. Earth Space Phys.*, 43(3): 569-584. (in Persian with English Abstract)
- Almer, C., Laurent-Lucchetti, J. and Oechslin, M. 2017. Water Scarcity and Rioting: Disaggregated Evidence from Sub-Saharan Africa. J. Environ. Econ. Manag., 86: 193-209.
- Barati, A.A., Dehghani Pour, M. and Adeli Sardooei, M. 2023. Water Crisis in Iran: A System Dynamics Approach on Water, Energy, Food, Land and Climate Nexus. Sci. Total Environ., 882: 163549.
- Behzadi, F., Yousefi, H., Javadi, S., Moridi, A., Hashemy Shahedany, M. and Neshat, A. 2022. Meteorological Drought Duration–Severity and Climate Change Impact in Iran. *Theor. J. Appl. Climatol.*, 149: 1297–1315.
- Babaeian, I., Modirian, R., Karimian, M. and Zarghami, M. 2015. Simulation of Climate Change in Iran during 2071-2100 Using PRECIS Regional Climate Modelling System. *Desert*, 20(2): 123-134.
- 9. Bai, Y., Shan, F., Xu, J. -Y., Wu, Y. -S., Luo, X. -G., Wu, Y. -H., Hu, H. -Y. and Zhang, B. -L. 2020. Long-term Performance and Economic Evaluation of

Gholami et al.

- Full-Scale MF and RO Process, A Case Study of the Changi NEWater Project Phase 2 in Singapore. *Water Cycle*, 1:128-135.
- 10. Bazrkar, M. H., Zamani, N., Eslamian, S., Eslamian, A. and Dehghan, Z. 2015. Urbanization and Climate Change. In: "Handbook of Climate Change Adaptation", (Eds.): Leal Filho, W. Springer, Berlin, PP. 619-655.
- 11. Biswas, A. K. 2021. Water as an Engine for Regional Development. *Int. J. Water Resour. Dev.*, **37(3):** 359-361.
- Biswas, A. K. and Tortajada, C. 2022.
 Ensuring Water Security under Climate Change. In: "Water Security under Climate Change". Singapore, Springer, PP. 3-20.
- 13. Centre for Water Security. 2014. Proposal for the Establishment of a UNESCO Category II Water Relate Center on Water Security. International Hydrological Programme (IHP) Bureau. http://unesdoc.unesco.org/images/0025/002 597/259716e.pdf.
- 14. Cline, W. R. 2007. *Global Warming and Agriculture: End-of-Century Estimates by Country*. Peterson Institute for International Economics, Washington, DC.
- 15. Czulda, R. 2022. Iran's Water Security: An Emerging Challenge. *Middle East Policy*, **29(2)**: 113-123.
- 16. Danaei, G., Farzadfar, F., Kelishadi, R., Rashidian, A., Rouhani, O. M., Ahmadnia, S., Ahmadvand, A., Arabi, M., Ardalan, A., Arhami, M., Azizi, M. H., Bahadori, M., Baumgartner, J., Beheshtian, A., Djalalinia, S., Doshmangir, L., Haghdoost, A. A., Haghshenas, R., Hosseinpoor, A. R., Islami, F, Kamangar, F, Khalili, D, Madani, K, Masoumi-Asl, H., Mazyaki, A., Mirchi, A., Moradi, E., Nayernouri, T., Niemeier, D., Omidvari, A. H., Peykari, N., Pishgar, F., Qorbani, M., Rahimi, K., Rahimi-Movaghar, A, Tehrani, F. R., Rezaei, N., Shahraz, S, Takian, A., Tootee, A, Ezzati, M., Jamshidi, H. R., Larijani, B., Majdzadeh, R. and Malekzadeh, R. 2019.

- Iran in Transition. *Lancet*, **393(10184)**: 1984-2005.
- 17. Dehgan, A., Palmer-Moloney, L. J. and Mirzaee, M. 2014. Water Security and Scarcity: Potential Destabilization in Western Afghanistan and Iranian Sistan and Baluchestan Due to Transboundary Water Conflicts. In: "Water and Post-Conflict Peacebuilding". Taylor and Francis, London, PP. 305–326
- European Commission. 2015. Science for Environment Policy. Future Brief: Innovation in the European Water Sector. Issue 10, 16 PP.
- 19. FAO, 2016. The State of Food and Agriculture, http://www.fao.org.
- 20. FAO, 2017. Water efficiency, productivity and sustainability in the NENA regions (WEPS-NENA). http://www.fao.org.
- Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., Roo, A. D., Gonzalez-Sanchez, D. and Bidoglio, G. 2018. An Innovative Approach to the Assessment of Hydro-Political Risk: A Spatially Explicit, Data Driven Indicator of Hydro-Political Issues. Glob. Environ. Change, 52: 286-313.
- -Farzanegan, M. R. and Habibpour, M. M. 2017. Resource Rents Distribution, Income Inequality and Poverty in Iran. *Energy Econ.*, 66: 35-42.
- 23. Feitelson, E. and Tubi, A. 2017. A Main Driver or an Intermediate Variable? Climate Change, Water and Security in the Middle East. Glob. Environ. Change, 44: 39-48.
- 24. Gleick, P. H. 2014. Water, Drought, Climate Change, and Conflict in Syria. *Weather Clim. Soc.*, **6(3):** 331-340.
- 25. Golian, M., Saffarzadeh, A., Katibeh, H., Mahdad, M., Saadat, H., Khazaei, M., Sametzadeh, E., Ahmadi, A., Sharifi Teshnizi, E., Samadi Darafshani, M. and Dashti Barmaki, M. 2021. Consequences of Groundwater Overexploitation on Land Subsidence in Fars Province of Iran and Its Mitigation Management Program. Water Environ. J., 35(3): 975-985.

- Grey D. and Sadoff, C. W. 2007. Sink or Swim? Water Security for Growth and Development. J. Water Policy, 9: 545–571.
- Gunda, T, Hess, D., Hornberger G. M. and Worland, S. 2019. Water Security in Practice: The Quantity-Quality-Society Nexus. J. Water Secur., 6: 1–6.
- Gürsoy, S. İ. and Jacques, P. J. 2014. Water Security in the Middle East and North African Region. *J. Environ. Stud. Sci.*, 4(4): 310-314.
- Gutierrez-Bucheli, L., Reid, A. and Kidman, G. 2022. Scoping Reviews: Their Development and Application in Environmental and Sustainable Education Research. J. Environ. Educ. Res., 28(5): 645-673.
- Hartley, T. W., 2006. Public Perception and Participation in Water Reuse. *Desalination*, 187(1-3): 115-126.
- Hosea, P. and Khalema, E. 2020. Scoping the Nexus between Climate change and Water-Security Realities in Rural South Africa. *Town Reg. Plan.*, 77: 18-30.
- Patrick, H. O. 2022. A Systematic Review of Climate Change, Water Security, and Conflict Potentials in Kwazulu-Natal Province, South Africa. Afr. Renaiss., 19(1): 125-145.
- 33. Islam, S. and Madani, K. 2017. Water Diplomacy in Action: Contingent Approaches to Managing Complex Water Problems. Volume 1 of Anthem Environment and Sustainability Initiative. Anthem Press, London, UK, 344 PP.
- Iran's Energy Balance Report, Macroeconomic Planning and Energy Economics Organization, 2020.
- 35. Jamali Jaghdani, T. and Kvartiuk, V. 2021. Correction to: The Energy-Water Nexus in Iran: The Political Economy of Energy Subsidies for Groundwater Pumping. In: "A Nexus Approach for Sustainable Development", (Eds.): Hülsmann, S. and Jampani, M. Springer, Cham.
- Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. and Kushnir, Y. 2015. Climate Change in the Fertile Crescent and

- Implications of the Recent Syrian Drought. *Proc. Natl. Acad. Sci. USA*, **112(11):** 3241-3246.
- Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E. andXoplaki, E. 2012. Climate Change and Impacts in the Eastern Mediterranean and the Middle East. Clim. Change, 114(3): 667-687.
- Maghsoudi, T., Yazdi, F. K., Joneydi, M. S., Sedighi, N. T. and Davodi, H. 2013.
 Sustainability of Agricultural Water Management Associations in Iran (Case study of Khuzestan Province). Eur. J. Exp. Biol., 3(1): 545-550.
- Maleksaeidi, H., Jalali, M. and Eskandari,
 F. 2021. Challenges Threatening
 Agricultural Sustainability in the West of
 Iran: Viewpoint of Agricultural
 Experts. Sustainability, 13(6): 1-14.
- Mansouri Daneshvar, M. R., Ebrahimi, M. and Nejadsoleymani, H. 2019. An Overview of Climate Change in Iran: Facts and Statistics. *Environ. Syst. Res.*, 8(1): 1-10.
- Michel, D., 2020. Water Conflict Pathways and Peacebuilding Strategies, Report number: Peaceworks Report no. 164Affiliation: United States Institute of Peace.
- Mirchi, A., Watkins D., Jr, K. Madani, 2010, Modeling for Watershed Planning, Management, and Decision Making, Watersheds: Management, restoration and environmental impact.
- Mirzaei, A., Saghafian, B., Mirchi, A., and Madani, K. 2019. The Groundwater– Energy–Food Nexus in Iran's Agricultural Sector: Implications for Water Security. Water, 11(9): 1-15.
- Nazari, B., Liaghat, A., Akbari, M. R. and Keshavarz, M. 2018. Irrigation Water Management in Iran: Implications for Water Use Efficiency Improvement. J. Agric. Water Manag., 208: 7-18.

- Nazemi, N., Foley, R. W., Louis, G. and Keeler, L. W. 2020. Divergent Agricultural Water Governance Scenarios: The Case of Zayanderud Basin, Iran. Agric. Water Manag., 229: 105921.
- Osman, Y., Abdellatif, M., Al-Ansari, N., Knutsson, S. and Jawad, S. 2017. Climate Change and Future Precipitation in an Arid Environment of the Middle East: Case Study of Iraq. J. Environ. Hydrol., 25(3): 1-18.
- OECD. 2013. Water security for Better Lives. OECD Studies on Water, OECD Publishing. http://dx.doi.org/10.1787/9789264202405en
- 48. Pahl-Wostl C. 2015. Water Governance in the Face of Global Change: From Understanding to Transformation. Springer Cham, XV, 287 PP.
- 49. Patrick, H. O. 2021. Climate Change and Water Insecurity in Rural uMkhanyakude District Municipality: An Assessment of Coping Strategies for Rural South Africa. *H2Open J.*, 4(1): 29-46.
- 50. Paltridge, B. 2021. *Discourse Analysis: An Introduction*. Bloomsbury Publishing.
- Pourezzat, A. A., Moghadam, M. H., Ejlal, M. S. and Taheriattar, G. 2018. The Future of Governance in Iran. *Foresight*, 20(2): 175–189.
- Safdari, Z., Nahavandchi, H. and Joodaki,
 G. 2022. Estimation of Groundwater
 Depletion in Iran's Catchments Using Well
 Data. Water, 14(1): 131.
- Salehi Komroudi, M. and Abounoori, E. 2019. The Impact of Climate Change on Iranian Economic Growth. *J. Environ. Sci. Stud.*, 4(3): 1614-1622.
- 54. Salehi, S., Dehghani, M., Mortazavi, S. M. and Singh, V. P. 2020. Trend Analysis and Change Point Detection of Seasonal and Annual Precipitation in Iran. *Int. J. Climatol.*, **40(1)**: 308-323.
- 55. Shahriyari, H. A., Amiri, M. and Shahryari, Z. 2018. A Brief Overview on Poverty in Iran: Comparison with the World. *Int. J. Epidemiol. Res.*, **5(2):** 67-71.

- EPA. 2017. Potable Reuse Compendium. https://www.epa.gov/sites/production/ files/2018-01/documents/potablereusecompendium_3. pdf
- Sowers, J., Vengosh, A. and Weinthal, E.
 Climate Change, Water Resources, and the Politics of Adaptation in the Middle East and North Africa. *Clim. Change*, 104(3): 599-627.
- Scholz, R. W. 2011. Environmental Literacy in Science and Society: From Knowledge to Decisions. Cambridge University Press, Cambridge, UK.
- Tortajada, C. and van Rensburg, P. 2020.
 Drink More Recycled Wastewater. Nature, 577(7788): 26-28
- Tortajada, C. and Buurman, J. 2017. Water Policy in Singapore. Global-Is-Asian, 11 PP. https://thirdworldcentre.org/wp-content/uploads/2020/07/Water-Policy-in-Singapore.pdf
- 61. The Energy Balance Report of Iran. 2020.

 Macroeconomic Planning and Energy
 Economics Organization Website.

 Moe.gov.ir.
- 62. UN (United Nations). 2019. World Urbanization Prospects: The 2018 Revision. Department of Economic and Social Affairs, United Nations, New York. https://digitallibrary.un.org/record/3833745? ln=en
- 63. United Nations University. 2013. Water Security and the Global Water Agenda: A UN-Water Analytical Brief. UN Water. Institute for Water, Environment & Health (UNU-INWEH), Ontario, Canada. https://www.unwater.org/sites/default/files/app/uploads/2017/05/analytical_brief_oct20 13 web.pdf
- Vaghefi, S. A., Keykhai, M., Jahanbakhshi,
 F., Sheikholeslami, J., Ahmadi, A., Yang,
 H. and Abbaspour, K. C. 2019. The Future of Extreme Climate in Iran. Sci. Rep., 9(1): 1-11.
- 65. Voulvoulis, N. 2018. Water Reuse from a Circular Economy Perspective and Potential Risks from an Unregulated

- Approach. Curre. Opin. Environ. Sci. Health, 2: 32-45.
- 66. World Bank. 2015. A Water-Secure World for All. Water for Development: Responding to the Challenges. Conference Edition, World Bank, Washington DC.
- 67. World Water Council. 2000. Declaracion Ministerial de La Haya sobre la seguridad del agua en el siglo XXI. March 22, 2000, The Hague, Netherlands.
- 68. Yousefi, H., Kordi, F., Mohabbati, F. and Ghasemi, L. 2021. Estimation of Water Consumption in the Agricultural Area of Iran and Evaluation of the Results Obtained

- from the WaPOR Product with Ground Data. Iran. *J. Ecohydrology.*, **8(3):** 829-839. (In Persian with English Abstract)
- Zakeri, M. A., Mirnia, S. K. and Moradi, H. 2022. Assessment of Water Security in the Large Watersheds of Iran. *Environ. Sci. Policy*, 127: 31-37.
- Zhou, F., Zhang, W., Su, W., Peng, H. and Zhou, S. 2021. Spatial Differentiation and Driving Mechanism of Rural Water Security in Typical "Engineering Water Depletion" of Karst Mountainous Area—A Lesson of Guizhou, China. *J. Sci. Total Environ.*, 793: 148387.

راهبردهای افزایش امنیت آب در بخش کشاورزی ایران در شرایط تغییر اقلیم

مجید غلامی، بهاره حیدری، مریم افخمی، و محمدعلی کیانی

چکیده

موضوع تغییرات اقلیمی و چالشهای امنیتی مرتبط با آن به نگرانی فزاینده ای برای ایران بهویژه در بخش کشاورزی تبدیل شده است. افزایش جمعیت، افزایش تقاضا برای محصولات کشاورزی و نیاز به امنیت غذایی این چالش ها را تشدید می کند. این مطالعه خطرات ناشی از کاهش بارندگی، افزایش دما، و شیوههای مدیریت ناکارآمد آب، از جمله وابستگی شدید به آبهای زیرزمینی و سیستمهای آبیاری قدیمی را برجسته می کند. این بر نیاز فوری به فنآوریهای آبیاری مدرن، مانند بازیافت آب (NEWater)، و اصلاحات قوی حکمرانی برای بهبود کارایی مصرف آب، که از طریق چارچوب HES تحلیل می شود، تأکید می کند. این مطالعه نتیجه گیری می کند که اتخاذ یک استراتژی جامع و بلندمدت، ترکیب نوآوریهای فنآوری، شیوههای مدیریت محلی آب و حکمرانی تقویت شده، می تواند اثرات تغییر اقلیم را کاهش داده و استفاده پایدار از منابع مدیریت محلی آب و حکمرانی تقویت شده، می تواند اثرات تغییر اقلیم را کاهش داده و استفاده پایدار از منابع

Effect of Dietary Energy Source and Level on the Performance, Antibody Titers and the Relative Expression of *IL-2* and *IL-6* Genes in Broilers under Heat Stress

Nematollah Dayani¹, Mohammad Chamani^{1*}, Parvin Shawrang², Asa Ebrahimi³, and Ali Asghar Sadeghi¹

ABSTRACT

This study aimed to determine the effects of energy levels and sources on growth performance, antibody titers, and the gene expression of pro-inflammatory cytokines in broilers exposed to heat stress. A total of 450 one-day-old Ross chickens were assigned to six dietary treatments and five replicates in a completely randomized design. Chickens received diets differentiated by the main energy source (corn grain and soybean oil) and energy level (equal, 3% or 6% lower or higher than Ross 308 recommendation). Treatments were as follows: corn grain and equal as Control (CON), 3% lower corn grain (T1), 6% lower corn grain (T2), corn grain and soybean oil, equal (T3), 3% higher corn grain and soybean oil (T4), 6% higher corn grain and soybean oil (T5). The room temperature was increased to 34°C (6-h daily) from day 12 to 42 of age to induce heat stress. The highest corticosterone level was observed in T1, T2, and T5 groups. The lowest antibody titers were observed in T2 group and the highest expression levels of proinflammatory cytokines genes were in chickens receiving T5 diet. The highest Feed Conversion Ratio (FCR) during the grower and finisher periods was observed in T2, and the lowest in T3 and T4. It was recommended to feed Ross broiler with a diet containing oil instead of a part of grain based on energy recommended by the strain recommendation.

Keywords: Chicken, Corticosterone, Inflammation. Interleukin, Ross strain.

INTRODUCTION

The major broiler farms exist in subtropical and tropical regions of the world (Kpomasse *et al.*, 2021). In these regions, farmers have to use various strategies to control the temperature of their houses, to reduce the negative effects of heat stress on the health and performance of broilers (Costantino *et al.*, 2018). After exposing broilers to high ambient temperatures, some toxic mechanisms may be induced in the

body, including the generation of reactive oxygen species, which finally results in oxidative stress. Oxidative stress could affect the metabolic pathways liver and small intestine health, which reduce the nutrient digestion and absorption, and the merit of substrates for metabolism (Mancinelli et al., 2023). Various management techniques, such as cooling systems, have been used to reduce the negative effects of heat stress on broiler chickens (Fisinin and Kavtarashvili, 2015). The cost of cooling broiler houses is high in

Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Islamic Republic of Iran.

³ Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: m.chamani@iau.ir

Dayani et al.

many regions; hence, some researchers focused on nutritional management (Daghir, 2009). The manipulation of dietary energy level and source has been considered as a useful method in broiler farms to overcome the negative effects of heat stress (Daghir, 2009; Raghebian *et al.*, 2016). Seifi *et al.* (2018) reported that feeding a high-fat diet could improve the heat tolerance in broiler chickens, and dietary inclusion of palm oil improved the growth performance and survivability of heat stressed broiler chickens (Zulkifli *et al.*, 2007).

Moreover, Kim et al. (2019) reported that fat supplementation had preventative effects on weight loss for hens raised under heat stress. In contrast, Rafiei-Tari et al. (2021) reported that feeding oils containing n-6 fatty acids had detrimental effects on the health of broilers exposed to heat stress. On the other hand, when chickens were fed with energy diets. deviations physiological homeostasis occurred, leading to impaired bird welfare (Cheng and Jefferson, 2008) and significant reductions in production capabilities (Jariyahatthakij et al., 2018). In an interesting study, Raghebian et al. (2016) reported that high energy in a broiler diet could enhance heat resistance and improve performance parameters.

Today, the effect of nutrition on gene expression is very important (Goel et al., 2021). The effect of energy level and source on the expression of genes related to heat resistance has been investigated (Raghebian et al., 2016), but its effect on gene expression of interleukins, as related to the immune response, was not evaluated. The Interleukin-2 (IL-2) and Interleukin-6 (IL-6) are pro-inflammatory cytokines that play an important role in the inflammatory response in the body of broiler chickens under heat stress (Goel et al., 2021) and prolong inflammation responses cause tissue damage, especially in the liver and immune system tissues (Helwig and Leon, 2011; Goel et al., 2021). Finding the relationship between the level and energy source of the diet with the relative expression of genes of these two cytokines helps to understand better the cause of the effects observed in the body of broiler chickens.

In the literature, the effects of energy source and level on the antibody titers and relative expression of pro-inflammatory cytokine genes (IL-2 and IL-6) in chickens under heat stress have not been completely evaluated (Ndlebe et al., 2023). Taleb et al. (2017) reported that antibody decreased in broiler chickens (Cobb 500 strain) raised under hot environmental conditions receiving soybean oil. In contrast, Sadeghi et al. (2013) reported that including soybean oil could enhance the immune response in broiler chickens (Ross 308). It is unclear what effects the soybean oil inclusion and the dietary energy concentration have on the expression of genes related to the immune system and the antibody titer.

It was hypothesized that in the heat stress condition, including soybean oil and formulation of high-energy diet could enhance health, immune responses, and performance compared to a diet containing the main energy source from a carbohydrate or low-energy diet. In the present study, low and high levels of dietary energy were considered factors that cause metabolic stress in the body to mimic the conditions chickens face in different breeding centers.

Therefore, the present study aimed to assess the effects of energy source and level on the growth performance, liver health, immune responses, and the relative expression of IL-2 and IL-6 genes in broiler chickens exposed to heat stress.

MATERIALS AND METHODS

Chickens Management

A total of 465 one-day-old male Ross 308 broiler chickens (average weight of 40 g) were purchased from a local hatchery and allocated randomly to thirty one floor pens (200×180 cm) covered with wood shaving. Chicks were randomly assigned to 6 dietary

treatments with 5 replicates and 15 chicks per each. Except ambient temperature, chicks were raised under controlled conditions, lighting program, and feed recommendations based on Ross 308 broiler guides. Chickens (n= 450) were exposed to heat stress from day 12 to 42 of age, with the relative humidity of 65%. During heat stress, temperatures were raised daily to 34±1°C for 6 hours from 08:00 to 14:00 and then decreased to 24±1°C. Fifteen chicks were kept in a room at normal temperature to assess whether experimental chicks were exposed to heat stress. These chickens received corn grain and energy density based on Ross 308 recommendation (3100 and 3200 kcal/kg during grower and finisher periods, respectively). Blood samples were taken from these chickens to measure corticosterone levels as a biological marker of heat stress. All chickens had access ad libitum to feed and fresh water, especially throughout the heat challenge period. Chickens were vaccinated with Newcastle Disease (ND) vaccine and Infectious Bursal Disease (IBD) vaccine. In the experiment's initial and end, the amount of feed intake and body weight were measured, and the Feed Conversion Ratio (FCR) was calculated. Dead chicken was weighed and the weight was included in the calculations of FCR.

Experimental Design

Dietary treatments were included in the Control group (CON), chickens receiving the main energy source from corn grain and energy density based on Ross 308 recommendation. Treatments included the followings:

- T1: Chickens receiving the main energy source from corn grain and 3% lower energy density than Ross 308 recommendation;
- T2: Chickens receiving the main energy source from corn grain and 6% lower energy density than Ross 308 recommendation;
- T3: Chickens receiving the main energy source from corn grain and soybean oil and

energy density based on Ross 308 recommendation;

T4: Chickens receiving the main energy from corn grain and soybean oil and 3% higher energy density than Ross 308 recommendation,

T5: Chickens receiving the main energy from corn grain and soybean oil and 6% higher energy density than Ross 308 recommendation.

Metabolizable energy levels of diets were balanced using starch or washed sand. Chickens were raised at three feeding periods: starter (days 1 to 10), growers (days 11 to 24), and finishers (days 25-42) periods.

Sample Collection and Measurements

On days 24 and 42 of age, blood samples (6 mL) were collected using sterile Venoject directly from the heart of two chickens in each replicate. The serum of the blood sample was separated using a centrifuge (1,500×g, 15 minutes) and stored at -20 °C until further analysis. Two days after sampling, antibody titers against viruses of ND and IBD were determined in all serum samples. Biochemical measurements were done on samples taken on day 42 of age.

On day 24, immediately after blood sampling, chicks were sacrificed by cervical dislocation, then the spleen and liver were removed and sampled. Five spleen samples from each treatment were collected to analyze the relative expression of the *IL-2* and *IL-6* genes. Spleen tissues were transferred in a cry-protectant tube, snapfrozen in liquid nitrogen, and stored at -70°C until RT-PCR analysis.

Blood Sample Analysis

Serum corticosterone level was measured enzymatically using an enzyme-linked immunosorbent assay kit (Enzo Life Sciences, NY, USA). Serum concentrations of glucose, total protein, albumin, creatinine, and uric acid were measured using the photometric method

by auto-analyzer (BS-120 model, Minbray Co., USA) and commercial kits (Pars Azmon Co., Tehran, Iran).

Serology

The titers of antibodies against Newcastle disease virus were measured by hemagglutination-inhibition test (Allan and Gough, 1974) and against Infectious Bursal Disease virus by ELISA kit, IDEXX FlockChek standard (IDEXX Corporation, Westbrook, ME, USA). The value of antibody titers was transformed to log2(x) before statistical analysis.

Analysis of the Gene Expression of *IL-2* and *IL-6*

The relative abundances of IL-2 and IL-6 mRNA were determined by the RT-PCR technique described by Paraskeuas and Mountzouris (2019) and Long et al. (2019). The frozen spleen sample was crushed in a sterile mortar, and the powder was applied for total RNA extraction using a suitable kit (Bioneer Co., Seoul, South Korea). Then, each gene's cDNA was synthesized using a suitable kit using the reverse transcription technique (Bioneer Co., Seoul, South Korea). Quantitative PCR was performed with specific primer pairs for IL-2 (Paraskeuas and Mountzouris, 2019) and IL-6 (Long et al., 2011) using Quanti Fast SYBER Green PCR kit (QIAGEN, Cat. No. 204052). GAPDH was chosen as a housekeeping gene. The relative gene expression of IL-2 and IL-6 as target genes was normalized to the GAPDH gene using the method previously described by Livak and Schmittgen (2001). Quantification for each treatment group was performed in triplicates.

Statistical Analysis

Statistical analyses were done using the General Linear Model procedure of the SAS

for Windows version 9.1 (SAS Institute Inc., Cary, NC) appropriate for a completely randomized design. To evaluate the normal distribution of data, the Kolmogorov-Smirnov test was done. Duncan multiple range tests were used to compare the means. between control Effects the and experimental groups were considered significant when P< 0.05.

RESULTS

Effect on Serum Corticosterone Level and Biochemical Measurements

Table 1 shows the serum corticosterone levels and biochemical parameters of broilers receiving different dietary energy levels and sources. The highest corticosterone level was observed in the T1, T2, and T5 groups, and no difference was observed among other treatments with the control group. Broilers in the T5 group had the highest serum glucose level, and those in the T2 group had the lowest. Broilers receiving the T4 diet had the highest albumin, globulin, and total protein, and broilers in the T2 group had the lowest protein sections. The highest concentration of creatinine and uric acid was observed in the T2 group, while broilers of CON, T3, and T4 had the lowest.

Effect on Antibody Titers and the Relative Expression Levels of Interleukins

Table 2 shows the effect of dietary energy level and source on antibody titers against Newcastle disease virus and infectious bursa disease virus determined on days 24 and 42 of age. There was no difference among treatments for ND titer on day 24, but differences were observed for ND titer on day 42. At day 42 of age, the lowest ND titer was observed in the T2 group and the highest in the T3 and T4 groups. On day 24, the IBD titer was the highest in the T3 and T4 groups and the lowest in the T2 group.

Table 1. Effect of dietary energy level and source on serum corticosterone level and biochemical parameters in broiler chickens under heat stress.

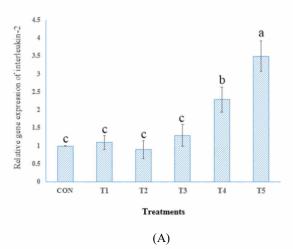
Item ^a	CON	T1	T2	Т3	T4	T5	SEM	P value
Corticosterone (ng mL ⁻¹)	20.61 ^b	29.84 ^a	30.37 ^a	21.26 ^b	22.54 ^b	27.33 ^a	1.03	0.01
Glucose (mg dL ⁻¹)	200.09^{bc}	195.12 ^{cd}	189.45 ^d	204.72 ^{bc}	210.58 ^{ab}	219.21 ^a	3.50	0.01
Albumin (mg dL ⁻¹)	1.13^{b}	1.13 ^b	1.02°	1.15 ^{ab}	1.23 ^a	1.07^{bc}	0.027	0.02
Globulin (mg dL ⁻¹)	1.35 ^b	1.27°	1.17^{d}	1.33 ^b	1.51 ^a	1.17^{d}	0.021	0.03
Total protein (mg dL ⁻¹)	2.48^{b}	2.40^{b}	2.19°	2.49^{b}	2.73 ^a	2.24°	0.039	0.01
Creatinine (mg dL ⁻¹)	2.54°	2.73 ^{bc}	3.74^{a}	2.53°	2.51°	3.01^{b}	0.103	0.02
Uric acid (mg dL ⁻¹)	4.22°	4.58 ^b	4.94 ^a	4.20^{c}	4.24°	4.83 ^a	0.023	0.01

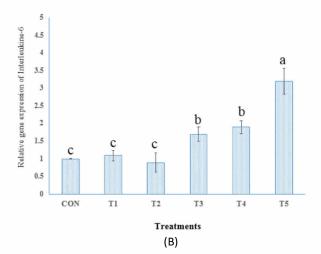
a-d Means within a row with different superscripts are significantly different (P< 0.05). Control, energy based on Ross standard diet with main energy from corn; T1: Chickens receiving 3% lesser energy than Ross standard diet with energy from corn; T2: Chickens received 6% lesser energy than Ross, T3: Chicken receiving Ross standard diet with main energy from corn grain and soybean oil, T4: Chicken receiving 3% upper energy than Ross standard diet, and T5: Chicken receiving 6% upper energy than Ross standard diet.

Table 2. Effect of dietary energy level and source on antibody titers against viruses of Newcastle Disease (ND) at Infectious Bursal Disease (IBD) on days 24 and 42.

Item ^a	CON	T1	T2	T3	T4	T5	SEM	P value			
Day 24 of age											
ND (log 2)	4.67	4.35	4.00	3.65	3.34	4.00	0.45	0.369			
IBD (log 2)	419.31 ^{ab}	414.25 ^{ab}	402.56^{b}	434.97^{a}	432.08 ^a	416.98^{ab}	9.20	0.016			
, ,	Day 42 of age										
ND (log 2)	5.35 ^{abc}	5.09 ^{bc}	4.67°	7.00^{a}	7.15 ^a	6.65^{ab}	0.55	0.021			
IBD (log 2)	3177.30 ^a	3007.60^{b}	3017.09 ^b	3106.02 ^a	3187.72 ^a	3125.34 ^a	50.6	0.050			

^{a-c} Means within a row with different superscripts are significantly different (P< 0.05). ^a CON and T treatments as defined in the main text and Table 1.


On day 42, the highest IBD titer was observed in the CON, T3, T4, and T5 groups, and the lowest titer was found in T1 and T2.


Figure 1 shows the relative expression level of *IL-2* and *IL-6* genes in the spleen of broiler chickens under heat stress receiving different energy densities and sources. Significant differences were observed among treatments for the relative expression of *IL-2* and *IL-6* genes. The highest relative expression of the *IL-2* gene was observed in chickens receiving T5, then, in T4 diets, and the lowest expression was observed in chickens receiving CON, T1, T2, and T3 diets. Chickens receiving the T5 diet had the highest relative gene expression of IL-6, and the lowest expression was observed in chickens receiving CON, T1, and T2 diets.

Effect on Performance Parameters

The performance parameters of broiler chickens are presented in Table 3. There were no differences among treatments for performance parameters during the starter period. These differences appeared at grower and finisher periods. The daily gain of broilers in the T3 and T4 was higher than in T1 and T2. The lowest daily gain during grower and finisher periods was observed in T2 and the highest daily gain was observed in broilers receiving T3 diet. Feed intake of broilers during grower and finisher periods was the highest in the T2, and there was no difference in feed intake among other treatments. The highest FCR during the grower and finisher periods was observed in T2, and the lowest FCR was observed in the T3 and T4. Broilers in the T5 group had the same FCR as T3 and T4.

Figure 1. The relative expression level of *IL-2* (A) and *IL-6* (B) genes in heat-stressed broilers receiving different energy level and source. CON and T treatments as defined in the main text and Table 1.

Table 3. Effect of dietary energy level and source on performance parameters of broiler chickens under heat stress.

Item ^a	CON	T1	T2	Т3	T4	T5	SEM	P value
			Starter phas	se				
Gain (g d ⁻¹)	17.21	17.42	17.15	17.02	17.00	17.06	0.209	0.70
Feed intake (g d ⁻¹)	24.10	24.30	24.20	24.00	23.90	23.90	0.161	0.29
FCR	1.40	1.41	1.41	1.41	1.40	1.40	0.023	0.98
			Grower pha	ase				
Gain (g d ⁻¹)	51.05 ^{ab}	48.22 ^{bc}	46.41°	52.05 ^a	53.12 ^a	50.72 ^{ab}	0.681	0.01
Feed intake g d ⁻¹)	87.95 ^{ab}	89.67 ^{ab}	90.45 ^a	85.47 ^b	85.32 ^b	86.32 ^{ab}	1.301	0.01
FCR	1.72 ^{bc}	1.86 ^{ab}	1.95 ^a	1.64 ^{bc}	1.60°	1.70^{bc}	0.044	0.01
			Finisher					
Gain (g/d)	80.41 ^{bc}	77.52 ^{cd}	73.67^{d}	87.37 ^a	85.75 ^{ab}	83.87 ^{ab}	0.985	0.01
Feed intake (g/d)	160.21 ^b	163.63 ^b	172.12 ^a	161.71 ^b	160.80 ^b	160.3 ^b	1.53	0.03
FCR	1.99 ^{bc}	2.11 ^b	2.33 ^a	1.85 ^d	1.87 ^{cd}	1.91 ^{cd}	0.033	0.01

a-c Means within a row with different superscripts are significantly different (P< 0.05). **CON and T treatments as defined in the main text and Table 1.

DISCUSSION

In the present study, serum corticosterone levels were high in broilers receiving the control and experimental diets (heat stress condition) compared to the level of corticosterone in chickens kept in normal temperature conditions (6.78 ng mL⁻¹). Consistent with our results, previous studies have reported that acute heat stress elevates corticosterone levels in the serum of broiler chickens (Quinteiro-Filho *et al.*, 2010; Soleimani *et al.*, 2011). In contrast to our findings, broilers' exposure to heat did not show to influence serum corticosterone

levels (Mack et al., 2013; Xie et al., 2015). Possible reasons for the discrepancies among the results of various studies might be differences in temperature and humidity set, time of blood sampling, and chicken genotypes. Increases in corticosterone levels in broilers' serum are linked to the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA axis controls the adaptability of broilers in response to various stressors (He et al., 2018).

In the present study, broilers receiving diets with energy restriction (T1 and T2) showed higher corticosterone levels than the control group. In stressful conditions, a change in the energy density of the diet

causes additional metabolic stress in the body of chicks and may increase the generation of free radicals (Raghebian et al., 2017; He et al., 2018). Based on reports (Emami et al., 2021, Rafiei-Tari et al., 2021), chickens receiving a diet with restricted energy experience higher protein turnover, and those receiving a diet with surplus energy experience higher metabolic rate, which both processes increase the heat production and expose body to intense heat stress. Chicken receiving diets containing soybean oil (T4 and T5) had no difference in corticosterone concentration compared to the control group. Also, chicken in T3 and T4, which received soybean oil instead of a part of starch from corn grain, showed lower corticosterone levels than T1 and T2, which may be related to lower heat increment. In a previous study (Sadeghi et al., 2013), a shift from starch to lipid during heat stress decreased heat increment. Many researchers recommend replacing soybean oil with starch (Yaqoob, 2004; Cherian, 2015) to reduce the heat increment and the negative effects of heat stress on the animal body.

The serum glucose level of chickens in heat stress was higher than those raised in normal conditions (185 mg/mL), which might be an adaptation for survivability and tolerance. In agreement with our finding, Bogin et al. (1996) reported that chickens that survived under intense heat stress had higher blood glucose levels than the nonsurviving chickens. The reductions in serum albumin, globulin, and total protein levels in the chicken receiving low dietary energy (T1 and T2) and high dietary energy (T5) compared to the control group can be linked to elevation of serum corticosterone levels. Corticosterone can change metabolic pathways, reduce protein synthesis (Sadeghi et al., 2013), and increases the catabolism of proteins to use as fuel in broilers receiving low dietary energy (Kitaysky et al., 1999). In broilers receiving high dietary energy (T5), reduced total protein in the serum may be linked to liver inflammation. The result of a previous study (Özbey et al., 2004) is

consistent with the reductions observed in our study after the heat challenge.

The marked increase in the serum uric acid of broilers receiving low dietary energy (T2) may be linked to an increase of protein turnover and, in those receiving surplus energy (T5), linked to liver inflammation and oxidative stress. Previous studies reported increases (Özbey et al., 2004), reductions (Bogin et al., 1996), and no alteration (Xie et al., 2014) in the serum levels of uric acid after heat stress and energy restriction surplus. or discrepancies in responses among various studies may be related to the differences in metabolic rates and physiological states and also signify protein catabolism for energy generation in energy-restricted birds resulting from increased corticosterone levels (Vandana et al., 2021).

Chicken receiving T1, T3, T4, and T5 had the same performance parameters, but the chickens in the T2 group had higher feed intake and FCR than the control group. To compensate for the energy dilution of the diet, chickens receiving the T2 diet try to feed more. As feed intake increased, the activity of eating and the digestive tract increased, resulting in increased heat production (Herd and Arthur, 2009). In the heat stress condition, heat dissipating from the body decreases, and the animal body is exposed to oxidative stress (Teeter and Belay, 1996). Chickens exposed to oxidative stress could not grow perfectly and showed a lower feed conversion ratio than CON, T3 and T4 groups. Consistent with our finding, Classen (2017) and Azizi et al. (2011) reported that chickens increased feed intake in response to dietary energy dilution. However, Yuan et al. (2008) reported that the weight gain of chickens was not altered by dietary energy level, in contrast with our results.

Antibody titers against ND and IBD were the highest in the T3 and T4 diet formulated with soybean oil, and the lowest in the T1 and T2 diet formulated with low energy density, which is inconsistent with the findings of Taleb *et al.* (2017). They

Dayani et al.

reported that an increase in soybean oil level in the Cobb strain diet resulted in lower antibody titers against ND and IBD. In the current study, an increase in the level of soybean oil in the Ross broiler diet had no negative effect on the antibody titers against ND and IBD.

In broilers receiving low-energy diets, the effect of metabolic stress caused by energy level on the high corticosterone level and low blood glucose level may play an important role in reducing the immune response and antibody production (Yang *et al.*, 2015; Aami Azghady *et al.*, 2014). The factors above cause disturbances in the process of growth and maturation of T and B cells in primary and secondary lymphoid tissues, which ultimately causes numerous immune abnormalities in broiler chickens (Hirakawa *et al.*, 2020).

Pro-inflammatory cytokines such as IL-2 and IL-6 have been found to play an active role in the inflammatory response under stressful conditions (Helwig and Leon, 2011). In the literature, limited information exists concerning energy level's effect on the gene expression of pro-inflammatory cytokines. A striking finding in the present study was the low expression of genes involved in inflammation in broiler chickens' diets with low energy density (T1 and T2). This finding agrees with some studies (Trayhurn and Wood, 2004; Higami et al., 2006) that reported low energy diet resulted in low inflammation and gene expression of pro-inflammatory cytokines in laboratory animals. In contrast, high-energy diets (T4 and T5) increased the relative gene expression of IL-2 and IL-6. In T4 and T5 groups, high corticosterone levels may be influenced by the expression of proinflammatory cytokines as it could increase the proliferation of lymphocytes and macrophages (Hirakawa et al., 2020; Goel et al., 2021). In energy-dense diets, soybean oil is included, and higher expression of these genes may be related to oil inclusion. Previous studies (Mu et al., 2018) revealed that dietary soybean oil significantly increased the gene expression of proinflammatory cytokines. The results observed for fasting glucose level and *IL-2* gene expression in the present study are consistence with the finding of Kochumon *et al.* (2020), who reported that the level of *IL-2* expression was associated positively with fasting blood glucose.

CONCLUSIONS

The results of the present study indicate that energy restriction and surplus negatively affect the immune response and performance of chickens raised under heat stress. Surplus energy negatively affects the relative expression levels of pro-inflammatory cytokines genes (IL-2 and IL-6), and energy restriction results in higher protein catabolism (higher uric acid and creatinine), which reduces broiler performance and immune responses. The inclusion of soybean oil in the diet positively affected immune response and performance. It was recommended to feed Ross broiler chickens under heat stress with a diet containing oil instead of a part of grain based on the energy recommended by the strain recommendation.

REFERENCES

- Aami Azghadi, M., Kermanshahi, H. and Golian, A. 2014. The Effect of Dietary Energy Andprotein Levels on Growth Performance and Antibody Responses of Offspring of Laying Japanese Quails. *Iran.* J. Appl. Anim. Sci., 4(1): 185-190.
- Allan WH, Gough RE. A Standard Haemagglutination Inhibition Test for Newcastle Disease. (1). A Comparison of Macro and Micro Methods. Vet Rec. 1974 Aug 10; 95(6):120-3. doi: 10.1136/vr.95.6.120.
- Azizi, B., Sadeghi, G., Karimi, A. and Abed, F. 2011. Effects of Dietary Energy and Protein Dilution and Time of Feed Replacement from Starter to Grower on

- Broiler Chickens Performance. J. Central Eur. Agric., 12(1): 44-52.
- Bogin, E., Avidar, Y., Pech-Waffenschmidt, V., Doron, Y., Israeli, B.
 A. and Kevkhayev, E. 1996. The Relationship between Heat Stress, Survivability and Blood Composition of the Domestic Chicken. Eur. J. Clin. Chem. Clin. Biochem., 34(6): 463-469.
- Cheng, H. W. and Jefferson, L. 2008. Different Behavioral and Physiological Responses in Two Genetic Lines of Laying Hens after Transportation. *Poult. Sci.*, 87(5): 885-892.
- Cherian, G. 2015. Nutrition and Metabolism in Poultry: Role of Lipids in Early Diet. J. Anim. Sci. Biotechnol., 6(1): 1-9.
- Classen, H. L. 2017. Diet Energy and Feed Intake in Chickens. Anim. Feed Sci. Technol., 233: 13-21.
- Costantino, A., Fabrizio, E., Ghiggini, A. and Bariani, M. 2018. Climate Control in Broiler Houses: A Thermal Model for the Calculation of the Energy Use and Indoor Environmental Conditions. *Energy Build.*, 169: 110-126.
- Daghir, N. J. 2009. Nutritional Strategies to Reduce Heat Stress in Broilers and Broiler Breeders. Lohmann Inform., 44(1): 6-15.
- Emami, N. K., Greene, E. S., Kogut, M. H. and Dridi, S. 2021. Heat Stress and Feed Restriction Distinctly Affect Performance, Carcass and Meat Yield, Intestinal Integrity, and Inflammatory (Chemo) Cytokines in Broiler Chickens. Front. Physiol., 12: 707757.
- Fisinin, V. I. and Kavtarashvili, A. S. 2015.
 Heat Stress in Poultry. II. Methods and Techniques for Prevention and Alleviation. *Agri. Biol.*, 50(4): 431-443.
- Goel, A., Ncho, C. M., and Choi, Y. H.
 Regulation of Gene Expression in Chickens by Heat Stress. J. Anim. Sci. Biotechnol., 12(1): 1-13.
- He, S. P., Arowolo, M. A., Medrano, R. F., Li, S., Yu, Q. F., Chen, J. Y. and He, J. H. 2018. Impact of Heat Stress and Nutritional

- Interventions on Poultry Production. World's Poult. Sci. J., 74(4): 647-664.
- Helwig, B. G. and Leon, L. R. 2011. Tissue and Circulating Expression of IL-1 Family Members Following Heat Stroke. *Physiol. Genom.*, 43(19): 1096-1104.
- Herd, R. M. and Arthur, P. F. 2009. Physiological Basis for Residual Feed Intake. J. Anim. Sci., 87(Suppl. 14): E64-E71.
- 16. Higami, Y., Barger, J. L., Page, G. P., Allison, D. B., Smith, S. R., Prolla, T. A. and Weindruch, R. 2006. Energy Restriction Lowers the Expression of Genes Linked to Inflammation, the Cytoskeleton, the Extracellular Matrix, and Angiogenesis in Mouse Adipose Tissue. *J. Nutr.*, 136(2): 343-352.
- Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T. and Toyomizu, M. 2020. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci., 7: 46.
- 18. Jariyahatthakij, P., Chomtee, B., Poeikhampha, T., Loongyai, W. and Bunchasak, C. 2018. Effects of Adding Methionine in Low-Protein Diet and Subsequently Fed Low-Energy Diet on Productive Performance, Blood Chemical Profile, and Lipid Metabolism-Related Gene Expression of Broiler Chickens. Poult. Sci., 97(6): 2021-2033.
- Kim, J. H., Lee, H. K., Yang, T. S., Kang, H. K. and Kil, D. Y. 2019. Effect of Different Sources and Inclusion Levels of Dietary Fat on Productive Performance and Egg Quality in Laying Hens Raised under Hot Environmental Conditions. *Asian-Austral. J. Anim. Sci.*, 32(9):1407-1412.
- Kitaysky, A. S., Piatt, J. F., Wingfield, J. C. and Romano, M. 1999. The Adrenocortical Stress-Response of Black-Legged Kittiwake Chicks in Relation to Dietary Restrictions. *J. Comp. Physiol. B*, 169: 303-310.

Dayani et al.

- Kochumon, S., Al Madhoun, A., Al-Rashed, F., Thomas, R., Sindhu, S., Al-Ozairi, E. and Ahmad, R. 2020. Elevated Adipose Tissue Associated *IL-2* Expression in Obesity Correlates with Metabolic Inflammation and Insulin Resistance. *Sci. Rep.*, 10(1): 16364.
- Kpomasse, C. C., Oke, O. E., Houndonougbo, F. M. and Tona, K. 2021. Broiler Production Challenges in the Tropics: A Review. Vet. Med. Sci., 7(3): 831-842.
- Livak K. J., Schmittgen T. D. Analysis of Relative Gene Expression Data Using Realtime Quantitative PCR and the 2(-Delta Delta C(T)) Method. 2001 Dec; 25(4):402-8. doi: 10.1006/meth.2001.1262.
- 24. Long, G. L., Hao, W. X., Bao, L. F., Li, J. H., Zhang, Y. and Li, G. H. 2019. Effects of Dietary Inclusion Levels of Palm Oil on Growth Performance, Antioxidative Status and Serum Cytokines of Broiler Chickens. J. Anim. Physiol. Anim. Nutr., 103(4): 1116-1124.
- Mack, L. A., Felver-Gant, J. N., Dennis, R. L. and Cheng, H. W. 2013. Genetic Variations Alter Production and Behavioral Responses Following Heat Stress in 2 Strains of Laying Hens. *Poult. Sci.*, 92(2): 285-294.
- Mancinelli, A. C., Baldi, G., Soglia, F., Mattioli, S., Sirri, F., Petracci, M. and Zampiga, M. 2023. Impact of Chronic Heat Stress on Behavior, Oxidative Status and Meat Quality Traits of Fast-Growing Broiler Chickens. Front. Physiol., 14: 1-8.
- 27. Mu, H., Shen, H., Liu, J., Xie, F., Zhang, W. and Mai, K. 2018. High Level of Dietary Soybean Oil Depresses the Growth and Anti-oxidative Capacity and Induces Inflammatory Response in Large Yellow Croaker *Larimichthys crocea*. Fish Shellfish Immunol., 77: 465-473.
- Ndlebe, L., Tyler, N. C. and Ciacciariello, M. 2023. Effect of Varying Levels of Dietary Energy and Protein on Broiler Performance: A Review. World's Poult. Sci. J., 79(3): 449-465.

- Nikravesh-Masouleh, T., Seidavi, A. R., Kawka, M. and Dadashbeiki, M. 2018. The Effect of Dietary Energy and Protein Levels on Body Weight, Size, and Microflora of Ostrich Chicks. *Trop. Anim. Health Prod.*, 50(3): 635-641.
- Özbey, O., Yıldız, N., Aysöndü, M. H. and Özmen, Ö. 2004. The Effects of High Temperature on Blood Serum Parameters and the Egg Productivity Characteristics of Japanese Quails (Coturnix coturnix japonica). Inter. J. Poult. Sci., 3(7): 485-489.
- Paraskeuas, V. V. and Mountzouris, K. C. 2019. Modulation of Broiler Gut Microbiota and Gene Expression of Toll-Like Receptors and Tight Junction Proteins by Diet Type and Inclusion of Phytogenics. *Poult. Sci.*, 98(5): 2220-2230.
- Rafiei-Tari, A., Sadeghi, A. A. and Mousavi, S. N. 2021. Inclusion of Vegetable Oils in Diets of Broiler Chicken Raised in Hot Weather and Effects on Antioxidant Capacity, Lipid Components in the Blood and Immune Responses. *Acta* Sci. Anim. Sci., 43: 1-6.
- 33. Raghebian, M., Sadeghi, A. A. and Aminafshar, M. 2017. Impact of Dietary Energy Density on the Liver Health of Broilers Exposed to Heat Stress and Their Performance during Finisher Period. J. Livest. Sci., 8: 122-130.
- 34. Raghebian, M., Sadeghi, A. A. and Aminafshar, M. 2016. Energy Sources and Levels Influenced on Performance Parameters, Thyroid Hormones, and HSP70 Gene Expression of Broiler Chickens under Heat Stress. Trop. Anim. Health Prod., 48: 1697-1702.
- Sadeghi, A. A., Mirmohseni, M., Shawrang,
 P. and Aminafshar, M. 2013. The Effect of Soy Oil Addition to the Diet of Broiler Chicks on the Immune Response. *Turk. J. Vet. Anim. Sci.*, 37(3): 264-270.
- Seifi, K., Rezaei, M., Yansari, A. T., Riazi,
 G. H., Zamiri, M. J. and Heidari, R. 2018.
 Saturated Fatty Acids May Ameliorate
 Environmental Heat Stress in Broiler Birds

- by Sffecting Mitochondrial Energetics and Related Genes. *J. Therm. Biol.*, **78**: 1-9.
- Soleimani, A. F., Zulkifli, I., Omar, A. R. and Raha, A. R. 2011. Physiological Responses of 3 Chicken Breeds to Acute Heat Stress. *Poult. Sci.*, 90(7): 1435-1440.
- 38. Taleb, Z., Sadeghi, A.A., Shawrang, P., Chamani, M. and Aminafshar, M. 2017. Effect of Energy Levels and Sources on the Blood Sttributes and Immune Response in Broiler Chickens Exposed to Heat Stress. J. Livest. Sci., 8: 123-144.
- 39. Trayhurn, P. and Wood, I. S. 2004. Adipokines: Inflammation and the Pleiotropic Role of White Adipose Tissue. *Br. J. Nutr.*, **92(3)**: 347-355.
- Teeter, R. G. and Belay, T. 1996. Broiler Management during Acute Heat Stress. Anim. Feed. Sci. Technol., 58(1-2): 127-142.
- Quinteiro-Filho, W. M., Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M. L., Sakai, M., Sá, L. R. M. D. and Palermo-Neto, J. 2010. Heat Stress Impairs Performance Parameters, Induces Intestinal Injury, and Decreases Macrophage Activity in Broiler Chickens. *Poult. Sci.*, 89(9): 1905-1914.
- Vandana, G. D., Sejian, V., Lees, A. M., Pragna, P., Silpa, M. V. and Maloney, S. K. 2021. Heat Stress and Poultry Production: Impact and Amelioration. *Inter. J. Biometeorol.*, 65: 163-179.

- 43. Xie, J., Tang, L., Lu, L., Zhang, L., Lin, X., Liu, H. C. and Luo, X. 2015. Effects of Acute and Chronic Heat Stress on Plasma Metabolites, Hormones and Oxidant Status in Restrictedly Fed Broiler Breeders. *Poult.* Sci., 94(7): 1635-1644.
- 44. Yang, J., Liu, L., Sheikhahmadi, A., Wang, Y., Li, C., Jiao, H. and Song, Z. 2015. Effects of Corticosterone and Dietary Energy on Immune Function of Broiler Chickens. *PLoS One*, 10(3): e0119750.
- Yaqoob, P. 2004. Fatty Acids and the Immune System: From Basic Science to Clinical Applications. *Proc. Nutr. Soc.*, 63(1): 89-105.
- 46. Yuan, L., Lin, H., Jiang, K. J., Jiao, H. C. and Song, Z. G. 2008. Corticosterone Administration and High-Energy Feed Results in Enhanced Fat Accumulation and Insulin Resistance in Broiler Chickens. *Br. Poult. Sci.*, 49(4): 487-495.
- 47. Zulkifli, I., Siegel, H. S., Mashaly, M. M., Dunnington, E. A. and Siegel, P. B. 1995. Inhibition of Adrenal Steroidogenesis, Neonatal Feed Restriction, and Pituitary-Adrenal Axis Response to Subsequent Fasting in Chickens. Gen. Comp. Endocrinol., 97(1): 49-56.
- 48. Zulkifli, I., Htin, N. N., Alimon, A. R., Loh, T. C. and Hair-Bejo, M. 2007. Dietary Selection of Fat by Heat-Stressed Broiler Chickens. *Asian-Austral. J. Anim. Sci.*, **20(2)**: 245-251.

اثر منبع و سطح انرژی جیره بر عملکرد، تیتر آنتی بادی و بیان نسبی ژن های اینترلوکین ۲ و ۶ در جوجه های گوشتی تحت تنش گرمایی

نعمت الله دیانی، محمد چمنی، پروین شورنگ، آسا ابراهیمی، و علی اصغر صادقی

چکیده

این مطالعه با هدف تعیین تأثیر سطوح و نوع منبع انرژی بر عملکرد رشد، تیتر آنتیبادی و بیان ژن های سیتوکینهای پیش التهابی در جوجههای گوشتی در معرض تنش گرمایی انجام شد. ۴۵۰ قطعه جوجه راس یک روزه در قالب طرح کاملا تصادفی در شش جیره آزمایشی و پنج تکرار قرار گرفتند. جوجه ها جیره های متمایز شده بر اساس منبع اصلی انرژی (دانه ذرت و روغن سویا) و سطح انرژی (برابر، ۳ یا ۶ درصد کمتر یا بالاتر از توصیه (Ross 308 دریافت کردند. تیمارها به شرح زیر بود: دانه ذرت و انرژی برابر با شاهد رCON) دانه ذرت، ۳ درصد کمتر(T1) ، دانه ذرت و دروغن سویا، ۶ درصد بیشتر (T3)، دانه ذرت و روغن سویا، ۶ درصد بیشتر (T5) دمای سالن از روز ۱۲ تا ۴۲ دره پرورش به ۳۴ درجه سلسیوس (۶ ساعت در روز) افزایش یافت تا تنش گرمایی ایجاد شود. بالاترین سطح کورتیکوسترون در گروه های ۲۱ تا ۲۲ دره پرورش به ۴۳ درجه سلسیوس (۶ ساعت در جوجه های دریافت کننده جیره ۲۶ گروه ۲۵ و بالاترین سطح بیان ژن های سیتوکین های پیش التهابی در جوجه های دریافت کننده جیره ۲۶ مشاهده شد. بیشترین ضریب تبدیل خوراک (FCR) در طول دوره رشد و پایانی در ۲۲ و کمترین تبدین خشی از گروه ۲۵ و T5 مشاهده شد. بیشترین ضریب تبدیل خوراک (FCR) در طول دوره رشد و پایانی در ۲۵ و کمترین بخشی از کاروه T3 و T5 مشاهده شد. تغذیه جوجه های گوشتی راس با جیره غذایی حاوی روغن به جای بخشی از غلات بر اساس انرژی پیشنهاد شده در کاتالوگ سویه توصیه می شود.

Effectiveness of *Bacillus thuringiensis* (Shigetane) Commercial Products against Tomato Leaf Miner, *Tuta absoluta* (Meyrick, 1917) (Lepidoptera: Gelechiidae)

Burcin Cicek¹, Mahmut Mete Karaca¹, and Kamil Karut^{1*}

ABSTRACT

The tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), is one of the most important pests causing significant economic losses in plant species belonging to the Solanaceae family. The preferred management method for T. absoluta currently involves insecticide application. However, beside the undesired effects of insecticides, chemical treatments can also negatively impact the efficiency of Integrated Pest Management programs (IPM). Bacillus thuringiensis (Shigetane 1902) (Bacillales: Bacillaceae) (Bt) is a pathogen with formulations used as host-specific bio-insecticides. These formulations decompose quickly in the environment, thereby reducing non-target effects and residue problems compared to chemical pesticides. In this study, the effectiveness of six commercial Bt products, belonging to aizawai and kurstaki strains, against T. absoluta was assessed under laboratory conditions, using manufacturerrecommended doses. The efficacy of the Bt products varied between 70 and 97.5%. The lowest and highest mortalities were recorded in B. thuringiensis var. aizawai and B. thuringiensis var. kurstaki products, respectively. Mortality reached 100% within three days following insecticide treatments, whereas peak mortality in Bt applications was noted after a post-treatment period of 15 days. These findings highlight the potential of certain Bt products as effective components of IPM programs for T. absoluta, suggesting the need for further field studies to optimize their use in agricultural practices.

Keywords: Development time, Host-specific bio-insecticides, IPM programs, Mortality.

INTRODUCTION

The tomato leaf miner, *Tuta absoluta* (Meyrick, 1917) (Lepidoptera: Gelechiidae), originating from South America, stands as one of the most economically detrimental pests affecting a range of plant species within the Solanaceae family (Miranda *et al.*, 1998; Garzia, 2009). Initially reported in Spain in 2006, the pest subsequently spread throughout Europe and the Mediterranean countries (Urbaneja *et al.*, 2007; Arno *et al.*, 2009). In Turkey, following its first appearance in 2009, it rapidly proliferated and emerged as a prominent pest in both greenhouse and field tomato cultivation (Kılıç, 2010; Karut *et al.*, 2011). *T. absoluta*

larvae feed between the two epidermal layers of tomato leaves, creating irregular transparent galleries that eventually turn brown, causing complete leaf desiccation. Furthermore, the larvae also feed on tomato fruits, and their excrement fosters an environment conducive to decay and the development of secondary microorganisms. Collectively, these damages result in significant losses in fruit quality and yield (Korycinska and Moran 2009; Desneux *et al.*, 2010).

Among the existing practices, the predominant method for controlling *T. absoluta* involves insecticide application (Tropea *et al.*, 2012; Roditakis *et al.*, 2018). However, due to the limited penetration of

¹ Department of Plant Protection, Faculty of Agriculture, Cukurova University, 01330, Adana, Turkiye.

^{*}Corresponding author; e-mail: karuti@cu.edu.tr

Çiçek et al.

insecticides into plant tissues and the rapid development of resistance attributed to T. absoluta's high reproductive capacity, chemical control alone often fails to yield the desired results (Biondi et al., 2018; Buragohain et al., 2021). Moreover, the intensive indiscriminate and use insecticides poses adverse effects on human and environmental health. Consequently, alternative control methods, such biological and biotechnical control, have gained preference for the better management of the pest (Lietti et al., 2005; Gonzales-Cabrera et al., 2011; Desneux et al., 2022).

Numerous natural enemies of T. absoluta from Hymenoptera and Hemiptera group of insects have been identified (Miranda et al., 1998; Marchiori et al., 2004; Luna et al., 2007; Bajonero 2008; Cabello et al., 2009; Kabiri et al., 2010; Doğanlar and Yiğit 2011). In addition to predators and parasitoids. microorganisms also employed for pest control (Buragohain et al., 2021). Bacillus thuringiensis (Shigetane 1902) (Bacillales: Bacillaceae) (Bt) is a unique soil-dwelling bacterium utilized in the biological control of *T. absoluta* (Palma et al., 2014; Dammak et al., 2016; Biondi et al., 2018). Commercial products derived from various subspecies of Bt are deployed in managing insect species across different families. While B. t var. kurstaki is effective against lepidopteron larvae, B. t var. israelensis and B. t var. tenebrionis are used to control mosquitoes and coleopteran pest species, respectively (Gelernter, Palma et al., 2014; Dammak et al., 2016).

Studies investigating the efficacy of *Bt* products against on *T. absoluta* commenced with *B. t* var. *kurstaki* (Btk), sourced from South America in the early 2000s. Giustolin *et al.* (2001) demonstrated *Btk* induced mortality across all developmental stages of *T. absoluta* larvae. Subsequently, there has been a notable increase in research assessing the efficacy of *Bt* products in managing the pest (Niedmann and Meza-Basso, 2006; Gonzalez-Cabrera, 2011; Sarr *et al.*, 2021). Niedmann and Meza-Basso (2006) revealed that two indigenous strains of Bt exhibited

lethal effects against T. absoluta in Chile. Gonzalez-Cabrera (2011) reported that the impact of T. absoluta could be significantly diminished by exclusively applying B. tbased formulations, obviating the need for chemical insecticides. Sarr et al. (2021) demonstrated a reduction in the proportion of damaged fruits and an improvement in tomato yield, particularly with application of Bt products. Furthermore, it has been revealed that more favorable outcomes in pest management could be achieved by combining Bt with various biocontrol agents (Gonzalez-Cabrera et al., 2011; Alsaedi et al., 2017; Jamshidnia et al., 2018; Asma et al., 2018).

Environmentally friendly agents such as *Bt* strains are essential for a sustainable Integrated Pest Management (IPM) program against tomato pests. Therefore, this study aimed to evaluate the effects of specific *Bt* commercial products with the potential to be used in biological control programs against *T. absoluta*.

MATERIALS AND METHODS

Host Plant Rearing

Tomato (*Lycopersicon esculentum* L.) cultivar Soray was used as a host plant in this study. The production of tomato plants was carried out in the specialized rearing room adjusted at 25±2°C and 70±5% humidity with long day lighting (16 Light: 8 Dark) hours. The plants were grown in pots (15 x15 cm) containing potting soil.

Tomato Leaf Miner Rearing

The initial population of *T. absoluta* was obtained from tomato fields of Adana, and bioassay studies were completed at Cukurova University, Faculty of Agriculture, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology. The production was carried out in three fully grown tomato plants in net

cages. The cages, each measuring 70×70×150 cm, were placed in the rearing room adjusted to 25±2°C and 70±5% humidity, with long-day lighting (16 Light:8 Dark) hours. To maintain the *T. absoluta* production, dead tomato plants were replaced with new healthy plants during mass rearing period.

Bacillus thuringiensis Products

In this study, six registered *Bt* products in Turkey were tested. In addition to those products, two commercial insecticides, spinetoram 120 g L⁻¹ (RadiantTM, Dow AgroSciences, Istanbul, Turkey), and spinosad 480 g L⁻¹ (LaserTM, Dow AgroSciences, Istanbul, Turkey), widely preferred in pest control by growers, were used as positive controls. The features and recommended doses of the products are given in Table 1. Except for Dacron, all products were registered against *T. absoluta*.

Bioassay Experiment

Leaves obtained from the upper half of 40 cm tall tomato plants were used in the experiments. The recommended doses of the products, given in Table 1, were prepared using distilled water, and were applied to the tomato leaves by leaf dipping method. In the process, the leaves were dipped in the prepared solution for three seconds, then, allowed to dry on a paper for 30 minutes under laboratory conditions. The petiole of the tomato leaves were wrapped in wet cotton to provide moisture and keep the leaves alive during the experiments. The leaves were placed in rectangular transparent plastic containers of 12×6×6 cm, where the lids were covered with nets for ventilation. One newly hatched first instar of *T. absoluta* larvae was transferred to each leaf with the help of a fine-tipped paint brush. The first instar larvae were obtained from T. absoluta eggs kept in cabinet adjusted to 25±1°C and 70±5% humidity. The larvae released on

leaves treated with distilled water were considered as the controls. The prepared units were placed in a cabinet adjusted to 25±1°C, 70±5% humidity, and long-day lighting (16 h Dark :8 h Light). Experimental units were checked daily, and the number of live/dead larvae and the development of the larvae that remained alive were recorded. The stages of the larvae were determined depending on the head capsules they left after each molting. A total of ten individuals were used per replicate, and each treatment was set up with 10 replicates (100 individuals) in bioassay experiments. The mean development time of larval instars was determined that remained alive and individuals completed the immature development (Kandil et al., 2020). To determine adult longevity, individuals reaching the adult stage were carefully transferred to separate containers, and provided with honey as a regular consistent food source. These containers were kept under controlled environmental conditions, including a temperature of 25±1°C, relative humidity of 70±5%, and a photoperiod of 16 h light/8 h dark. Each adult was observed daily, and their survival was recorded until death.

Statistical Analyses

Corrected mortality rates of 3, 7, 10, and 15 days after application and cumulative mortality were calculated using the Abbott formula (Abbott, 1925). Before conducting the analysis, we assessed the normality using the Shapiro-Wilk test and checked for homogeneity of variances using Levene's test. In case of violation of assumptions, the data were transformed using Log10(X+1)and arcsin for homogeneity of variances. The original data are presented in the results. Data were analyzed using the One-Way ANOVA, followed by separation of means using the Tukey test. All analyses were conducted using SPSS 25.0 (Chicago, IL, USA).

Table 1. Characteristis of Bacillus thuringiensis products and insecticides used in the experiments.

RESULTS

Effects of *B. thuringiensis* Products on Mortality of *Tuta absoluta*

The insecticides spinosad and spinetoram exhibited the highest cumulative mortality rates, both reaching 100%, indicative of their potent lethal effects. Delfin and Dacron, belonging to Bt category, followed with mortality rates of 97.5 and 92.5%, respectively, and statistically fell within the same group [F(7, 79)=9.74, P=0.0001]. The remaining Bt products demonstrated mortality rates ranging from 86.2 to 70.0%, showcasing variability in their effectiveness (Figure 1).

On the third day after application, 100% mortality was observed for spinosad and spinetoram, while Dipel exhibited a low rate of 1%. Mortality rates increased for all products by day 7, ranging from 9% for Agree to 50% for Delfin, signifying varied responses to the treatments. On day 10, all products, except Delfin (67%), exhibited mortality rates below 50%, indicating sustained but varied efficacy across treatments. On the 15th day, the highest and lowest mortality rates were observed in Delfin (94.2%) and Agree (55.2%), highlighting the durability and variability of the treatments (Table 2).

In the first instar larvae, the highest mean number of dead individuals was detected for Delfin (3.6), followed by Rebound (1.9) and Dipel (1.6). The three products differed statistically from the control experimental unit [F(6, 69)=10.1, P=0.0001]. No mortality was observed in Agree, which belonged to the same category as the control group. In the second instar larvae, the highest average numbers of dead individuals were found in Dacron (4.6), followed by Florbac (4.5). Other products showed varied mean mortality values between 0 and 2.8, and the differences were statistically significant [F(6, 69) = 16.08, P = 0.0001]. In the third instar larvae, the mean numbers of dead individuals were close to each other, with the highest in Agree and Dacron (2.8). All the products were statistically different from the control, but showed no difference between each other [F(6, 69)= 8.27, P= 0.0001]. In the fourth instar larvae, the

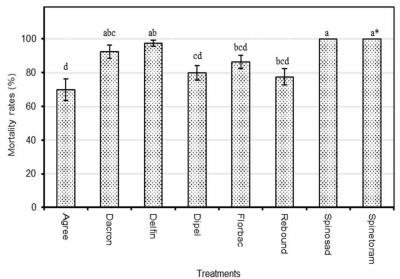


Figure 1. Cumulative mortality rates (\pm SE) of *Tuta absoluta* caused by different *Bacillus thuringiensis* products and two insecticides (Spinosad and Spinetoram). * Values with different letters denote statistically significant difference (Tukey; P< 0.05).

Ciçek et al.

highest mean mortality values determined as 2 for both Agree and Florbac. The values varied between 0.6 and 1.5 for the other products. In the pupal stage, the highest and lowest mean numbers of dead individuals were recorded for, respectively, Rebound (0.8), and Delfin (0.1). The statistical difference, however, was not significant [F(6, 69) = 1.40, P = 0.226]. In the sum of the first and second instars, the mean number of dead individuals exceeded approximately 50% for the three products, i.e. Dacron, Delphin and Florbac (Table 3).

Effects of *B. thuringiensis* Products on Development and Longevity of *Tuta absoluta*

In the first instar, statistically significant differences were observed in mean development times. The longest and shortest times were recorded for Dipel (4.37 days) and the control (3.33 days), respectively [F(5, 161)= 2.72, P= 0.02] (Table 4). In the second instar, the mean development times varied between 2.77 and 5.00 days. In the third instar, a statistically significant

Table 2. Corrected mortality rates (±SE) of commercial *Bacillus thuringiensis* (Bt)-based products and two insecticides (Spinetoram and Spinosad) after post-treatment period of 3, 7, 10 and 15 days.^a

Products			Days	
Froducts	3	7	10	15
Agree	$0.00\pm0.00^{b^*}$	9.00±3.48°	13.00 ± 3.34^{b}	55.25±4.38°
Dacron	0.00 ± 0.00^{b}	16.00 ± 4.00^{bc}	$44.00{\pm}6.86^a$	64.50 ± 7.00^{bc}
Delfin	0.00 ± 0.00^{b}	$50.00{\pm}7.60^a$	67.00 ± 9.07^{a}	94.25±3.07 ^a
Dipel	1.00 ± 1.00^{b}	32.00 ± 4.16^{ab}	46.00 ± 7.18^a	78.50 ± 4.47^{abc}
Florbac	0.00 ± 0.00^{b}	21.00 ± 4.33^{bc}	$45.00{\pm}7.49^a$	76.25 ± 6.57^{abc}
Rebound	0.00 ± 0.00^{b}	$26.00{\pm}6.15^{abc}$	37.00 ± 6.15^{ab}	82.25 ± 6.17^{ab}
Spinetoram	100 ± 0.00^{a}	-	-	-
Spinosad	$100{\pm}0.00^a$	-	-	-

^a Means within the same column with different letters denote statistically significant difference (Tukey; P<0.05).

Table 3. Mean (±SE) numbers of mortality of *Tuta absoluta* individuals at different larval instars treated with commercial *Bacillus thuringiensis* (Bt)-based products.^a

-	Larval instars and pupa										
Products	I	II	III	IV	Pupa						
Agree	$0.0\pm0.00^{c^*}$	2.0 ± 0.36^{bc}	$2.8{\pm}0.44^{a}$	2.0 ± 0.61^{a}	0.7 ± 0.30^a						
Dacron	0.5 ± 0.30^{bc}	4.6 ± 0.76^{ab}	$2.8{\pm}0.46^a$	1.2 ± 0.38^{a}	$0.3{\pm}0.30^{a}$						
Delphin	3.6 ± 0.61^{a}	$2.8{\pm}0.44^{abc}$	$2.0{\pm}0.55^a$	$1.4{\pm}0.26^{a}$	$0.1{\pm}0.10^{a}$						
Dipel	1.6 ± 0.54^{ab}	$2.5{\pm}0.54^{abc}$	$2.6{\pm}0.30^a$	1.5 ± 0.37^{a}	0.2 ± 0.13^a						
Florbac	1.0 ± 0.29^{bc}	$4.5{\pm}0.63^{a}$	$2.4{\pm}0.26^a$	0.6 ± 0.26^a	$0.3{\pm}0.15^{a}$						
Rebound	1.9 ± 0.62^{ab}	1.5 ± 0.16^{c}	$2.0{\pm}0.59^a$	2.0 ± 0.53^{a}	$0.8{\pm}0.29^a$						
Control	0.0 ± 0.00^{c}	$0.0\pm0.00^{\rm d}$	0.1 ± 0.10^{b}	0.6 ± 0.22^{a}	0.4 ± 0.22^{a}						

 $[^]a$ Means within the same column with different letters denote statistically significant difference (Tukey; P< 0.05).

Table 4. Mean (±SE) development time (day) of different larval stages, and adult longevity of *Tuta absoluta* calculated from the larvae do not dead and complated development after *Bacillus thuringiensis* treatment.^a

D. J.		Larval instars and pupa							
Products -	n	I	II	III	IV	Pupa	Total	Longevity	
Agree	24	$3.45{\pm}0.20^{ab^*}$	4.16 ± 0.48^{ab}	$4.54{\pm}0.37^a$	$3.54{\pm}0.24^{ab}$	8.12±0.06 ^a	23.83 ± 0.63^{ab}	12.33±1.13 ^{ab}	
Dacron	6	$4.33{\pm}0.42^{ab}$	$4.83{\pm}0.30^{a}$	$3.50{\pm}0.22^{ab}$	$3.66{\pm}0.33^{ab}$	$8.16{\pm}0.18^a$	24.50 ± 0.42^a	15.16±0.60 ^a	
Dipel	16	4.37 ± 0.32^{a}	$3.62{\pm}0.32^{ab}$	$3.37 {\pm} 0.28^{ab}$	3.56 ± 0.47^{ab}	8.12 ± 0.17^{a}	$23.06{\pm}0.50^{ab}$	13.68 ± 0.76^{a}	
Florbac	12	$3.91{\pm}0.28^{ab}$	5.00 ± 0.68^{a}	$3.33{\pm}0.28^{ab}$	$2.83{\pm}0.40^{ab}$	7.58 ± 0.19^{a}	$22.66 {\pm} 0.93^{abc}$	$8.66{\pm}1.00^{b}$	
Rebound	18	$3.66{\pm}0.19^{ab}$	2.77±0.26°	$2.88{\pm}0.25^{b}$	$4.22{\pm}0.40^a$	7.94±0.17 ^a	21.50 ± 0.49^{bc}	14.66 ± 0.94^{a}	
Control	86	3.33 ± 0.13^{b}	3.50 ± 0.14^{bc}	2.74 ± 0.09^{b}	2.72 ± 0.13^{b}	7.88 ± 0.07^{a}	20.27±0.26°	11.04±0.32 ^{ab}	

^a Means within the same column with different letters denote statistically significant difference (Tukey; P< 0.05).

difference in mean development times was observed, exceeding those of the control [F(5, 161)=9.62, P=0.0001]. In the pupal stage, mean development times were close to each other and did not show statistically significant differences [F(5, 161)=1.83, P=0.10]. Total mean development times ranged between 20.27 and 24.5 days, with statistically significant differences observed [F(5, 161)=12.7, P=0.0001]. Except for Florbac, adult longevities in all treatments were longer and statistically different from the control [F(5, 161)=6.42, P=0.0001] (Table 4).

DISCUSSION

Although there were statistical differences, the effectiveness of thuringiensis (Bt) products, manifested by mortality rates exceeding 70.0%, was confirmed in this study. Similarly, the effectiveness of Bt products on larval mortality of T. absoluta was confirmed under laboratory and greenhouse conditions (Hafsi et al., 2012; Birgücü et al., 2014; Jallow et al., 2019; Kandil et al., 2020; Sandeep Kumar et al., 2020a, b; Buragohain et al., 2021; Sarr et al., 2021). Although the application method is different, Hafsi et al. (2012) also found an average of 72.5% larval mortality seven days after the

treatment of the *Bt* product (Bt 32000) under laboratory conditions. Jallow *et al.* (2019) reported 55–65% mortality when secondinstar *T. absoluta* larvae were exposed to tomato leaves treated with *Bt* (Dipel).

It can be suggested that the high mortality rate in the first two larval stages, with over 50% mortality in three Bt products (Delfin, Florbac, and Dacron), could increase the success in the biological control of tomato leaf miner. Similar results were reported in different studies, and mortality in the first and second larval stages was found to be higher than the other larval stages (Giustolin et al., 2001; Gonzalez-Cabrera et al., 2011; Hashemitassuji et al., 2014). Coelho and França (1987) argued that this was because the new larva that emerged from the egg was feeding by chewing the leaf surface to reach the mesophyll layer. This behavior increases the chance of getting bacterial toxins into the digestive system of the larvae.

B. thuringiensis products prolonged the larval development period in infected individuals that survived and completed their development. These results were aligned with other researchers who demonstrated the effect of Bt products on T. absoluta larvae, reporting a significant increase in larval and pupal development periods (Kandil et al., 2020). Similar results were also reported for other lepidopteron pests. Yang et al. (2008) determined that the

_ Çiçek et al.

Bt YL17 isolate disrupted the development of the 3rd larval stage of *Spodoptera exigua* (Hübner, 1808) (Lepidoptera: Noctuidae), prolonged the total immature development. Erb et al. (2001) reported that Bt had a sub-lethal effect on Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Lymantridae) fourth instar larvae and prolonged the development period. Barker (1998) reported 12.4 days longer total immature development time for Bt treated Cochylis hospes (Walsingham, (Lepidoptera: Tortricidae) larvae compared to the control group. Similarly, Huarong et al. (2005) found that, after Bt applications, larval development of Ostrinia nubilalis (Hübner, 1796) (Lepidoptera: Pyralidae) was prolonged when compared to the control.

The mortality rates of the *Bt* products were found to be close to the that of the insecticides. However, the highest mortality rate (100%) was reached on the 3rd day in insecticide treatments, while it was reached on the 15^{th} day in Bt treatments. This could be due to the different modes of action of the insecticide and Bt. While insecticides lead to immediate death after application, mortality in Bt applications may occur after a few hours or weeks (Perez et al., 2015). B. thuringiensis strains generate toxins during both the initial sporulation phase and the growth stage, resulting in the formation of para-sporal crystalline inclusions. Upon ingestion by insects, these toxins dissolve within the midgut. Subsequently, midgut proteases trigger the toxins through proteolysis, binding them to precise receptors on the insect cell membrane. This binding results in cell disruption, ultimately leading to the death of the insect (Schnepf et al., 1998; Palma et al., 2014).

In this laboratory study, we demonstrated that *Bt* products are, at least, as effective as insecticides, but require more time to achieve the maximum mortality rate. Therefore, for a successful IPM program in greenhouses, these products should be applied repeatedly at specific time window (one week) supported with supplemental

application of other natural enemies, such as predators or parasitoids.

ACKNOWLEDGEMENTS

The authors thank Dr. Arif Arslan (Cargill, Alberta, Canada) and Mohammed A. Mohammed for language editing the manuscript.

REFERENCES

- Abbott, W. S. 1925. A. Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol., 18: 265– 267.
- Alsaedi, G., Ashouri A. and Talaei-Hassanloui, R. 2017. Evaluation of *Bacillus* thuringiensis to Control *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) under Laboratory Conditions. Agric. Sci., 8: 91– 599.
- 3. Arno, J., Sorribas, R., Prat, M., Matas, M., Pozo, C., Rodriguez, D., Garreta, A., Gomez, A. and Gabarra, R. 2009. *Tuta absoluta*, a New Pest in IPM Tomatoes in the Northeast of Spain. *IOBC/WPRS Bull.*, **49**: 203–208.
- Asma, C., Ons, I., Sabrine, B. and Kaouthar, L. 2018. Life-Stage-Dependent Side Effects of Selected Insecticides on Trichogramma cacoeciae (Marchal) (Hymenoptera: Trichogrammatidae) under Laboratory Conditions. Phytoparasitica, 46: 105–113.
- Aynalem, B. 2022. Empirical Review of *Tuta absoluta* Meyrick Effect on the Tomato Production and Their Protection Attempts. *Adv. Agric.*, Volume 2022, Article ID 2595470, 9 PP.
- 6. Bajonero, J. 2008. Biology and Life Cycle of *Apanteles gelechiidivoris* (Hymenoptera: Braconidae) Parasitoid of *Tuta absoluta* (Lepidoptera: Gelechiidae). *Agron. Colomb.* **26(3):** 417–426.
- 7. Barker, J. F. 1998. Effect of *Bacillus thuringiensis* subsp. *kurstaki* Toxin on the Mortality and Development of the Larval Stages of the Banded Sunflower Moth (Lepidoptera: Cochylidae). *J. Econ. Entomol.*, **91(5):** 1084–1088.

- Birgücü, A. K., Çelikpençe, Y., Karaca, İ. and Bayındır A. 2014. Growth Inhibitory Effects of Bio- and Synthetic Insecticides on *Tuta absoluta* (Meyrick, 1917) (Lepidoptera: Gelechiidae). *Turk. J. Entomol.*, 38(4): 389–400.
- Biondi, A., Guedes R. N. C., Wan F. H. and Desneux N. 2018. Ecology, Worldwide Spread, and Management of the Invasive South American Tomato Pinworm, *Tuta absoluta*: Past, present, and future. *Annu. Rev. Entomol.*, 63: 239-258.
- Buragohain P., Kumar Saikia, D., Sotelo-Cardona, P. and Srinivasan, R. 2021.
 Evaluation of Bio-Pesticides against the South American Tomato Leaf Miner, *Tuta absoluta* Meyrick (Lepidoptera: Gelechiidae) in India. *Horticulturae*, 7(9): 325.
- Cabello, T., Gallego, J. R., Vila, E., Soler, A., Del Pino, M., Carnero, A., Hernandez, E. and Polaszek, A. 2009. Biological control of the South American Tomato Pinkworn, *Tuta absoluta* with releases of *Trichogramma achaeae* in tomato greenhouses of Spain. *IOBC/ WPRS Bull.*, 49: 225–230.
- Coelho, M. C. F. and França, F. H. 1987.
 Biologia e Quemotaxia da Larva e Descriçao da Pupa e Adulto da Traça-do-Tomateiro. *Pesqui. Agropecu. Bras.*, 22: 129–135.
- 13. Dammak, M., Ben Khedher, S., Boukedi, H., Ikbel, C., Laarif, A. and Tounsi, S. 2016. Involvement of the Processing Step in the Susceptibility/Tolerance of Two Lepidopteran Larvae to *Bacillus thuringiensis* CrylAa Toxin. *Pestic. Biochem. Physiol.*, 127: 46–50.
- 14. Desneux, N., Han, P., Mansour, R., Arno, J., Brévault, T., Campos, M. R., Chailleux, A., Guedes, R. N. C., Karimi, J., Konan, K. A. J., Lavoir, A. V., Luna, M. G., Perez-Hedo, M., Urbaneja, A., Verheggen, F. J., Zappala, L., Abbes, K., Ali, A., Bayram, Y., Cantor, F., Andrew, G. S. Cuthbertson, A. G. S., Vis, R. D., Erler, F., Firake, D. M., Haddi, K., Hajjar, M. J., Ismoilov, K., Jaworski, C. C., Kenis, M., Liu, H. T., Madadi, H., Martin, T., Mazih, A., Messelink, G. J., Mohamed, S. A., Nofemela, R. S., Oke, A., Ramos, C., Ricupero, M., Roditakis, E., Shashank, P. R., Wan, F. H., Wang, M. H., Wang, S., Zhang, Y. B. and Biondi, A. 2022.

- Integrated Pest Management of *Tuta absoluta*: Practical Implementations across Different World Regions. *J. Pest Sci.*, **95**: 17–39.
- Desneux, N., Wajnberg, E., Burgio G., Arpaia, S., Wyckhuys-Kris A. G., Narvaez-Vasquez, C.A., Gonzalez-Cabrera, J., Tabone, E., Frandon J., Pizzol, J., Poncet C. and Urbaneja A. 2010. Biological Invasion of European Tomato Crops by *Tuta absoluta*: Ecology, Geographic Expansion and Prospects for Biological Control. *J. Pest Sci.*, 83: 197–215.
- Doğanlar, M. and Yiğit, A. 2011. Parasitoid Complex of the Tomato Leaf Miner, *Tuta absoluta* (Meyrick 1917), (Lepidoptera: Gelechiidae) in Hatay, Turkey. *KSU J. Nat. Sci.*, 14(4): 28–37.
- Erb S., Bourchier, R., van Frankenhuyzen, K. and Smith, S. 2001. Sublethal Effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the Tachinid Parasitoid Compsilura concinnata (Diptera: Tachinidae). Environ. Entomol., 30(6): 1174–1181.
- 18. Garzia, G.T. 2009. *Physalis peruviana* L. (Solanaceae), a Host Plant of *Tuta absoluta* in Italy. *IOBC/WPRS Bull.*, **49**: 231–232.
- 19. Gelernter W. 2004. The Rise and Fall of *Bacillus thuringiensis* tenebrionis. *Phytoparasitica*, **32**: 321–324.
- Giustolin, T. A., Vendramim, J. D., Alves, S. B., Vieira S. A. and Pereira, R. M. 2001. Susceptibility of *Tuta absoluta* (Meyrick) (Lep., Gelechiidae) Reared on Two Species of *Lycopersicon* to *Bacillus thuringiensis* var. kurstaki. J. Appl. Entomol., 125: 551–556.
- Gonzalez-Cabrera, J., Molla, O., Monton H. and Urbaneja, A. 2011. Efficacy of *Bacillus thuringiensis* (Berliner) in Controlling the Tomato Borer, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *BioControl*, 56: 71–80.
- 22. Hafsi, K. A., Chermiti, B. and Nasraoui, B. 2012. Response of the Tomato Miner *Tuta absoluta* (Lepidoptera: Gelechiidae) to Thirteen Insecticides in Semi-Natural Conditions in Tunisia. *Bull. OEPP/EPPO Bull.*, **42(2):** 312–316
- Hashemitassuji, A., Safaralizadeh, M. H., Aramideh, S. and Hashemitassuji, Z. 2014. Effects of *Bacillus thuringiensis* var. kurstaki and Spinosad on Three Larval

- Çiçek et al.

- Stages 1st, 2nd and 3rd of Tomato Borer, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in Laboratory Conditions. *Arch. Phytopathol. Plant Prot.*, **48(5):** 377–384.
- 24. Huarong, L., Oppert, B., Higgins, R. A., Huang, F., Buschman, L. L. and Zhu, K. Y. 2005. Susceptibility of Dipel Resistant and Susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to Individual Bacillus thuringiensis protoxins. J. Econ. Entomol., 98(4): 1333–1340.
- Jallow, M. F. A., Dahab A. A., Albaho, M. S. and Devi, V. Y. 2019. Efficacy of Some Biorational Insecticides against *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) under Laboratory and Greenhouse Conditions in Kuwait. *J. Appl. Entomol.*, 143: 187–195.
- Jamshidnia, A., Abdoli, S., Farrokhi, S. and Sadeghi, R. 2018. Efficiency of Spinosad, Bacillus thuringiensis and Trichogramma brassicae against the Tomato Leafminer in Greenhouse. BioControl, 63: 619–627.
- 27. Kabiri, F., Vila, E. and Cabello T. 2010. Trichogramma achaeae: An Excellent Biocontrol Agent against Tuta absoluta. Sting Newsletter Biol. Control, 33: 5–6.
- Kandil, M. A., Abdel-Kerim R. N. and Moustafa M. A. 2020. Lethal and Sub-Lethal Effects of Bio-and Chemical Insecticides on the Tomato Leaf Miner, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *Egypt. J. Biol. Pest Control*, 30: 1–7.
- Karut, K., Kazak, C., Döker, I. and Ulusoy, M. R. 2011. Mersin ili Domates Seralarında Domates Yaprak Galeri Güvesi *Tuta* absoluta (Meyrick. 1917) (Lepidoptera: Gelechiidae)'nın Yaygınlığı ve Zarar Durumu. *Turk. Entomoloji Derg.*, 35(2): 339–347. (in Turkish with abstract in English)
- Kılıç, T. 2010. First Record of *Tuta absoluta* in Turkey. *Phytoparasitica*, 38: 243–244.
- 31. Korycinska, A. and Moran, H. 2009. Plant Pest Notice: South American Tomato Moth, *Tuta absoluta. Dep. Environ. Food Rural Aff. Food Environ. Res. Agency (Fera)*, **56**: 1–4.
- Lietti, M. M. M., Botto, E. and Alzogaray,
 R.A. 2005. Insecticide Resistance in Argentine Populations of *Tuta absoluta*

- (Meyrick) (Lepidoptera: Gelechiidae). *Neotrop. Entomol.*, **34(1):** 113–119.
- Luna, M. A. G., Sanchez, N. and Pereyra,
 P.C. 2007. Parasitism of *Tuta absoluta* (Lepidoptera: Gelechiidae) by
 Pseudapanteles dignus (Hymenoptera,
 Braconidae) under Laboratory Conditions.
 Environ. Entomol., 36(4): 887–893.
- 34. Marchiori, C. H., Silva, C. G. and Lobo, A. P. 2004. Parasitóides de *Tuta absoluta* (Meyrick, 1917) (Lepidoptera: Gelechiidae) Coletados em Plantas de Tomate em Lavras, Estado de Minas Gerais, Brasil. *Braz. Arch. Biol. Technol.*, 50(6): 434–437.
- Miranda, M. M., Picanço, M., Zanuncio, J. C. and Guedes, R. N. C. 1998. Ecological Life Table of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *Biocontrol Sci. Technol.*, 8: 597–606.
- 36. Niedmann L. L. and Meza-Basso, L. 2006. Evaluation of Native Strains of *Bacillus thuringiensis* as an Alternative of Integrated Management of the Tomato Leaf Miner (*Tuta absoluta* Meyrick; Lepidoptera: Gelechiidae) in Chile. *Agric. Téc.*, 66(3): 235–246.
- Palma L., Muñoz, D., Berry, C. Murillo, J. and Caballero, P. 2014. *Bacillus thuringiensis* Toxins: An Overview of Their Biocidal Activity. *Toxins*, 6(12): 3296–3325.
- 38. Perez, J., Bond, C., Buhl, K. and Stone, D. 2015. *Bacillus thuringiensis (Bt) General Fact Sheet.* National Pesticide Information Center, Oregon State University Extension Services.
- http://npic.orst.edu/factsheets/btgen.html. 39. Roditakis, E., Vasakis, E., Garcia-Vidal, L.,
- Del Rosario, M. A. M., Rison, J. L., Haxaire-Lutun, M. O., Nauen, R., Tsagkarakou, A. and Bielza, P. 2018. A Four-Year Survey on Insecticide Resistance and Likelihood of Chemical Control Failure for Tomato Leaf Miner *Tuta absoluta* in the European/Asian Region. *J. Pest Sci.*, 91(1): 421–435.
- Sandeep, Kumar, J., Jayaraj, J., Shanthi, M., Theradimani, M., Venkatasamy, B., Irulandi, S. and Prabhu, S. 2020a. Potential of Cry1Ac from Bacillus thuringiensis against the Tomato Pinworm, Tuta absoluta (Meyrick) (Gelechiidae: Lepidoptera). Egypt. J. Biol. Pest Control, 30: 8.
- 41. Sandeep Kumar, J., Jayaraj, J., Shanthi, M., Theradimani, M., Venkatasamy, B.,

- Irulandi, S. and Prabhu, S. 2020b. Potential of Standard Strains of *Bacillus thuringiensis* against the Tomato Pinworm, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae). *Egypt.J. Biol. Pest Control*, **30**: 123.
- 42. Sarr, O. M., Bal, A. B., Fossati-Gaschignard O. and Gauthier, N. 2021. Effectiveness of Two Biopesticides against the Invasive Tomato Pest *Tuta absoluta*. *Entomol. Exp. Appl.*, **169**: 674–685.
- Schnepf, E., Crickmore, N., van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. 1998. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev., 62: 775–806.
- 44. Tropea Garzia, G. G., Siscaro, G., Biondi, A. and Zappalà, L. 2012. *Tuta absoluta*, a South American Pest of Tomato Now in the EPPO Region: Biology, Distribution, and Damage. *EPPO Bull.*, **42(2)**: 205-210.
- Urbaneja, A., Vercher, R., Navarro, V., García Marí, F. and Porcuna, J. 2007. La Polilla del Tomate, *Tuta absoluta. Phytoma España*, 194: 16–23.
- 46. Yang, X., Oluwafemi, A. R. and Zhang, H. 2008. Screening of Highly Toxic *Bacillus thuringiensis* and Its Effects on the Growth and Development of *Spodoptera exigua* (Lepidoptera: Noctuidae). *Entomol. Gen.*, 31(1): 95–104.

اثربخشی محصولات تجاری (Shigetane) علیه مینوز برگ گوجه Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) فرنگی،

بورچین چیچک، محمود مته کاراجا، و کامیل کاروت

چکیده

مینوز برگ گوجهفرنگی، (Lepidoptera: Gelechiidae) بیکی از مهنوز برگ گوجهفرنگی، (Solanaceae مینوز برگ گوجهفرنگی، (Lepidoptera: Gelechiidae) با این حال است که خسارات اقتصادی قابل توجهی را در گونههای گیاهی متعلق به خانواده اعجاد می کند. در حال حاضر، روش مدیریت ترجیحی برای T. absoluta شامل استفاده از حشره کش است. با این حال، علاوه بر اثرات نامطلوب حشره کشها، درمانهای شیمیایی میتوانند بر کارایی برنامههای مدیریت تلفیقی آفات (IPM) نیز تأثیر منفی بگذارند. باسیلوس تورینجینسیس (شیکتان 1902) (Bacillales: (1902) الفیقی آفات (IPM) نیز تأثیر منفی بگذارند. باسیلوس تورینجینسیس (شیکتان عشوی راستی (It) (Ipm) مخصوص میزبان استفاده می شود.این فرمولاسیونهای آن به عنوان حشره کشهای زیستی (insecticides نتیجه اثرات غیرهدف (non-target problems) را در مقایسه با آفت کشهای شیمیایی کاهش می دهند. در این مطالعه، اثربخشی شش محصول تجاری Bt، متعلق به سویههای شیمیایی کاهش می دهند. در این مطالعه، اثربخشی شش محصول تجاری Bt، متعلق به توسط سازنده ارزیابی شد. اثربخشی محصولات Bt بین ۷۰٪ و ۹۷.۵٪ متغیر بود. کمترین و بیشترین میزان هرگ و میر به ترتیب در محصولات Bt بین ۷۰٪ و ۱۹۷.۵٪ متغیر بود. کمترین و بیشترین میزان مرگ و میر به ترتیب در محصولات Bt بین ۱۷۰٪ و ۱۹۷.۵٪ متغیر در حالی که اوج مرگ و میر در در می و میر ظرف سه روز پس از تیمار با حشره کش به ۲۰۰٪ رسید، در حالی که اوج مرگ و میر در در این مطالعه ثبت شد. مرگ و میر ظرف سه روز پس از تیمار با حشره کش به ۲۰۰٪ رسید، در حالی که اوج مرگ و میر در در این مطالعه شد. مرگ و میر ظرف سه روز پس از تیمار با حشره کش به ۲۰۰٪ رسید، در حالی که اوج مرگ و میر در

کاربردهای Bt ، ۱۵ روز پس از آن مشاهده شد. این یافتهها، استعداد برخی از محصولات Bt را به عنوان اجزای مؤثر برنامههای IPM برای T. absoluta برجسته می کند و نیاز به مطالعات میدانی بیشتر برای بهینهسازی استفاده از آنها را در فعالیتهای کشاورزی نشان می دهد.

Fitness Enhancement by Crosses between Two Populations of Trissolcus vassilievi (Hymenoptera: Scelionidae)

Shahzad Iranipour¹, Parisa Benamolaei²*, and Shahriar Asgari³

ABSTRACT

Trissolcus vassilievi (Mayr) (Hymenoptera: Scelionidae) is one of the most important egg parasitoids of the Common Sunn Pest (CSP), Eurygaster integriceps Puton (Hemiptera: Scutelleridae) in Iran. In this study, the fitness of two populations of T. vassilievi was studied on two populations of hosts in terms of life history parameters. Two populations of both T. vassilievi and the host, CSP were selected: (1) Tabriz (as a temperate area), and (2) Varamin (as a subtropical area), for CSP. Moreover, regarding that outcrossing between populations can produce progeny with superior characteristics, the progeny of reciprocal crosses between original populations also were examined on a single host. The crosses between the two populations caused 13.9-18.5% higher net fecundity than maternal populations, which suggests fecundity to be a function of maternal phenotype. The intrinsic rate of increase showed minor differences among treatments, which varied between 0.291±0.003 to 0.305±0.003. The partial advantage of Varamin wasps over Tabriz, and the crosses over the original populations was obvious. Such differences may be used to obtain more efficient parasitoids in augmentation programs.

Keywords: Intrinsic rate of increase, Life expectancy, Net reproduction rate, Parasitoid wasp, Reciprocal crosses.

INTRODUCTION

The biological fitness of a living organism is the relative ability of an organism to survive and pass on its genes to the next generation (Krebs and Davies, 1993). This is possible through birth (transferring more proportion of genes to the next generation) in the shortest possible time (high speed of gene transcription) and the ability of progeny to survive (persistence of the genes). Therefore, the developmental rate, the mortality rate at all stages of life, and fecundity are relevant features of fitness and the ability of a living organism to compete with other species. These characteristics can

be examined as life tables and stable population growth models (Lotka, 1907a, b; Portilla et al., 2014). So far, several studies have investigated the stable population growth parameters in egg parasitoids of Common Sunn Pest (CSP), Eurygaster integriceps Puton (Hem., Scutelleridae), and related stinky bugs. These are dominantly on *Trissolcus* spp. and Telenomus (Hymenoptera: Scelionidae) (Asgari and Kharrazi Pakdel, 1998; Laumann et al., 2008; Amir-Maafi and Parker, 2011; Nozad-Bonab et al., 2014; Bazavar et al., 2015; Benamolaei et al., 2015a, b; Abdi et al., Teimouri et al., 2019), 2017; Ooencyrtus spp. (Hymenoptera: Encyrtidae)

¹ Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran.

² Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Islamic Republic of Iran.

³ Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: p.benamolaei@tabrizu.ac.ir

(Ahmadpour et al., 2013; Mele et al., 2024).

There is little information about intra- and inter-specific variation of survival value and reproductive potential of egg parasitoids of CSP, and it is limited to few studies. In the 1970s, several species of CSP's eggparasitoids, collected from different regions of the world, were transferred to the former Soviet Union and compared with native especially Trissolcus species, grandis laboratory (Thomson), in and field conditions. The overall result of this study showed that native species had superiority and it was due to the adaptation of native species to climatic and seasonal conditions (Nouri et al., 2011). Awan et al. (1990) compared three geographical populations of T. basalis (Wollaston) collected from France, Italy, and Spain regarding biological behavioral characteristics. emergence rate of adult wasps from Nezara viridula (L.) eggs was significantly higher in the French population than in the Italian and Spanish ones. The development of immature stages of the Italian population was significantly longer than the other two populations. Taghadosi et al. (1993) and Nozad Bonab et al. (2014) observed differences among populations of *T. grandis* Tehran-Alborz-Oazvin and East Azarbaijan provinces, respectively. comparison of biostatistics of Scelionidae by Amir-Maafi (2010) during 2004-2006 in of Iran revealed different provinces significant differences between species and populations of the wasps. Fecundity, oviposition period, and gross and net reproductive rates differed between species or populations. The net fecundity of T. vassilievi (Mayr) from Lorestan and Tehran was 240.8 and 227.5 eggs, respectively, which was 2.5 times the other populations. The highest intrinsic rate of increase of T. grandis, T. semistriatus (Nees), and T. vassilievi was recorded for Golestan, West Azarbaijan, and Tehran provinces. respectively.

It can be seen from the above reports that inter-specific and intra-specific differences in the parasitism rate and population growth

rate of the parasitoid wasps are sometimes very considerable. Therefore, in this study, we attempted to study the differences between two populations of T. vassilievi with temperate (Tabriz) and subtropical (Varamin) origins simultaneously. On the other hand, since the parasitoid spends all immature stages within the host body, it can be affected by the host's quality, so the host population was also included as a second variable. Finally, the hypothesis was tested to find if crosses between populations could enhance the fitness of populations. Tabriz-Therefore, crosses as female×Varamin-male (T×V) and Varaminfemale×Tabriz-male (V×T) were conducted to evaluate the possibility of obtaining populations with superior or intermediate characteristics.

MATERIALS AND METHODS

Cultures of Eurygaster integriceps Puton

Adult bugs were collected on several occasions at the end of the winter from mountains around Tabriz and Varamin before leaving the resting sites. Collecting of specimens were continued in wheat fields during post diapause phase. The collected insects were transferred to a greenhouse unit of the Department of Plant Protection, Faculty Agriculture. University of Tabriz. Transparent rectangular cubic plastic containers (20×30×9 cm) equipped with a mesh cap for ventilation were used for the rearing of both populations. Dry wheat grain was used as a foodstuff and soaked cotton balls as a water source. The paper strips folded fan-like to serve as an oviposition substrate. These insects were exposed to 25±2°C, 40±10% RH, and 16:8 h L:D photoperiod (Iranipour et al. 2015).

Cultures of Trissolcus vassilievi (Mayr)

In this study, two original populations of *T. vassilievi*, namely, one from Tabriz (1360

AMSL, 46°E, 38°N) and the other from Varamin (918 AMSL, 51°E, 35°N) were examined. To collect egg parasitoids, host egg traps (yellow cardboards, 5×15 cm, folded twice to construct a Δ -shaped structure) were used (Safavi, 1973). The traps were tied to wheat ears and removed after one week. Then, the parasitized eggs were transferred to glass vials (1.5×10 cm) and kept in a growth chamber (Iran Khodsaz Co., IKH.RH model) under constant conditions (26±1°C, 50±5% RH and 16:8 h L:D photoperiod). The emerged wasps were identified by the identification key of Kozlov and Kononova (1983). After rearing for one generation, males and females of the second generation from the same population were randomly coupled and each pair was transferred to a similar vial supplied by the host eggs of either population. Small drops of honey were used to feed the wasps.

Fecundity-Life Table Studies

Ten clutches of 24-hour-old CSP eggs (14 eggs per clutch) from each population were exposed to 48-hour-old mated T. vassilievi females of the second-generation of each population. After 24 hours, females were removed and the host eggs were kept as a life table cohort in the so-called growth chambers to determine their fate. The experiment was conducted as a factorial experiment in a completely randomized design framework, with two factors including wasp and host populations, respectively; each one in two levels that were represented as TT, TV, VT, and VV (original populations); where, the first letter delineates the parasitoid origin, and the second one the host origin (T= Tabriz, V= Varamin). Twenty pairs of third-generation wasps from each population were coupled randomly, and five clutches of 24-hour-old CSP eggs were offered daily until death. The fate of host eggs was followed by daily checks, and the date of emergence was recorded separately for males and females.

In the next step, the progeny of the third generation of the two populations was reciprocally crossed to the other population. Thus, two kinds of the cross were present: Tabriz females×Varamin males (T×V) and Varamin female×Tabriz males (V×T). Considering the non-significant effect of the host, the outcrossed wasps were studied only on CSP eggs of Varamin in the same manner described for original populations.

Measures of Stable Population Growth Parameters

The method described by Carey (1993) was used to calculate life table parameters and entropy (Equation 1).

$$H = \frac{\sum_{\kappa=0}^{\omega} \theta_{\kappa} d_{\kappa}}{\theta_{0}} \tag{1}$$

 e_0 , e_x , and d_x represent life expectancy at age 0, and life expectancy and mortality distribution at age x, respectively, summed over ages 0 to ω (the last death event), and H denotes entropy.

The entropy values less than, equal to, and greater than 0.5 represent the survivorship curves of type I (convex), type II (straight line), and type III (concave), respectively. Stable population growth parameters, including Gross Reproduction Rate (GRR), net Reproduction rate (R₀), mean generation Time (T), Doubling Time (DT), intrinsic rate of increase (r_m) , finite rate of increase (λ) , intrinsic birth rate (b), and intrinsic death rate (d) were estimated. The r_m-value was calculated by solving the Lotka equation using iterative calculations of the Newton-Raphson method as follows:

$$\sum_{x=0}^{\omega} e^{-r_m x} l_x m_x = 1 \tag{2}$$

 l_x and m_x represents survival rate and fecundity at age x respectively, r_m denotes intrinsic rate of increase, and \sum , ω , and e are symbols of summation, last event of cohort and natural logarithm base respectively.

To determine the standard error of the above statistics, we used bootstrap methods in 1000 replicates (Meyer *et al.*, 1986). Estimation of the parameters was carried out by a program in Excel (Iranipour, 2018).

Statistical Analyses

Statistical analysis was performed using SPSS software. Since the host-effect was nonsignificant in all parameters, this factor was excluded from analysis and comparison between main populations and crossed populations was done by One-Way ANOVA. The means were compared by Tukey's test at 0.05 significance level. Bootstrap estimates of r_m and the other stable population growth parameters were also compared among the main populations and crosses. Pairwise comparisons between those treatments were done by the random pairing of estimates, and the differences of randomly paired values were ranked from the smallest to the largest value. Then 25 boundary values from both ends were excluded and 950 median values were considered as 95% Confidence Interval (CI). If 95% CI included zero, no significant difference between the two treatments was interpreted.

RESULTS

Life History Parameters of T. vassilievi

In life table studies, two populations of *T. vassilievi* were compared on two host populations (Table 1), and due to the insignificant effect of the host and their interactions, the host effect was excluded from the analysis. The wasps from the crosses on the Varamin host were compared with their parental populations only on the Varamin host.

Analysis of variance showed that there was a significant difference in the longevity of both females and males when crosses were included as well (Tabriz population, Varamin population, $T \times V$, and $V \times T$ crosses; $F_{3,76} = 3.62$, P = 0.017 for female longevity, and $F_{3,76} = 3.12$, P = 0.031 for male longevity). The highest longevity of females and males was observed in Tabriz and Varamin wasps, respectively (Table 2).

Female wasps from the crosses showed intermediate longevity of the two populations, so, their differences were not significant with either population. However, the male progeny of the crosses had a shorter lifespan than their parents (Table 2). Females lack a pre-oviposition period. The mean oviposition period of T. vassilievi females was significantly higher in the Varamin population than in Tabriz and cross populations ($F_{3,76}$ = 4.36, P= 0.007). The total fecundity of T. vassilievi females significantly higher in cross populations than those of parental populations ($F_{3.76}$ = 22.38, P< 0.001). Females of crosses laid 8-29% more eggs than both populations. The highest fecundity was observed in T×V. Almost in all cases, maximum oviposition occurred on the first day of life and declined to zero with a non-linear trend in less than three weeks (Figure 1). The highest fecundity was obtained in T×V, and V×T crosses, respectively, followed by the original populations (Table 2). The age-specific sex ratio (proportion of females) declined at senescence (Figure 2).

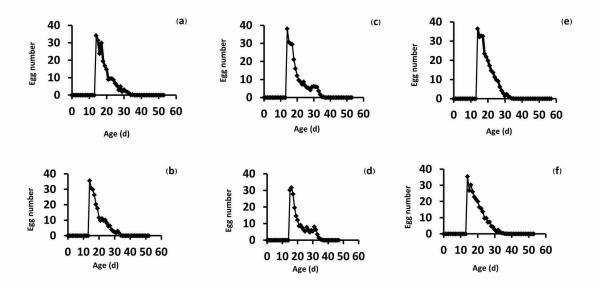
Life Tables and Survivorship Curves of T. vassilievi

Age-specific mortality (q_x) of T. vassilievi in all treatments increased by age. The results showed that mortality seldom occurs during and prior to oviposition. The survivorship

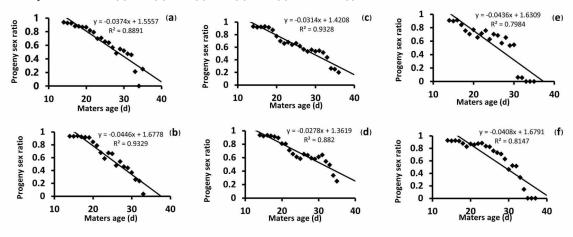
Table 1. Analysis of variance of life history components of the two populations of *T. vassilievi* on two populations of sunn pest eggs. ^a

Donomoton	Wasp		Host		Wasp × Host	
Parameter	F	P	F	P	F	P
Female longevity	14.61	< 0.001	1.74	0.191	0.42	0.519
Male longevity	3.43	0.068	0.00	1.000	0.01	0.939
Oviposition period	29.41	< 0.001	0.31	0.580	0.17	0.678
Post-oviposition period	36.66	< 0.001	1.54	0.219	0.31	0.578
Total fecundity	24.16	< 0.001	1.80	0.183	1.58	0.212
Average daily fecundity	0.00	0.949	2.37	0.128	0.84	0.364
Sex ratio	0.04	0.847	0.01	0.932	0.22	0.641

^a df for all treatments= 1,76.


Table 2. Reproductive parameters of two *T. vassilievi* populations on two CSP populations and crosses as T×V and V×T.^a

Treatments	TT	VT	TV	VV	$T \times V$	$V \times T$
Female longevity (d)	31.80±1.19A	28.25±1.14B	31.05±1.15Aa	26.05±0.86Bb	29.90±1.50ab	$28.10 \pm 1.23 ab$
Male longevity (d)	19.60±0.49A	20.75±0.55A	19.55±0.41Aab	20.80±0.95Aa	$18.30\pm0.32b$	18.75±0.32ab
Oviposition period (d)	18.50±0.41A	20.60±0.37B	18.45±0.39Ab	20.25±0.23Ba	18.40±0.48b	$18.60\pm0.53b$
Post oviposition period (d)	13.30±1.08A	7.65± 1.15B	12.60±1.02Aa	5.80±0.84Bb	11.50±1.39a	9.50±1.01ab
Life time fecundity	216.90±5.36A	249.30±5.07B	230.55±6.02Ac	249.75±4.30Bb	280.40±2.77a	269.50±4.80a
Daily egg	11.80±0.34A	12.13±0.23A	12.63±0.49Ab	12.34±0.20Ab	15.46±0.47a	14.67±0.43a
Sex ratio	$0.82\pm0.03A$	$0.82\pm0.02A$	0.82±0.02Aa	0.82 ± 0.02 Aa	$0.78\pm0.05a$	0.86±0.01a


" Means bearing the same letter in a row are not significantly different (Tukey's HSD, α = 0.05). Capital letters are for comparison between original populations and lower cases are for comparison between original populations and reciprocal crosses reared on the Varamin host.

Iranpour et al.

Figure 1. The trend of Oviposition of two T. vassilievi populations on two CSP populations and their reciprocal crosses: (a) TT, (b) TV, (c) VT, (d) VV, (e) T \times V, and (f) V \times T.

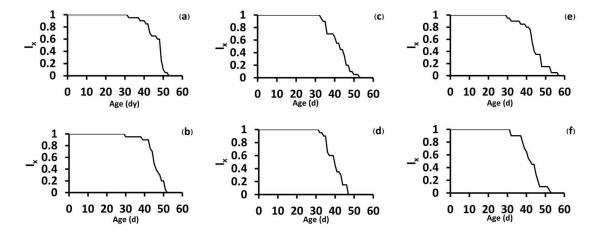


Figure 2. Age-specific sex ratio of two T. vassilievi populations on two CSP populations and their reciprocal crosses: (a) TT, (b) TV, (c) VT, (d) VV, (e) T \times V, and (f) V \times T.

curve of T. vassilievi was from type I (H< 0.5) in all treatments (Figure 3, Table 3). The life expectancy (e_x) decreased linearly from birth to death (Figure 4). The life expectancy of T. vassilievi at birth and emergence, as well as under the curve area of e_x and N_x are shown in Table 3.

Reproduction Tables for T. vassilievi

The reproductive parameters of T. vassilievi on CSP eggs are shown in Table 4. Varamin population has higher gross and net fecundity and fertility rates than Tabriz population. The crosses had higher values of these parameters than the main populations, with the highest value in $T \times V$. The emergence rate of wasps was very high,

Figure 3. The survivorship curve of two T. vassilievi populations on two CSP populations and their reciprocal crosses: (a) TT, (b) TV, (c) VT, (d) VV, (e) T \times V, and (f) V \times T.

Table 3. Life table statistics of two *T. vassilievi* populations on two CSP populations and their reciprocal crosses under laboratory conditions.

Treatments	TT	TV	VT	VV	$T \times V$	V×T
Entropy	0.078	0.090	0.114	0.097	0.119	0.112
Life expectancy at birth	45.9	45.1	41.8	39.55	43.75	42.05
Life expectancy at adult emergence	31.9	31.1	27.8	25.55	29.75	28.05
Under curve area of N _x (Insect-day)	928	912	846	801	885	851
Under curve area of life expectancy e _x	1108.42	1070.47	945.75	832.91	1050.67	956.47

Figure 4. The life expectancy of two T. vassilievi populations on two CSP populations and their reciprocal crosses: (a) TT, (b) TV, (c) VT, (d) VV, (e) T \times V, and (f) V \times T.

ranging from 92% to 94%. The mean age of emergence was lower in Tabriz wasps and higher in Varamin than in the other treatments. The mean reproductive age for *T. vassilievi* was around 19 days. Other variables are shown in Table 4.

Stable Population Growth Parameters of *T. vassilievi*

Bootstrap estimates of stable population growth parameters of *T. vassillievi* on CSP eggs and their statistical comparisons are shown in Table 5. No significant difference was observed between values in columns 1

Table 4. Reproductive parameters of *T. vassilievi* on sunn pest eggs.

Treatments	TT	TV	VT	VV	$T \times V$	V×T
Gross fecundity rate	201.53	212.20	229.53	232.56	262.21	250.98
Net fecundity rate	201.39	211.80	229.05	231.80	261.76	250.67
Gross fertility rate	187.20	195.60	211.89	216.52	245.29	234.19
Net fertility rate	187.09	195.26	211.48	215.85	244.97	233.96
Gross hatch rate	0.93	0.92	0.92	0.93	0.94	0.93
Mean age hatch (d)	24.67	24.23	25.97	25.28	24.70	24.95
Mean age gross fecundity (d)	19.17	19.30	19.72	19.82	19.15	19.40
Mean age net fecundity (d)	19.16	19.28	19.69	19.78	19.13	19.38
Mean age gross fertility (d)	19.04	19.11	19.53	19.61	19.01	19.22
Mean age net fertility (d)	19.03	19.09	19.50	19.57	18.99	19.21
Mean egg per day	5.17	5.58	5.89	7.05	6.24	6.44
Mean fertile egg per day	4.80	5.15	5.43	6.56	5.84	6.00
Eggs/Female/Day	6.31	6.81	8.24	9.07	8.95	5.96
Fertile eggs/Female/day	5.86	6.28	7.61	8.45	8.37	5.56

and 2, neither between columns 3 and 4. These comparisons refer to host populations and indicate the non-significant effect of the host. In contrast, comparisons between parasitoids of original populations (either between columns 1 and 3 or between columns 2 and 4) indicate significant differences in some parameters. parasitoid of Varamin example, the population exhibited a higher level of reproduction (both GRR and R₀) compared to Tabriz population. On the other hand, T. vassilievi from Varamin origin exhibited a higher rate of population increase, finite population increase, birth rate, and shorter doubling time. Crosses showed a higher reproduction rate than both original populations, with a minor advantage of V×T. In addition, their r_m-values were slightly higher than Tabriz parasitoids. Crossing between the two populations resulted in a 13.9 to 18.5% higher net reproduction rate than the maternal populations and 7.7 to 25.2% than the paternal ones. It seems that the reproductive phenotype of the progeny of outcrosses followed the maternal phenotype. The other statistics are also presented in Table 5. Estimates of stable age distribution (C_x) showed that adults make about 1% of a stable population.

DISCUSSION

In the present study, two geographical populations of T. vassilievi were compared in terms of life history parameters by considering two host populations. Outcrosses between populations with the aim of improving parasitoid fitness and breeding parasitoids with superior characteristics were also carried out. Overall, it can be stated that the parasitoids of Varamin population had a minor advantage over the Tabriz wasps. The most significant difference was in their reproductive rate, which was 8-15% higher in Varamin wasps. Increased reproduction was due to 2-days longer oviposition period in Varamin wasps. However, the daily fecundity rate was similar in both groups and did not differ significantly. Therefore, it can be concluded that wasps increase their reproduction by lengthening the oviposition period rather than increasing daily fecundity. Hence, the best way to improve the efficiency of these wasps is to select wasps with longer reproductive periods. Higher fecundity, on the other hand, reduced female longevity: Varamin females lived four days less, while the males lived one day more than the Tabriz population. The above statements were not true for crosses. The daily and total fecundity of the cross wasps increased independent of the oviposition period, as

Fable 5. Population growth parameters of two populations of T. vassilievi on two populations of sunn pest and their reciprocal crosses under laboratory conditions.

Treatments	TT	TV	VT	VV	$T\times V$	V×T
GRR (Female/Generation)	168.21±7.24C	172.00±5.06C	188.10±5.93B	$190.34\pm4.03B$	208.38±11.06AB	216.38±4.85A
R ₀ (Female/Generation)	168.14±7.23C	172.00±5.06C	187.95±5.96B	189.86±4.04B	208.23±11.13AB	216.22±4.90A
$r_{m}(d^{-1})$	0.291±0.0033C	0.296±0.002BC	$0.302\pm0.0023AB$	0.303±0.0020AB	0.305±0.0032A	0.302±0.0025AB
$\lambda(d^{-1})$	1.337±0.0043C	1.345±0.0037BC	1.353±0.0031AB	1.354±0.0027AB	1.357±0.0044A	1.353±0.0033AB
T(d)	17.63±0.13AB	17.37±0.14BC	17.33±0.16BC	17.31±0.10C	17.48±0.13ABC	17.79±0.13A
DT (d)	2.31±0.04A	2.27±0.03AB	2.22±0.03BC	2.21±0.02BC	2.21±0.05C	2.22±0.03BC
b (d-1)	$0.292\pm0.0033C$	0.297±0.0028BC	0.303 ± 0.0023 AB	$0.304\pm0.0020AB$	$0.307\pm0.0033A$	0.303±0.0025AB
d (d-1)	$0.0010\pm3.4\times10^{-5}$ C	0.0011±3.02×10 ⁻⁵ BC	$0.0012\pm2.6\times10^{-5}AB$	$0.0012\pm2.3\times10^{-5}$ A	0.0012±3.6×10 ⁻⁵ A	$0.0012\pm2.8\times10^{-5}AB$

^a Means bearing the same capital letters in a row are not significantly different (Bootstrap's pairwise comparisons, $\alpha = 0.05$)

they exhibited 20% and 10% higher fecundity compared to Tabriz and Varamin respectively, with similar reproductive periods. This has been achieved by the introduction of new genes into the genetic pool of the original populations. The reason that males were not affected by crossing may be due to receiving only one copy of their maternal genes. Female longevity is an important qualitative indicator of parasitoids in the field. The longer life span of a parasitoid, the higher encounter to hosts, thus a wasp will have more fortune to find and exploit hosts (Suh et al., 2000). However, higher reproductive effort results in the exhaustion of females themselves and shortens their lifespan (Krebs and Davies, 1993). This can be deduced by comparing the longevity of the more fecund Varamin population compared to Tabriz one. As it can be seen, Varamin wasps had higher fecundity and, at the same time, lower life span than the Tabriz wasps, which may confirm the above statement.

The average fecundity recorded for T. vassilievi in this study was higher than the other telenomin species. It was 98.0, 22.4, 29.6, and 63.7 for T. biproruli, (James, 1988), Telenomus calvus Johnson, (Orr et al., 1986), T. podisi Ashmead, and Trissolcus euschisti (Ashmead), respectively (Yeargan, 1982). Powell and Shepard (1982) reported 88.1-141.9 broods for different isolates of *T. basalis*. The average progeny number of T. semistriatus was reported 88 in Turkey (Kivan and Kilic, 2006), and 210 in Varamin, Iran (Asgari, 2002). Also, it was 85 for Tabriz (Nozad Bonab, 2009), and 200 for the Varamin population of T. grandis (Amir-Maafi, 2000). The difference between the two populations of T. vassilievi was minor and not comparable to the above species. Perhaps, one reason is that the physical conditions are quite similar for both populations in the present study, while it may be deeply different in the two separate studies on a single species in the above examples. A higher number of daily fecundities may benefit augmentation programs (van Driesche and Bellows, 1996).

Iranpour et al.

The sex ratio of progeny can change as parasitoid get older (Bueno *et al.*, 2008; Amir-Maafi and Parker, 2011), because, sperm reserves of the female are depleting and, as a result, insemination and, consequently, female offspring decreases (Kivan and Kiliç, 2006; Amir-Maafi and Parker, 2011). Higher female progeny benefits the scelionids, because it reduces the competition between brothers for mating with sisters (Wilson, 1961; Safavi, 1968).

Among the stable population growth parameters of *T. vassilievi*, only the gross and net reproductive rates exhibited appreciable variation among treatments. In general, cross wasps had higher reproductive rates than the original populations, which may be due to the flowing new genes in their original pool. The gross and net reproductive rates of *T. grandis* (Amir-Maafi, 2000), and *T. semistriatus* (Asgari, 2002) were 136 and 130 daughters per generation, both less than the values obtained in this study.

The intrinsic rate of population increase (r_m) is a useful indicator of the fitness of a species or population in response to physical and/or nutritional conditions (Southwood and Henderson, 2000). This parameter can be used as a criterion for selecting natural enemies and predicting the success of biocontrol agents (van Lenteren, 2003). The r_mvalue of T. vassilievi in this study varied between 0.291 and 0.305 d⁻¹, which was slightly higher in Varamin and crossed populations compared to the Tabriz population. It refers mainly to their higher fecundity. Among Trissolcus species, the maximum value of r_m has been reported as 0.368 d⁻¹ on T. grandis (Nozad Bonab, 2009). The r_m-value of T. semistriatus has been 0.226, and 0.227 d⁻¹ for an Iranian and a Turkish population, respectively (Asgari, 2002, Kivan and Kilic, 2006). These three species are considered as the most effective species in controlling CSP. Based on R₀ and r_m -values we can rank them as T. grandis> T. vassilievi> T. semistriatus.

The generation Time (T) was 17.31-17.79 days for *T. vassilievi* in this study and 13.43 days for *T. grandis* (Amir-Maafi, 2000),

which can well explain why T. grandis is the most prevalent egg parasitoid species of CSP in Iran (Radjabi and Amir Nazari, 1989). Life history data suggest the high importance of T. vassilievi for the biological control of CSP. A highly female-biased sex ratio, high attack rate, and longevity are positive properties for T. vassilievi. However, field data at different climatic conditions are essential to prove the role of vassilievi in large-scale inundation programs. Several field studies indicate the acceptable effect of some telenomins on target pests (Justo et al., 1997; van Lenteren and Bueno, 2003; Asgari et al., 2010; Bagheri Matin et al., 2010; Asgari, 2011).

In conclusion, it can be stated that the host population had no significant effect on parasitism by T. vassilievi, however, fecundity was significantly higher in crosses compared to the original populations. This suggests increased fitness of progeny. Similar effects were observed on the thermal phenotypes of this species (Iranipour et al., 2015). This has been demonstrated in some studies (e.g. Carson, 1968; Rasanen and Kruuk, 2007), and, nowadays, it is accepted as a scientific rule by most biologists and can be used for the artificial selection of parasitoids in the laboratory (Arakawa et al. 2004). The intrinsic rate of increase (r_m) of T. vassilievi was less variable among treatments of this study and lied between T. grandis and T. semistriatus. The results of this study revealed that we can benefit from the intra-populations diversity of *Trissolcus* species to obtain more advantageous parasitoids via out-crossing them.

ACKNOWLEDGEMENTS

The research facilities and funding were provided by the University of Tabriz.

REFERENCES

1. Abdi, F., Iranipour, S. and Hejazi, M. J. 2017. Reproductive-Life Table Studies on

- Trissolcus djadetshkoe (Hym.: Scelionidae). Appl. Entomol. Zool., **85(1):** 1-9.
- Ahmadpour S., Iranipour, S. and Asgari, S. 2013. Effects of Superparasitism on Reproductive Fitness of *Ooencyrtus fecundus* Ferriere and Voegele (Hym. Encyrtidae), Egg Parasitoid of Sunn Pest, *Eurygaster integriceps* Puton (Hem. Scutelleridae). *Biological Control of pests and Plant Diseases*, 2(2): 97-105. [in Persian]
- 3. Amir-Maafi, M. 2000. An Investigation on the Host-Parasitoid System between *Trissolcus grandis* Thomson (Hym.: Scelionidae) and Sunn Pest Eggs. PhD Thesis, Faculty of Agriculture, University of Tehran, Karaj, Iran. [in Persian with English Summary].
- Amir-Maafi, M., Hosseini, M., Tagaddosi, M.V., Nouri, H., Haghshenas, A., Ghazi, M., Pourghz, A., Jamshidi, R., Forouzan, M. and Bagheri, S. 2010. The Biological Control of Sunn Pest, Eurygaster integriceps Put. (Het.: Scutelleridae) Using Egg Parasitoids. Research Project, Iranian Research Institute of Plant Protection, Tehran, Iran.
- Amir-Maafi, M. and Parker, B.L. 2011. Biological Parameters of the Egg Parasitoid Trissolcus grandis (Hym.: Scelionidae) on Eurygaster integriceps (Hem.: Scutelleridae). J. Entomol. Soc. Iran., 30(2): 67-81.
- Arakawa, R., Miura, M. and Fujita, M. 2004. Effects of Host Species on the Body Size, Fecundity, and Longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a Solitary Egg Parasitoid of Stink Bugs. App. Entomol. Zoolog., 39: 177-181.
- 7. Asgari, S. 2002. Comparative Fitness of the Eggs of *Graphosoma lineatum* (L.) (Pentatomidae) and *Eurygaster integriceps* Put. (Scutelleridae) to the Egg Parasitoid *Trissolcus semistriatus* Nees (Scelionidae). Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran. [in Persian with English summary].
- 8. Asgari, S. 2011. Inundative Release of the Sunn Pest Egg Parasitoid and Evaluation of Its Performance. *Proceedings of the Biological Control Development Congress in Iran*, 27-28 July, Tehran, Iran, PP. 423–428. [in Persian with English Summary].

- Asgari S. and Kharrazi Pakdel, A. 1998. Evaluation of Some Biological Parameters Affecting Sunn Pest Egg Parasitoid, Trissolcus grandis (Thom.) (Hym., Scelionidae). Proceedings of the 13th Iranian Plant Protection Congress, 23–27 August, Karaj, Iran, 1: 28.
- Asgari, S., Safari, M. and Hassani, A.A.
 Mass Rearing, Releasing, and Performance of Sunn Pest Egg Parasitoids.
 Proceedings of the 19th Iranian Plant Protection Congress, 31 July–3 August, Iranian Research Institute of Plant Protection, Tehran, Iran, 72 PP.
- Awan, M.S., Wilson, L.T. and Hoffmann, M. P. 1990. Comparative Biology of Three Geographic Populations of *Trissolcus basalis* (Hymenoptera: Scelionidae). *Environ. Entomol.*, 19(2): 387-392.
- 12. Bagheri Matin, S., Safavi, A., Babakfard, A and Maleki, N. 2010. Study on Efficacy of Releasing *Trissolcus grandis* Thom. (Hym: Scelionidae) on Controlling *Eurygaster integriceps* Put. (Het.: Scutelleridae) in Wheat Fields of Kermanhah Province. *Proceedings of the 19th Iranian Plant Protection Congress*, 31 July–3 August, Iranian Research Institute of Plant Protection, Tehran, Iran, 32 PP.
- Bazavar, A., Iranipour, S. and Karimzadeh,
 R. 2015. Effect of Host Unavailability
 Durations on Parasitism Behavior of
 Trissolcus Grandis (Hymenoptera:
 Scelionidae) Egg Parasitoid of Sunn Pest. J.
 Appl. Res. Plant Prot., 4(1): 41-56.
- Benamolaei, P., Iranipour, S. and Asgari, S. 2015a. Effect of the Host Embryogenesis on Efficiency of *Trissolcus vassilievi*. *BioControl in Plant Protection*, 3(1): 83-100. [in Persian with English Summary]
- Bena molaei, P., Iranipour, S., and Asgari, S. 2015b. Biostatistics of *Trissolcus* vassilievi (Hym., Scelionidae) developed on sunn pest eggs cold-stored for different durations. *Mun. Ent. Zool.*, 10(1): 259-271.
- Bueno, R. C. O., Carneiro, T. R., Pratissoli.
 D., Bueno, A. D. F. and Fernandes, A. 2008. Biology and Thermal Requirements of *Telenomus remus* Reared on Fall Armyworm *Spodoptera frugiperda* Eggs. *Cienc. Rural*, 38(1): 1-6.
- 17. Carey, J. R. 1993. Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, UK.

- 18. Carson, H. L. 1968. The Population Flush and Its Genetic Consequences. In: "Population Biology and Evolution", (Ed.): Lewontin, R. C. Syracuse University Press, Syracuse, New York, PP. 123–137.
- 19. Iranipour, S. 2018. A Microsoft Excel Program for Bootstrap Estimates of Reproductive-Life Table Parameters. *J. Crop Prot.*, **7(3)**: 247-258.
- Iranipour, S., Benamolaei, P., Asgari, Sh. and Michaud, J. P. 2015. Reciprocal Crosses between Two Populations of *Trissolcus vassilievi* (Mayr) (Hymenoptera: Scelionidae) Reveal Maternal Effects on Thermal Phenotypes. *Bull. Entomol. Res.*, 105: 355-363.
- 21. James, D. G. 1988. Fecundity, Longevity and Overwintering of *Trissolcus biproruli* Girault (Hymenoptera: Scelionidae) a Parasitoid of *Biprorulus bibax* Breddin (Hemiptera: Pentatomidae). *J. Austral. Ent. Soc.*, **27**: 297–301.
- Justo, H. D., Shepard B. M. and Elsey. K. D. 1997. Dispersal of the Egg Parasitoid *Trissolcus basalis* (Hymenoptera: Scelionidae) in Tomato. *J. Agric. Entomol.*, 14: 139–149.
- 23. Kivan, M. and Kiliç, N. 2006. Age-Specific Fecundity and Life Table of *Trissolcus semistriatus*, an Egg Parasitoid of the Sunn Pest *Eurygaster integriceps*. *Entomol. Sci.*, 9: 39-46.
- Kozlov, M. A. and Kononova, S. V. 1983.
 Telenominae of the Fauna of the USSR (Hymenoptera, Scelionidae, Telenominae).
 Leningrad Nauka Publisher, No. 136, PP. 137–138. [in Russian]
- Krebs, J. R. and Davies, N. B. 1993. An Introduction to Behavioural Ecology. Blackwell Scientific Publications.
- 26. Laumann, R. A., Moraes, M. C. B., Pareja, M., Alarca, G. C., Botelho, A. C., Maia, A. H. N., Leonardecz, E. and Borges, M. 2008. Comparative Biology and Functional Response of *Trissolcus* spp. Hymenoptera: Scelionidae) and Implications for Stink Bugs (Hemiptera: Pentatomidae) Biological Control. *Biol. Control.*, 44: 32-41.
- Lotka, A. J. 1907a. Relation between Birth Rates and Death Rates. Science., 26: 21-22.
- Lotka, A. J. 1907b. Studies on the Mode of Growth of Material Aggregates. Am. J. Sci., 4(24): 199-216.
- Mele, A., Avanigadda, D. S., Ceccato, E., Olawuyi, G. B., Simoni, F., Duso, C.,

- Scaccini, D. and Pozzebon, A. 2024. Comparative Life Tables of *Trissolcus japonicus* and *Trissolcus mitsukurii*, Egg Parasitoids of *Halyomorpha halys*. *Biol. Control.*, **195**: 105548.
- Meyer, J. S., Ingersoll, C. G., Mac Donald,
 L. L. and Boyce, M. S. 1986. Estimating
 Uncertainty in Population Growth rates:
 Jackknife vs. Bootstrap Techniques.
 Ecology, 67: 1156-1166.
- 31. Nouri, H., Amir-Maafi, M. and Forouzan, M. 2011. Introduction of Sunn Pest Egg Parasitoids in Qazvin, Iran. *Proceedings of the Biological Control Development Congress in Iran*, 27-28 July, Tehran, Iran, pp. 417–422. [In Persian with English Summary].
- 32. Nozad Bonab, Z. 2009. Effect of Temperature on Development, Fecundity and Longevity of *Trissolcus grandis* Thomson (Hym.: Scelionidae). M.Sc. Thesis, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. [In Persian with English Summary]
- 33. Nozad Bonab, Z., Iranipour, S. and Farshbaf Pourabad, R. 2014. Demographic Parameters of Two Populations of Trissolcus grandis (Thomson) (Hymenoptera: Scelionidae) at Five Constant Temperatures. J. Agric. Sci. Technol., 16(5): 969-979.
- Orr, D. B., Russin, J. S. and Borthel, D. J. 1986. Reproductive Biology and Behavior of *Telenomus calvus* (Hymenoptera: Scelionidae), a Phoretic Egg Parasitoid of *Podisus maculiventris* (Hemiptera: Pentatomidae). *Can. Entomol.*, 118: 1063-1072
- 35. Portilla, M., Morales-Ramos, J. A., Rojas, M. G. and Blanco, C. A. 2014. Life Tables as Tools of Evaluation and Quality Control for Arthropod Mass Production. In: "Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens". Academic Press, Cambridge, MA, USA, PP. 241–275.
- 36. Powell, J. E. and Shepard, M. 1982. Biology of Australian and United States Strains of *Trissolcus basalis*, a Parasitoid of the Green Vegetable Bug, *Nezara viridula*. *Aust. J. Ecol.*, 7: 181-186.
- 37. Radjabi, G. and Amir Nazari, M. 1989. Egg Parasites of Sunn Pest in the Central Part of the Iranian Plateau. *Appl. Entomol.*

- *Phytopathol.*, **56**: 1–12. [In Persian with English Summary].
- Rasanen, K. and Kruuk, L.E.B. 2007.
 Maternal Effects and Evolution at Ecological Time-Scales. Funct. Ecol., 21:408–421.
- Safavi, M. 1968. Etude Biologique et Ecologique des Hymenopteres Parasites des Oeufs des Punaises des Cereales. Entomophaga., 13: 381-495.
- 40. Safavi, M. 1973. Etude Bio-Ecologique des Hymenoptères Parasites des Oeufs des Punaises des Cereales en Iran. Ministry of Agriculture and Natural Resources, Tehran, Iran. [in Persian].
- Southwood, T. R. E. and Henderson, P. A. 2000. Ecological Methods. 3rd Edition. Blackwell Science.
- Suh, C. B. C., Orr, D. B. and van Duyn, J. W. 2000. *Trichogramma* Releases in North Carolina Cotton: Why Releases Fail to Suppress Heliothine Pests. *J. Econ. Entomol.*, 93: 1137-1145.
- 43. Taghadosi, M. V., Kharrazi Pakdel, A. and Esmaili, M. M. 1993. A Comparative Study on Reproductive Potential of Different Populations of *Trissolcus grandis* Thomson (Hym., Scelionidae), on Eggs of Sunn Pest *Eurygaster integriceps* Put. (Het., Scutelleridae). *In Proceedings of the 11th Iranian Plant Protection Congress*, 27

- August 1 September, University of Guilan, Rasht, Iran, 7 PP.
- 44. Teimouri, N., Iranipour, S. and Benamolaei, P. 2019. Effect of Light Intensity and Photoperiod on Development, Fecundity, and Longevity of *Trissolcus grandis* (Hym.: Platygastridae), Egg Parasitoid of Sunn Pest, *Eurygaster integriceps* Puton (Hem.: Scutelleridae). *J. Appl. Res. Plant Prot.*, 8(3): 77-93.
- 45. van Driesche, R. G. and Bellows Jr, T. S. 1996. *Biological Control*. Chapman and Hall, New York.
- van Lenteren, J. C. 2003. Quality Control and Production of Biological Control Agents: Theory and Testing Procedures. CABI Publication.
- 47. van Lenteren, J.C. and Bueno, V.H.P. 2003. Augmentative Biological Control of Arthropods in Latin America. *BioControl.*, 48: 123–139.
- 48. Wilson, F. 1961. Adult Behavior in *Asolcus basalis* (Hymenoptera: Scelionidae). *Aust. J. Zool.*, **9(5):** 737-751.
- Yeargan, K. V. 1982. Reproductive Capability and Longevity of the Parasitic Wasps Telenomus podisi and Trissolcus euschisti. Ann. Entomol. Soc. Am., 75: 181-183.

Trissolcus vassilievi (Hymenoptera: افزایش شایستگی با تلاقی بین دو جمعیت زنبور Scelionidae)

شهزاد ایرانی پور، پریسا بنامولایی، و شهریار عسگری

چکیده

(Hymenoptera: Scelionidae) کی از مهم ترین زنبورهای پارازیتویید تخم سن گندم (Puton (Hemiptera: Scutelleridae) بست گندم (It vassilievi) بستگی دو جمعیت زنبور T. vassilievi در ایران است. در این تحقیق شایستگی دو جمعیت زنبور T. vassilievi یکی تبریز مورد مطالعه قرار گرفت. دو جمعیت T. vassilievi یکی تبریز

(با منشاء معتدله) و دیگری ورامین (با منشاء نیمه گرمسیری) هم برای زنبور و هم برای میزبان آن لحاظ گردید. به علاوه با توجه به این که انجام تلاقی های غیرخویشاوندی بین جمعیتها می تواند منجر به ایجاد جمعیتها با خصوصیات برتر شود تلاقی بین دو جمعیت روی یک میزبان واحد بررسی شد. تلاقی بین دو جمعیت موجب بروز ۱۳۰۹ تا ۱۸۰۵% زادآوری خالص بیشتر نسبت به جمعیتهای مادری شد که به نظر می رسد بیشتر تابع فنوتیپ مادری باشد. نرخ ذاتی افزایش جمعیت اختلاف جزئی نشان داد و بین ۱۲۰۰ \pm ۱۲۰۰۰ تا به جمعیتهای اصلی مشاهده شد. این تفاوتها می توانند در پرورش انبوه این زنبورها برای به دست آوردن پارازیتوییدهایی با خصوصیات برتر مورد توجه قرار گیرند.

Fruit Biochemical and Nutritional Properties of Some Asian and European Pears (*Pyrus* spp.) Grown under Tehran Environmental Conditions

Somayeh Kadkhodaei¹, and Kazem Arzani^{1*}

ABSTRACT

Pear is one of the most important pome fruits in the world fruit market with a high nutritional value. This study was performed to determine the phenolic compounds and some chemical properties of the fruit flesh and peel of 12 Asian and European pears. Chlorogenic acid and rutin were found as the important phenolic compounds in the fruit peel, which were measured using HPLC. Results showed fruit Titratable Acidity (TA, 0.17-0.53%), Total Soluble Solids (TSS, 13.33-17.33 °Brix), firmness (1.7-2.75, kg cm⁻²), and color parameters. The highest L* value was observed in KS7 (40.55), while the lowest was in KS12 (14.26) and KS13 (14.78). Additionally, the study assessed the nutrient and total phenol content of fruit samples. The 'Shahmiveh' cultivar displayed the highest total phenol content (638 mg 100 g⁻¹ FW), while the KS7 cultivar had the lowest (420 mg 100 g⁻¹ FW). Potassium was the most abundant nutrient (1.16 mg 100 g⁻¹ DW), followed by nitrogen and calcium contents. As the total phenol increased, so did the amount of rutin. Principal Components Analysis (PCA) of all data showed that the European and Asian pears studied cultivars and genotypes were different in terms of most of the studied biochemical traits, and significant relationships were observed between some traits. Besides, the obtained results help in the selection of the best pear cultivars or genotypes in terms of the highest phenolic content and nutrients, both for fresh consumption and in the juice industry.

Keywords: Rutin, Chlorogenic acid, Pear macronutrients, Pear micronutrients, Total phenol.

INTRODUCTIN

Pyrus (*Pyrus* spp.) is the second most important crop following apple in the *Rosaceae* family and can be divided into two major groups of Asian and European type pears (Arzani, 2019; Wang and Arzani, 2019). European species (*Pyrus. communis* L.) have more than 5000 cultivars (Kadkhodaei *et al.*, 2021; Monte-Corvo *et al.*, 2001). Asian pears (*Pyrus pyrifolia*) are mainly cultivated in countries such as Korea, China, and Japan in East Asia. They have been cultivated in various parts of Asia for over 3,000 years. Currently, this species is

grown commercially in more than 50 countries under temperate climate regions. At least 22 early Pyrus species have been identified, all of which are native to Asia, Europe, and the mountainous regions of North America (Bell *et al.*, 1996). This crop is cultivated mainly due to its commercial value and desirable fruit taste (Arzani, 2002; Wang and Arzani, 2019; Arzani, 2021).

Today, plants can be used to prevent and treat diseases (Jimenez-Garcia *et al.*, 2021; Fattahi *et al.*, 2021). Pears contain phenolic substances and have antioxidant and antimicrobial properties (Jennings *et al.*,

¹ Department of Horticultural Science, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: arzani k@modares.ac.ir

2017; Tiwari et al., 2023). Antioxidant supplements can be mentioned as an important non-pharmacological strategy against oxidative stress (Mota et al., 2022). A self-incompatible, high heterogeneity and allelic diversity have been reported in this genus (Monte-Corvo et al., 2001). In recent decades, numerous studies have been devoted to assessing the genetic diversity in various Pvrus species including morphological, biochemical, and DNA markers among European, Asian, and other species. Polyphenols are secondary metabolites (de Paulo Farias et al., 2020). Plant secondary metabolites are a group of chemicals that play a major role in plant growth and survival (Singh et al., 2021; Fattahi et al., 2021). Polyphenols are compounds that occur naturally in fruits and vegetables and are important because of their healing properties and application in technology (de Araújo et al., 2021), and as such, they have received much attention in recent years (de Paulo Farias et al., 2020). Consumption of plants helps the supply of macro- and micro-nutrient elements and reduces the incidence of functional disorders in the body and human health (Li et al., 2017). The role of nutrients in improving the quality of fruit and its other effects- in particular, respiratory failure- causes delay in ripening, increased fruit firmness, and improved fruit storage. Meanwhile, overconsumption of nutrients also impedes the production of quality fruit. Besides, nutrient imbalances cause numerous disorders that affect the quality and performance of pears (Dar et al., 2015; Wang and Arzani, 2019; Arzani, 2019).

Phenolic compounds are chemicals found in most plant tissues of fruits and vegetables. Also, chlorogenic acid (5-Ocaffeoylquinic acid) is a secondary metabolite of phenolic acids and is found in many plants and has an obese anti-obesity mechanism (He *et al.*, 2021). Chlorogenic Acid (CGA) is a natural product that has medicinal properties such as anti-cancer, light protection, antioxidant, anti-inflammatory, hypoglycemic, and hypoglycemic effects. After absorption,

CGA is further metabolized into sulfate metabolites, glucuronic acid, and glycosides (Sanchez et al., 2017; Nwafor et al., 2022). Rutin is an important flavonoid also known as vitamin P and quercetin-3-o-rotinoside, and has a protective role against liver and gastrointestinal problems (Hosseinzadeh and Nassiri-Asl, 2014), with anti-inflammatory, anti-tumor, antioxidant, and neuro-protective effects (Muvhulawa et al., 2022; Song et al., 2014). Recently, eight phenolic compounds have been identified in the fruit peel of Asian pear (Lee et al., 2011). Pear fruit peel has far higher and more varied phenolic contents than its flesh (Chen et al., 2006). In addition, it is highly recommended that natural products are eaten with their peels, because if they reduce oxidation, they will be useful for well-being and disease reduction (Nazir et al., 2020). Previous studies on pears have shown that they contain minerals (Brunetto et al., 2015; Ozturk et al., 2009), and pear fruit is rich in macro- and micro-nutrients (Nazir et al., 2020). Mineral nutrients play an important role in plant growth and metabolic functions and are heavily involved in maintaining the health and proper functioning of an organism (Tewari et al., 2021). There are human, plant, and animal diseases associated with micronutrient deficiencies. Also, efforts should be made to produce aggregating microelements of genotypes with an overexpression approach (bio-genetic enhancement) (Izydorczyk et al., 2021). `Sebri' `Shahmiveh' and are native commercial European pears cultivars in Iran. Additionally, A95 promising chance seedling genotype showed superiority in some qualitative fruit characteristics (Wang and Arzani, 2019; Kadkhodaei et al., 2021; Yadegari and Arzani, 2023).

The objective of this research was to explore the phenolic and biochemical compounds of 'Shahmiveh', 'Sebri' and A95 promising genotype compared with some commercial Asian pear cultivars that are grown under Tehran (Iran) environmental conditions.

MATERIALS AND METHODS

In this experiment, 9 Asian pear cultivars including KS6, KS7, KS8, KS9, KS10, KS11, KS12, KS13, and KS14 (Arzani, 2002), as well as 3 European pear cultivars, 'Shahmiveh', 'Sebri', and A95 promising genotypes (Najafzadeh, 2015; Wang and Arzani, 2019), were used. Trees were planted under Tehran environmental conditions at Tarbiat Modares University (TMU) Asian Pear Collection Orchard, with latitude: 35° 41' 39.80" N and longitude: 51° 25' 17.44" E. Besides, fruits were harvested at the commercial maturity harvest index (Arzani, 2019) mainly based on the fruit background color, flesh firmness, and Total Soluble Solids (TSS) for further assessments.

Determination of Total Phenolic Content

Fruit samples (fruit with the peel) were freeze-dried for 48 hours and then powdered. For the extraction of phenolic compounds, 2 g. of powdered pulp was used according to the method described by Lister *et al.* (1994) with slight modification. Then, 5 mL of extraction solvent consisting of 85% methanol and 15% acetic acid was added. The samples were placed at 4 °C for 24 h and centrifuged at 10,000 rpm for 10 min. About 1 mL of the supernatant of each sample was filtered using a 0.45 µm syringe filter.

The total phenol content of the extracts was measured by the Folin-ciocalteu method. The absorbance was measured using a spectrophotometer at 765 nm. Total phenol contents were expressed in terms of a milligram of gallic acid content per 100 g fruit fresh weight.

Determination of the Phenolic Content and Components

A water liquid chromatography apparatus consisting of a separations

module: Waters 2695 (USA) and a PDA Detector water 996 (USA) was used for the HPLC analysis. Data acquisition and integration were performed via Millennium32 software. The injection was performed by an auto-sampler injector equipped with chromatographic assay performed on a 15 cm×4.6 mm with precolumn, Eurospher 100-5 C18 analytical column provided by waters (Sunfire) reversed-phase matrix (3.5 µm) (waters). The elution was carried out in a gradient system with methanol as the organic phase and distilled water with a flow rate of 1 mL min⁻¹. Peaks were monitored at 195-400 nm wavelength. The injection volume was 20 µL and the temperature was maintained at 25°C.

Fruit Sample Preparation for TSS, TA, pH, Firmness, and Color

To determine Total Soluble Solids (TSS), a few drops of fruit flesh extract were poured onto the refractometer. For this purpose, Japan's portable refractometer Model 9703 was used (Bexiga et al., 2017). For Titratable Acidity (TA) and pH of the fruit extract, 10 g of smashed fruit flesh was used, with the addition of about 30 mL of distilled water. The extract was centrifuged at 50°C for 30 minutes at 4000 rpm. To determine the TA with 0.1 normal solutions, it was titrated to reach pH 8.3 (pH meter Consort- model C860), after which the acidity was calculated based on a milligram of malic acid per 100 g of fruit tissue. To measure the flesh firmness of the fruit tissue, after removing a thin layer of fruit peel, an 8 mm diameter probe by penetrometer (Wagner) was used and fruit firmness was measured in kg cm⁻². The pear fruit peel color was measured via the Lutron RGB-1002 color analyzer and converted to L* (Lightness), a* (green to red), and, b* (blue to yellow).

Extraction to Measure Nutrients

Initially, the fruit samples (fruit with the peel) were washed with tap water, followed by 0.1 M hydrochloric acid (HCl), then, rinsed again with distilled water. The sample was dried in an oven at 70°C and powdered. The 0.5 mm sieve mesh was used for collecting the clean powdered samples. Extraction steps were performed as follows: Briefly, 2 g of the dried sample was heated in an oven at 550°C for 4 hours. The ash was slightly moistened with distilled water, and 10 mL of 2 M HCl was added. The final extract was delivered in a volume of 100 mL (Waling et al., 1989). Distillation and sample titration were used to measure the percentage of plant nitrogen (Waling et al., 1989). Phosphorus was measured using a colorimetric (Vanadate-Molybdate) method. The absorbance was measured via a spectrophotometer at 470 nm (Chapman and Pratt, 1962). Potassium and sodium were measured by atomic emission spectrometry.

The absorbance was read by a flame photometer with 766.5 nm for K and 589 nm for N (Waling et al., 1989) The Azomethine colorimetric method was employed to measure the amount of boron, and the spectrophotometer device was used at 430 nm. An atomic absorption device was utilized to measure the percentage of magnesium (285.2 nm) and calcium (422.7 nm) in the plant (Waling et al., 1989). Measurement of microminerals manganese-zinc and copper) was performed by Atomic Absorption Spectrometry (AAS) method. Measurement of the resulting extraction was carried out by dry burning and use of HCl. The absorption rate of Fe, Mg, Zn, and Cu was measured at 248.3, 289.5, 213.9, and 324.7 nm, respectively (Elmer and Conn, 1982).

Statistical Analysis

The obtained data were initially checked for normality and analyzed using SAS (Ver. 9.3, SAS Institute, Cary, NC). The results

were statistically evaluated by Analysis Of Variance (ANOVA) and expressed as mean±Standard Error (SE). Biochemical data for Principal Component Analysis (PCA) and cluster analysis were used. PCA and cluster analysis were performed using Minitab software (Ver. 17). For the Heat map, R 3.5.3 software was used.

RESULTS AND DISCUSSION

Total Phenol

The highest total phenol amount was observed in the 'Shahmiveh' cultivar and the lowest in KS7 which were 638.01 and 420.02 (mg 100 g⁻¹ FW), respectively. Based on the results, the total phenol amount in different cultivars and the studied genotype showed significant differences (Table 1). The differences in the phenolic composition of different cultivars confirm the genetic role in the synthesis of phenolic compounds since the amount of polyphenols was affected by genotype, rootstock, and climatic conditions (Lin and Harnly, 2008; Mainla et al., 2011; Maleki Asayesh et al., 2023). Phenolic compounds may impair callus formation by affecting cell division, development, and differentiation (Bennett and Wallsgrove, 1994). The total phenolic compound in the fruit tissue of the KS13 was higher than KS6 and KS9 Asian pear cultivars (Maghdori et al., 2015). In another study performed on several Australian pear cultivars, the highest amount of total phenol was observed in 'Beurre Bosc' (3.14 \pm 0.02 a mg GAE g⁻¹) and the lowest in 'Winter Nelis' European pear $(1.89 \pm 0.03 \text{ a mg})$ GAE g⁻¹) (Wang *et al.*, 2021).

Phenolic Compounds

The minimum amount of chlorogenic acid was observed in 'Sebri' and KS8, which were 3.48 and 3.55 (mg g⁻¹ FW), respectively, while it's maximum was obtained in KS14 and was 9.48 (mg g⁻¹ FW).

Cultivar	Total Phenol (mg 100 g ⁻¹ FW)	Chlorogenic acid (mg g ⁻¹ FW)	Rutin (mg g ⁻¹ FW)	TSS °Brix	TA (%)	TSS/TA
KS6	466.93±9.19efg	7.8±0.0274b	0.08±0.000cde	14.67±0.033cde	0.24±0.003g	60.33±2.166b
KS7	420.02±14.6g	5.56±0.140gh	0.05 ± 0.001 fg	14.33±0.033de	0.38±0.015bc	$37.82\pm1.478f$
KS8	586.68±32.6ab	3.55±0.177i	$0.04\pm0.000g$	17.33±0.033a	$0.32 \pm 0.011 def$	54.25±1.212bc
KS9	450.92±3.45fg	7.67±0.328bc	$0.04\pm0.000g$	16±0.577ab	0.33 ± 0.003 de	48.96±1.360cd
KS10	443.75±16.1fg	$7.2\pm0.208cd$	$0.07\pm0.000 def$	13.67±0.333e	$0.23\pm0.003g$	$58.57 \pm 1.260b$
KS11	489.55±7.42def	7.71±0.158bc	$0.11\pm0.006c$	13.34±0.333e	$0.29\pm0.005f$	46.01±1.441de
KS12	487.35±7.82def	$6.54\pm0.144ef$	$0.10\pm0.008cd$	15.33±0.333bcd	$0.33 \pm 0.005 de$	46.5±1.275cde
KS13	560.75±7.05bc	6.89 ± 0.058 de	0.06 ± 0.002 efg	14.66±0.333cde	$0.17\pm0.006h$	84.95±4.681a
KS14	473.55±8.88efg	$9.46\pm0.088a$	0.06 ± 0.003 efg	13.33±0.333e	0.33 ± 0.012 de	41.43±2.638def
A95	520.46±11.6cd	$5.03\pm0.088h$	0.66±0.003a	16.67±0.333ab	$0.41\pm0.008b$	40.39±1.618ef
Shahmiveh	$638.01\pm18.2a$	5.99 ± 0.106 fg	$0.47 \pm 0.020 b$	16.33±0.333ab	0.35 ± 0.003 de	45.79±0.802de
Sebri	530.40±1.91cd	3.48±0.061i	$0.06\pm0.008efg$	15.33±0.333bcd	$0.53\pm0.012a$	29.32±0.774g

Table 1. Total Phenole, Chlorogenic acid, Rutin, TSS, TA, and TSS/TA of pear cultivars.^a

The amount of rutin was between 0.04 (KS8, KS9) and 0.66 (mg g⁻¹ FW) (A95) in different cultivars (Table 1).

Maghdori et al. (2015) reported a higher amount of chlorogenic acid and catechin in KS6 Asian pear fruit tissues that were grown under Tehran environment conditions. The highest amount of phenolic compounds measured phenolic among the two compounds belonged to chlorogenic acid. It is the most crucial derivative of cinnamic acid in fruits and is known as a disinfectant and radical modifier. These antifungal properties were also evaluated in vitro and the results were satisfying (Martínez et al., 2017).

Pyrus pashia and Pyrus pyrifolia are two important sources of chlorogenic acid and rutin (Tiwari et al., 2023). Rutin is a phenolic compound found in other plants, including peaches (Chang et al., 2000). In this study, the amount of rutin in the A95 promising genotype, which is one of the European pears, was higher than in the others. Due to the role of phenolic compounds in human health, cultivars and genotypes with higher amounts of these compounds are important. Also, in another experiment, several phenolic compounds such as chlorogenic acid and rutin were measured in some popular pear cultivars. The highest and lowest values

chlorogenic acid were 0.69±0.033 mg g⁻¹ as well as 0.32±0.005 mg g⁻¹ in 'Graboid' and 'Grabova' cultivars, respectively. Also, the highest and lowest routine values of 0.09±0.001 and 0.01±0.001 were reported in 'Patten' and 'Conference' cultivars (Liaudanskas *et al.*, 2017). It has been reported that the amount of phenolic compounds may vary among Asian and European pears (Lin and Harnly, 2008).

According to Figure 3, for every 484.34 mg 100 g⁻¹ FW of total phenol, the amount of rutin increased by 1 mg g⁻¹ FW, which showed a linear relationship.

pH, TSS, TA, Color, and Firmness

The results showed that the amount of the Total Soluble Aolids (TSS) was significant among the studied cultivars, and the highest amount was observed in cultivar KS8 (17.33 °Brix) while the lowest was observed in KS10 (13.67 °Brix), KS11 (13.34 °Brix), and KS14 (13.33 °Brix) cultivars (Table 1). TA was 0.53% in `Sebri' and 0.17% in the KS13 cultivar. Also, according to the results, the amount of TSS/TA ratio was higher in KS13 (84.95%) and less in `Sebri' (29.32%) than in other cultivars (Table 1). Three European pear cultivars had lower pH levels than Asian cultivars. KS13 (5.72) had the highest

[&]quot;Values represent the mean \pm Standard Errors (SE). Different letters in the same column indicate significant differences between treatments at P \leq 0.05.

pH among other cultivars. In general, firmness was higher in Asian pear cultivars than in European ones (Table 1). The highest amount of L^* was in KS7 (40.55) and the lowest in KS12 (14.26) as well as KS13 (14.78). The a* value was higher in KS9 (11.65), KS12 (11.70), and KS13 (10.39) than in the others, and b* was significantly higher in `Sebri' (29.25) than in the other cultivars (Table 2).

acidity concentration extraction were among the studied traits and had a great influence on the aroma, taste, as well as quality of edibility, and fruit storage. It was shown in an experiment that the amount of pH pear fruit was within the range of 3.94 -4.28. Also, the pH in fruit depends on the cultivar and the condition of the planting location (Ozturk et al., 2009). In this experiment, the pH was between 3.9 and 5.72. It has been reported that the Titratable Acidity (TA) of pear fruit was in the range of 0.5-0.21% in different parts of Turkey, which was consistent with the results of the present research (Ozturk et al., 2009). In another published report, the range of 0.1 to 46% was mentioned (Chen et al., 2007).

The aroma and taste of fruit are a

cultivars at maturity (Colaric et al., 2007). Fruit skin color is one of the most important indicators of determining quality and maturity in pears. Previous experiments have shown a link between fruit ripening, L*, a*, and b* (Kawamura, 2000). Also, L*, a*, and b* are different in pear cultivars (Feng et al., 2023). In addition, fruit tissue firmness is one of the most important traits of quality and physiology that directly affect the texture of the fruit. In many fruits, softening is a programmed process to ripen fruit. Much of this process is a consequence of the chemical alteration of the cell wall, which eventually results in variations in the fruit tissue at the time of maturity (Chen et al., 2006; Ozturk et al., 2009; Wang and Arzani, 2019; Arzani, 2019). Our results showed that pear firmness in the commercial maturity stage was 8.66 to 4.06 (kg cm⁻²). Overall, Asian pear showed more firmness than European pear cultivars (Arzani, 2019). In the present research, 'Sebri', as one of the European pear cultivars, showed higher firmness within the studied cultivars.

In an experiment, the degree of fruit firmness in different pear genotypes was reported at 3.4 to 8 kg cm⁻² (Tatari *et al.*,

Table 2. Fruit color L*.	a* h* firmness	and nH of the studied	near cultivare "
Table 2. Fruit color L	a'. D'. Hithiness.	and on or the studied i	near cumivars.

Cultivar	L*	a*	b*	Firmness (kg cm ⁻²)	pН
KS6	21.16±0.88g	7.99±0.39bc	20.68±0.99d	5.5±0.288de	5.17±0.088b
KS7	40.55±0.44a	$5.75\pm0.53c$	25.97±0.52bc	6.16±0.166d	4.77±0.033bc
KS8	17.00±0.38h	$6.36\pm0.16c$	$14.26\pm0.07e$	$8.66\pm0.333a$	$4.63\pm0.033c$
KS9	$24.16\pm0.13f$	11.65±1.28a	20.98±0.17d	$5.26\pm0.145e$	4.83±0.033bc
KS10	40.32±0.07ab	$7.02\pm0.28bc$	26.72±0.49ab	7.4±0.264bc	5±0.057bc
KS11	$38.19\pm0.35c$	$6.39\pm0.21c$	$23.78\pm0.68c$	7.9±0.208abc	5.17±0.033b
KS12	14.26±0.52i	11.70±2.17a	13.10±0.46e	$7.33\pm0.202c$	$4.58\pm0.346c$
KS13	14.87±0.58i	10.39±0.63a	14.04±0.51e	$8.23\pm0.145ab$	$5.72\pm0.044a$
KS14	31.67±0.27e	7.59 ± 0.82 bc	25.94±0.57bc	7.43±0.296bc	4.92±0.044bc
A95	36.36±0.11d	6.96±0.26bc	26.31±0.27bc	$4.06\pm0.166f$	$3.9\pm0.054d$
Shahmiveh	$38.19\pm0.62c$	7.41 ± 0.59 bc	28.28±1.35ab	$4.76\pm0.066ef$	$4.1\pm0.057d$
Sebri	$35.47\pm0.44d$	$6.60\pm0.72c$	29.25±0.46a	7.33±0.145c	$3.93\pm0.033d$

^a Values represent the mean \pm Standard Errors (SE). Different letters in the same column indicate significant differences between treatments at P \leq 0.05.

combination of the amount and type of sugars, organic acids, and aromatic substances. The standard titratable acidity varies depending on the cultivar and season. Malic acid is the main acid in most pear 2020). In this research, we found that by increasing 484.34 mg 100 g⁻¹ FW total phenol of a pear, and rutin increased by 1 mg g⁻¹ FW.

Also, by increasing the total phenol by 125.69 mg 100 g⁻¹ FW, one ^oBrix was increased in fruit TSS. It has been reported that the fruit TSS is an important indicator that is used for the proper time of harvest (Arzani et al., 2008). According to the reported results of the experiments, the Total Soluble Solids (TSS) in different cultivars of pears was 12.5-14 (Bexiga et al., 2017). Besides, TSS is one of the ways to control the quality of fruit, which is important in the grading of fruits in the agricultural industry. Also, the fruit TSS monitoring is a fast, easy, and cheap record used by the orchardist for considering as one of the good indicators for proper pear fruit harvest (Bexiga et al., 2017; Wang and Arzani 2019; Arzani, 2019).

In another study, TSS was measured in 9 pear genotypes and was reported to be 7-13% (Tatari *et al.*, 2020). The ratio of TSS/TA is an indicator of fruit flavor. Natanz and Arbakhoj genotypes had the highest and lowest TSS/TA ratios with averages of 97.54 and 94.11, respectively (Rezaeirad *et al.*, 2013).

Fruit Nutrients

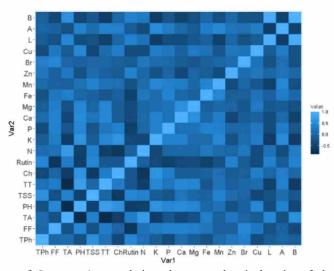
Nitrogen content in KS8 and 'Sebri' was 0.44 and 0.5 (mg 100 g⁻¹ DW), respectively, and significantly higher than in other cultivars. The KS13 (0.18 mg 100 g⁻¹ DW) cultivar had less N than other cultivars (Table 3). The highest phosphorus levels were observed in KS14 (0.24 mg 100 g⁻¹ DW) and the lowest levels were in 'Shahmiveh' as well as A95 promising genotype (0.14 and 0.16 mg 100 g⁻¹ DW). Potassium in KS14 (1.15 mg 100 g⁻¹ DW) and KS9 (1.16 mg 100 g⁻¹ DW) was higher than in other cultivars and had the highest potassium among pears cultivars (Table 3). KS8 (0.42 mg 100 g⁻¹ DW) showed the higher amount and 'Shahmiveh' (0.04 mg/100g DW) had the minimum amount of calcium. In KS7 (0.15 mg 100 g⁻¹ DW) and

KS13 (0.13 mg 100 g⁻¹ DW) Asian pears, the amount of magnesium was higher than in the other studied cultivars (Table 3). In the KS9 (100 mg kg⁻¹ DW) cultivar, Fe was higher than in the other cultivars. 'Shahmiveh' (29 mg kg⁻¹ DW) and KS9 (25.67 mg kg⁻¹ DW) had also less iron than other cultivars. The highest amount of Mn was found in cultivar KS9 (3.46 mg kg⁻¹ DW). KS12 (11.27 mg kg-1 DW) had the highest amount of Zn while KS6 (7.26 mg kg⁻¹ DW) had the lowest amount of Zn compared to the other cultivars. The Cu was also higher in KS12 (18.5 mg kg⁻¹ DW) and lower in KS8 (8.5 mg kg⁻¹ DW), while the highest B was observed in the KS12 cultivar (96.53 mg kg⁻¹ DW) (Table 4).

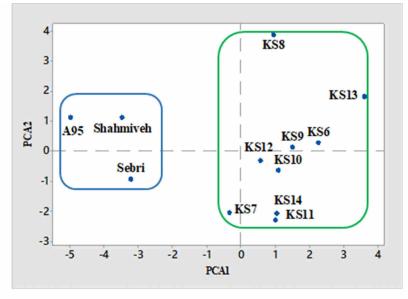
Principal Component Analysis (PCA) and Heat Map

In this research, PCA showed two groups of pears: Asian pear (*Pyrus serotina* Rehd.) cultivars in one group and European pear (*Pyrus communis* L.) and A95 promising pear genotype in another (Figure 1). The heat map shows a positive (light color) and negative (dark color) relationship between all the measured traits in the study of the two groups. There is a positive relationship between total phenol and TSS, firmness, calcium, TA and Na, pH and TSS/TA, chlorogenic acid, K, and Ca (Figure 2).

Nutrients play an important role in increasing the quantity, quality, and shelf life and reducing fruit physiological disorders in European as well as Asian pears (Wang and Arzani, 2019; Arzani, 2019). The proper concentration of nitrogen can improve the color, taste, and size of the fruit (Brunetto *et al.*, 2015). Potassium affects fruit size, firmness, color, acidity, and TSS of fruit juice and its aroma. The imbalance in the K:Ca ratio in the plant could cause the cork spot in the 'D Anjou' cultivar (Brunetto *et al.*, 2015; Wang and Arzani, 2019). Many physiological


Cultivar	Mg	Ca	K	P	N
KS6	0.06±0.01bc	0.21±0.02bcd	1.13±0.008ab	0.23±0.02ab	0.28±0.008bc
KS7	0.15±0.01a	0.19±0.03bcde	$1.07\pm0.008c$	0.19±0.01abc	$0.34\pm0.02b$
KS8	$0.12\pm0.02ab$	$0.42\pm0.04a$	1.13±0.01ab	0.19 ± 0.01 abc	$0.44\pm0.03a$
KS9	$0.06\pm0.005c$	$0.22 \pm 0.04 bc$	1.16±0.01a	0.22±0.01ab	$0.26\pm0.02c$
KS10	0.06 ± 0.01 bc	$0.16 \pm 0.03 bcdef$	1.09±0.005bc	$0.19\pm0.02abc$	$0.29\pm0.008bc$
KS11	$0.04\pm0.008c$	$0.21 \pm 0.05 bcd$	1.13±0.01ab	0.19 ± 0.01 abc	$0.24\pm0.02cd$
KS12	$0.03\pm0.007c$	$0.07\pm0.01 def$	1.14±0.008ab	$0.21\pm0.02abc$	0.3 ± 0.01 bc
KS13	0.13±0.01a	$0.25\pm0.06b$	1.13±0.008ab	$0.23\pm0.02ab$	$0.18\pm0.008d$
KS14	$0.04\pm0.01c$	$0.06\pm0.01 def$	1.15±0.01a	$0.24\pm0.01a$	0.30 ± 0.01 bc
A95	$0.03\pm0.006c$	0.08 ± 0.01 cdef	$1.06\pm0.03c$	0.16 ± 0.01 bc	0.30 ± 0.01 bc
Shahmiveh	$0.03\pm0.008c$	$0.04\pm0.01f$	$1.07\pm0.008c$	$0.14\pm0.008c$	$0.29 \pm 0.02 bc$
Sebri	$0.03\pm0.008c$	$0.05\pm0.01ef$	1.03±0.01c	$0.22 \pm 0.02ab$	$0.5\pm0.02a$

 $^{^{\}prime\prime}$ Values represent the mean±Standard Errors (SE). Different letters in the same column indicate significant differences between treatments at P \leq 0.05.


Table 4. Fruit micronutrient composition of different pear cultivars (mg kg⁻¹ DW).

Cultivar	В	Cu	Zn	Fe	Mn
KS6	74.67±1.76cd	12±0.28cd	7.26±0.21f	35.57±1.68g	2.8±0.11b
KS7	$56.67 \pm 0.88g$	$17.83\pm0.72a$	10.06±0.47cd	51.77±1.47cd	$1.67 \pm 0.17c$
KS8	78±1.15bc	$8.5 \pm 0.50 f$	$8.33 \pm 0.32ef$	$43.97 \pm 0.84 f$	$2.8 \pm 0.20 b$
KS9	52.7 ± 1.56 g	11.67±0.66cd	$8.43 \pm 0.12e$	100±1.53a	$3.46 \pm 0.27a$
KS10	73.4±0.83de	$10 \pm 0.57 def$	$8.9 \pm 0.11e$	$48.9 \pm 1.16 \text{def}$	$1.7 \pm 0.15c$
KS11	73.33 ± 0.88 de	$16.5 \pm 0.28ab$	$8.13 \pm 0.34 ef$	56±1.53c	$1.83\pm0.12c$
KS12	96.53±0.74a	18.5±0.28a	11.27±0.21a	$56.33 \pm 0.88c$	2.26 ± 0.23 bc
KS13	$68.33 \pm 1.36f$	$15.67 \pm 0.88b$	11.13±0.13abc	50.66±1.20de	2.2 ± 0.05 bc
KS14	$70.33 \pm 0.88ef$	$12.43\pm0.34c$	10.5±0.50abcd	$46.33 \pm 1.45 ef$	$2.23\pm0.14bc$
A95	$56.67 \pm 0.66g$	$9.1 \pm 0.30 ef$	11.2±0.26ab	$25.67 \pm 1.76 h$	$1.7\pm0.15c$
Shahmiveh	78.5±0.76bc	$10.33 \pm 0.33 def$	10.13±0.08bcd	$29 \pm 0.57 h$	2.3 ± 0.05 bc
Sebri	$79 \pm 0.57 b$	11±0.57cde	$10.03 \pm 0.08d$	$94.67 \pm 1.20b$	2.2 ± 0.15 bc

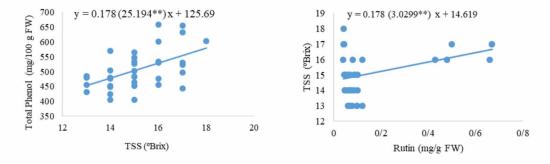

 $[^]a$ Values represent the mean±Standard Errors (SE). Different letters in the same column indicate significant differences between treatments at P \leq 0.05.

Figure 1. Heat map of Spearman's correlations between chemical traits of the studied Asian and European pear cultivars.

Figure 2. Principal component analysis of the studied Asian and European pear cultivars based on chemical traits. Each point represents one genotype and the surrounding green and blue lines are drawn to indicate the division of cultivars and genotypes into two large groups of the Asian and European pears, respectively.

Figure 3. Linear regression between total phenol and rutin, total phenol and TSS, firmness and Ca, and TSS and rutin of the studied European, and Asian pear genotypes. The Pearson correlation coefficient between total phenol and rutin was 0.413^* , total phenol and TSS 0.532^* , firmness and Ca 0.369^* , and TSS and rutin 0.426^{**} . In correlations, * and ** were used to show the significance at $P \le 0.05$ and $P \le 0.01$, respectively.

disorders in pear fruits are closely related to calcium deficiency whose prevention requires adequate application of calcium fertilizers (Duan *et al.*, 2019; Wang and Arzani, 2019; Arzani, 2019). In this study, K was found to be the most abundant nutrient (Table 3). Also, previously published research results showed the amount of this element was higher than the other nutrients (Chen *et al.*, 2007). As reported, the presence of K under stress enhanced the function of photosystem II, the

biosynthesis of chlorophyll, and the antioxidant enzyme activity (Shahid *et al.*, 2019). Besides, Fe deficiency causes disturbances in the photosynthetic system, a decrease in chlorophyll content, and leads to the reduction of crop yield. Also, iron deficiency causes photosynthetic system abnormalities and diminished chlorophyll content (Pestana *et al.*, 2001). The amount of iron in pear fruit is low and has been reported between 20 and 35 mg Fe kg⁻¹ DW (Brunetto

et al., 2015). In our study, the amount of iron varied from 29 to 100 mg kg⁻¹ DW (Table 4). Manganese deficiency, which is more likely to occur under alkaline conditions, can markedly reduce the pear yield (Brunetto et al., 2015). Zinc deficiency in the soil disrupts the growth of the plant and the fruit set conditions, accordingly, the fruits get miniaturized, and the yield decreases (Wójcik and Popińska, 2009). In another experiment, the amount of zinc among pears was reported from 14 to 27 (mg kg⁻¹ dry weight) (Arzani et al., 2008). Also, boron plays an important role in pollen tube growth, pollen germination, fruit size, sourness, and early ripening (Wojcik and Wojcik, 2003).

In this research, we found a linear relationship between total phenol and rutin, total phenol and TSS, firmness, and Ca, and TSS and rutin (Figure 3). Due to the importance of Ca in the cell wall structure, which led to the increase in fruit storage and shelf life, it was observed that for the increase of 5.9249 kg cm⁻² of fruit firmness, one mg 100 g⁻¹ DW of Ca increased (Figure 3). Wang and Arzani (2019) reported that Ca deficiency in the pear fruit also causes disorders such as cork spot (bitter pit). Also, calcium treatment decreased the peak of production ethylene and decreased respiration rate during fruit storage (Han et al., 2021).

We found in another linear relationship that by increasing 1 mg 100 g⁻¹ FW of total phenol in the pear, 125.69 TSS (°Brix) increased. It was also observed that for every increase of 14.61 TSS, the amount of rutin increased by 1 mg g⁻¹ FW (Figure 3).

CONCLUSIONS

In general, the results showed that the amounts of nutrients and biochemistry measurements in this study were different across pear cultivars. Important factors, including mineral compounds and sugars, affect the quality of pears. Identifying promising genotypes of native pears in the

world is important. Recently, A95 as a promising pear genotype has been identified through the breeding program at Tarbiat Modares University, Iran. Also, 'Shahmiveh' and 'Sebri' are native to Iran, belonging to the European pear group (Pyrus communis L.), and have been compared to Asian pear cultivars in terms of chemical characteristics. It is necessary to examine indigenous cultivars that also have commercial properties. The genotype of A95 could be one of them. In addition to genetics, factors such as climate, region, and orchard management also affect fruit quality. The highest amount of phenol was found in the 'Shahmiveh' cultivar, which is one of the important native cultivars of Iran. Chlorogenic acid and rutin were relatively high in KS14 and A95. However, in previous experiments, the highest amounts of TA, TSS, and pH were observed in KS8, 'Sebri', and KS13, respectively. Finally, pears can be considered important fruits in terms of minerals and phenolic compounds, and their role in human health is important. Our experiment, which was conducted among 12 European and Asian pear genotypes, will help us choose the best pear genotype in terms of the highest phenolic content and nutrients, both for fresh consumption and in the juice industry.

ACKNOWLEDGEMENTS

We would like to thank Tarbiat Modares University (TMU) for its financial support. This work was supported by Ph.D. Student Grant Program by TMU. In addition, greenhouse and laboratory facilities provided by Pomology Lab., Department of Horticultural Science at TMU are acknowledged.

REFERENCES

 Arzani, K. 2002. The Position of Pear Breeding and Culture in Iran: Introduction

- of Some Asian Pear (*Pyrus serotina* Rehd.) Cultivars. *Acta Hortic.*, **587:** 167–173.
- Arzani, K., Khoshghalb, H., Malakouti, M.-J. and Barzegar, M. 2008. Postharvest Fruit Physicochemical Changes and Properties of Asian (*Pyrus serotina* Rehd.) and European (*Pyrus communis* L.) Pear Cultivars. Hortic. Environ. Biotechnol., 49(1): 244–252.
- Arzani, K. 2019. Asian Pear. Postharvest Physiological Disorders in Fruits and Vegetables. First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, pp. 329-345.
- Arzani, K. 2021. The National Asian Pear (Pyrus serotina Rehd) Project in Iran: Compatibility and Commercial Studies of Introduced Cultivars. Acta Hortic., 1315: 91-98
 - Bell, R. L., Quamme, H. A., Layne, R. E. C. and Skirvin, R. M. 1996. *Pears In:* "Fruit Breeding, Volume I: Tree and Tropical Fruit", (Eds.): Janick J. and Moore, J. N. Wiley, New York.
- Bennett, R. N. and Wallsgrove, R. M. 1994.
 Secondary Metabolites in Plant Defense Mechanisms. New Phytol., 127(4): 617–633.
- Bexiga, F., Rodrigues, D., Guerra, R., Brázio, A., Balegas, T., Cavaco, A. M., Antunes, M. D. and Valente de Oliveira, J. 2017. A TSS Classification Study of 'Rocha' Pear (Pyrus communis L.) Based on Non-Invasive Visible/Near Infra-Red Reflectance Spectra. *Postharvest Biol. Technol.*, 132: 23–30.
- Brunetto, G., Melo, Gewellington Bastosde Melo, M., Quartieri, M. and Tagliavini, M. 2015. The Role of Mineral Nutrition on Yields and Fruit Quality in Grapevine, Pear, and Apple. Rev. Bras. Frutic., 37(4): 1089–1104.
- Chang, S., Tan, C., Frankel, E. N. and Barrett, D. M. 2000. Low-Density Lipoprotein Antioxidant Activity of Phenolic Compounds and Polyphenol Oxidase Activity in Selected Clingstone

- Peach Cultivars. *J. Agric. Food Chem.*, **48(2):** 147–151.
- 9. Chapman, H. D. and Pratt, P. F. 1962. Methods of Analysis for Soils, Plants, and Waters. *Soil Sci.*, **93(1)**: 68.
- Chen, J. L., Yan, S., Feng, Z., Xiao, L. and Hu, X. S. 2006. Changes in the Volatile Compounds and Chemical and Physical Properties of Yali Pear (*Pyrus bertschneideri* Reld) during Storage. Food Chem., 97(2): 248–255.
- Chen, J., Wang, Z., Wu, J., Wang, Q. and Hu, X. 2007. Chemical Compositional Characterization of Eight Pear Cultivars Grown in China. Food Chem., 104(1): 268– 275.
- Chinnici, F., Spinabelli, U., Riponi, C. and Amati, A. 2005. Optimization of the Determination of Organic Acids and Sugars in Fruit Juices by Ion-Exclusion Liquid Chromatography. *J. Food Compos. Anal.*, 18(2-3): 121-130.
- Colaric, M., Stampar, F. and Hudina, M. 2007. Content Levels of Various Fruit Metabolites in the "Conference" Pear Response to Branch Bending. Sci. Hortic., 113(3): 261–266.
- Dar, M. A., Wani, J. A., Raina, S. K., Bhat, M. Y. and Malik, M. A. 2015. Relationship of Leaf Nutrient Content with Fruit Yield and Quality of Pear. J. Environ. Biol., 36(3): 649-653.
- De Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A. and Pastore, G. M. 2021.
 Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem., 338: 127535.
- 16. De Paulo Farias, D., Neri-Numa, I. A., de Araújo, F. F. and Pastore, G. M. 2020. A Critical Review of Some Fruit Trees from the Myrtaceae Family as Promising Sources for Food Applications with Functional Claims. Food Chem., 306: 125630.
- Dong, Y., Guan, J. F., Ma, S. J., Liu, L. L., Feng, Y. X. and Cheng, Y. D. 2014.
 Calcium Content and Its Correlated Distribution with Skin Browning Spot in

- Bagged Huangguan Pear. *Protoplasma*, **252(1)**: 165–171.
- Duan, Y. X., Xu, Y., Wang, R. and Ma, C. H. 2019. Investigation and Prevention of Cork Spot Disorder in 'Akizuki' pear (Pyrus pyrifolia Nakai). HortSci., 54(3): 480–486.
- Elmer, P. and Conn, N. 1982. Analytical Methods for Atomic Absorption Spectrophotometry. Perkin Elmer, Norwalk, CT.
- Fattahi, B., Arzani, K., Souri, M. K. and Barzegar, M. 2021. Morphological and Phytochemical Responses to Cadmium and Lead Stress in Coriander (*Coriandrum sativum L.*). *Ind. Crops Prod.*, 171(1): 113979.
- 21. Feng, Y., Cheng, H., Cheng, Y., Zhao, J., He, J., Li, N., Wang, J. and Guan, J. 2023. Chinese Traditional Pear Paste: Physicochemical Properties, Antioxidant Activities, and Quality Evaluation. Foods, 12(1): 187.
- 22. Han, S., Liu, H., Han, Y., He, Y., Nan, Y., Qu, W. and Rao, J. 2021. Effects of Calcium Treatment on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway in Postharvest Apple Fruit. Food Chem., 334: 127479.
- 23. He, X., Zheng, S., Sheng, Y., Miao, T., Xu, J., Xu, W., Huang, K. and Zhao, C. 2021. Chlorogenic Acid Ameliorates Obesity by Preventing Energy Balance Shifts in High-Fat Diet-Induced Obese Mice. *J. Sci. Food Agric.*, 101(2): 631–637.
- 24. Hosseinzadeh, H. and Nassiri-Asl, M. 2014. Review of the Protective Effects of Rutin on the Metabolic Function as an Important Dietary Flavonoid. *J. Endocrinol. Investig.*, **37(9):** 783–788.
 - 25. Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K. and Chojnacka, K. 2021. Biofortification of Edible Plants with Selenium and Iodine A Systematic Literature Review. *Sci. Total Environ.*, **754:** 141983.
- Jennings, A., MacGregor, A., Spector, T. and Cassidy, A. 2017. Higher Dietary

- Flavonoid Intakes Are Associated with Lower Objectively Measured Body Composition in Women: Evidence from Discordant Monozygotic Twins. *Am. J. Clin. Nutr.*, **105(3)**: 626–634.
- Jimenez-Garcia, S. N., Garcia-Mier, L., Vazquez-Cruz, M. A., Ramirez-Gomez, X. S., Guevara-Gonzalez, R. G., Garcia-Trejo, J. F. and Feregrino-Perez, A. A. 2021. Role of Natural Bio-Active Compounds as Antidiabetic Agents. In: "Bioactive Natural Products for Pharmaceutical Applications". Springer, PP. 535–561.
- 28. Kadkhodaei, S., Arzani, K., Yadollahi, A., Karimzadeh, G. and Abdollahi, H. 2021. Genetic Diversity and Similarity of Asian and European Pears (Pyrus Spp .) Revealed by Genome Size and Morphological Traits Prediction Genetic Diversity and Similarity of Asian and European Pears (Pyrus). Int. J. Fruit Sci., 21(1): 619–633.
- Kawamura, T. 2000. Relationship Between Skin Color and Maturity of Japanese Pear 'Housui'. *Jp. J. Farm Work Res.*, 35(1): 33–38.
- Lee, K. H., Cho, J. Y., Lee, H. J., Park, K. Y., Ma, Y. K., Lee, S. H., Cho, J. A., Kim, W. S., Park, K. H. and Moon, J. H. 2011. Isolation and Identification of Phenolic Compounds from an Asian Pear (*Pyrus pyrifolia* Nakai) Fruit Peel. Food Sci. Biotechnol., 20(6): 1539–1545.
- 31. Li, X., Liao, W., Yu, H., Liu, M., Yuan, S., Tang, B., Yang, X., Song, Y., Huang, Y. and Cheng, S. 2017. Combined Effects of Fruit and Vegetable Intake and Physical Activity on the Risk of Metabolic Syndrome among Chinese Adults. *PloS One*, 12(11): e0188533.
- Liaudanskas, M., Zymone, K., Viškelis, J., Klevinskas, A. and Janulis, V. 2017. Determination of the Phenolic Composition and Antioxidant Activity of Pear Extracts. J. Chem., Volume 2017, Article ID 7856521, 9 PP.
- 33. Lin, L. Z. and Harnly, J. H. 2008. Phenolic Compounds and Chromatographic Profiles

- of Pear Skins (*Pyrus* spp.). *J. Agric. Food Chem.*, **56:** 9094-9101.
- 34. Lister, C. E., Lancaster, J. E., Sutton, K. H. and Walker, J. R. L. 1994. Developmental Changes in the Concentration and Composition of Flavonoids in the Skin of a Red and a Green Apple Cultivar. J. Sci. Food Agric., 64(2): 155–161.
- Maghdouri, M., Arzani, K. and Bakhshi, D.
 Phenolic Compounds and Antioxidant Activity of Some Asian Pears (*Pyrus serotina* Rehd.) Cultivars under Tehran Climatic Conditions. Seed Plant Prod. J., 30(3): 315-326. (in Persian)
- Mainla, L., Moor, U., Karp, K. and Puessa,
 T. 2011. The Effect of Genotype and Rootstock on Polyphenol Composition of Selected Apple Cultivars in Estonia.
 Žemdirbystė (Agriculture), 98(1): 63–70.
- Maleki Asayesh, Z., Arzani, K., Mokhtassi-Bidgoli, A. and Abdollahi, H. 2023.
 Enzymatic and Non-Enzymatic Response of Grafted and Ungrafted Young European Pear (*Pyrus communis* L.) Trees to Drought Stress. Sci. Hortic., 310: 111745.
- Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. and de la Canal, L. 2017. Chlorogenic Acid is a Fungicide Active against Phytopathogenic Fungi. Pestic. Biochem. Physiol., 140: 30–35.
- Mota, J. C., Almeida, P. P., Freitas, M. Q., Stockler-Pinto, M. B. and Guimarães, J. T. 2022. Far from Being a Simple Question: The Complexity between *in Vitro* and *in Vivo* Responses from Nutrients and Bioactive Compounds with Antioxidant Potential. Food Chem., 402: 1-16.
- Monte-Corvo, L., Goulão, L. and Oliveira, C. 2001. ISSR Analysis of Cultivars of Pear and Suitability of Molecular Markers for Clone Discrimination. J. Am. Soc. Hortic. Sci., 126(5): 517–522.
- Muvhulawa, N., Dludla, P. V., Ziqubu, K., Mthembu, S. X., Mthiyane, F., Nkambule, B. B. and Mazibuko-Mbeje, S. E. 2022. Rutin Ameliorates Inflammation and Improves Metabolic Function: A

- Comprehensive Analysis of Scientific Literature. *Pharmacol. Res.*, **178**: 106163.
- 42. Najafzadeh, N. and Arzani, K. 2015. Superior Growth Characteristics, Yield, and Fruit Quality in Promising European Pear (*Pyrus communis* L.) Chance Seedlings in Iran. *J. Agr. Sci. Tech.*, **17(2)**: 427-442.
- 43. Nazir, N., Nisar, S., Mubarak, S., Khalil, A., Javeed, K., Banerjee, S., Kour, J. and Nayak, G. A. 2020. Pear. In: "Antioxidants in Fruits: Properties and Health Benefits". Springer, PP. 435–447.
- 44. Nwafor, E. O., Lu, P., Zhang, Y., Liu, R., Peng, H., Xing, B., Liu, Y., Li, Z., Zhang, K., Zhang, Y. and Liu, Z. 2022. Chlorogenic Acid: Potential Source of Natural Drugs for the Therapeutics of Fibrosis and Cancer. *Translat. Oncol.*, 15(1): 101294.
- Ozturk, I., Ercisli, S., Kalkan, F. and Demir, B. 2009. Some Chemical and Physicomechanical Properties of Pear Cultivars. J. Biotechnol., 8(4): 687–693.
- 46. Pestana, M., Correia, P. J., de Varennes, A., Abadía, J. and Faria, E. A. 2001. Effectiveness of Different Foliar Iron Applications to Control Iron in Orange Trees Grown on Calcareous Soil. *J. Plant Nutr.*, 24(4–5): 613–622.
- 47. Rezaeirad, D., Bakhshi, D., Ghasemnezhad, M. and Lahiji, H. S. 2013. Evaluation of Some Quantitative and Qualitative Characteristics of Local Pears (*Pyrus* sp.) in the North of Iran. *Int. J. Agric. Crop Sci. (IJACS)*, 5(8): 882–887.
- 48. Sanchez, M. B., Miranda-Perez, E., Verjan, J. C. G., de los Angeles Fortis Barrera, M., Perez-Ramos, J. and Alarcon-Aguilar, F. J. 2017. The Potential of the Chlorogenic Acid as a Multitarget Agent: Insulin-Secretagogue and PPAR α/γ Dual Agonist. Biomed. Pharmacother., 94: 169–175.
- Shahid, M., Saleem, M. F., Saleem, A., Raza, M. A. S., Kashif, M., Shakoor, A. and Sarwar, M. 2019. Exogenous Potassium–Instigated Biochemical Regulations Confer Terminal Heat

- Tolerance in Wheat. *J. Soil Sci. Plant Nutr.* **19(1):** 137–147.
- 50. Singh, A., Chaubey, R., Srivastava, S., Kushwaha, S. and Pandey, R. 2021. Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants. In: "Emerging Trends in Plant Pathology". Springer, PP. 343–365.
- 51. Song, K., Kim, S., Na, J. Y., Park, J. H., Kim, J. K., Kim, J. H. and Kwon, J. 2014. Rutin Attenuates Ethanol-Induced Neurotoxicity in Hippocampal Neuronal Cells by Increasing Aldehyde Dehydrogenase 2. Food Chem. Toxicol., 72: 228–233.
- 52. Tatari, M., Ghasemi, A. and Mousavi, A. 2020. Diversity of Local and Wild Pear Germplasm in Central Regions of Iran. *Int. J. Fruit Sci.*, 20(S2): S432– S447.
- 53. Tewari, R. K., Yadav, N., Gupta, R. and Kumar, P. 2021. Oxidative Stress Under Macronutrient Deficiency in Plants. *J. Soil Sci. Plant Nutr.*, 21(1): 832–859.
- 54. Tiwari, D. C., Bahukhandi, A., Durgapal, M. and Bhatt, I. D. 2023. Pyrus spp. [Pyrus pashia Buch. -Ham. ex D. Don, Pyrus pyrifolia (Burm. f) Nakai]. In: "Himalayan Fruits and Berries". Academic Press, PP. 331-341.
- 55. Waling, I., Van Vark, W., Houba, V. J.
 G. and Van der Lee, J. J. 1989. Soil and Plant Analysis, a Series of Syllabi. Part
 7: Plant Analysis. Procedures Wageningen Agriculture University.

- 56. Wang, Y. and Arzani, K. 2019. European Pear. In: "Postharvest Physiological Disorders in Fruits and Vegetables". First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, PP. 305-328.
- 57. Wang, Z., Barrow, C. J., Dunshea, F. R. and Suleria, H. A. R. 2021. A Comparative Investigation on Phenolic Composition, Characterization, and Antioxidant Potentials of Five Different Australian-Grown Pear Varieties. *Antioxidants*, 10(2): 1–22.
- 58. Wójcik, P. and Popińska, W. 2009. Response of Lukasovka Pear Trees to Foliar Zinc Sprays. J. Elementol., 14(1): 181–188.
- 59. Wojcik, P. and Wojcik, M. 2003. Effects of Boron Fertilization on "Conference" Pear Tree Vigor, Nutrition, and Fruit Yield and Storability. *Plant Soil*, 256(2): 413–421.
- 60. Yadegari, P. and Arzani, K. 2023. The Importance, Conservation, Maintenance, and Propagation of European Pear (*Pyrus communis* L.) A95 Promising Genotype. Thirteen National Horticultural Science Congress of Iran (IrHC2023), Congres Proceeding, September 18-21, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran, PP. 3186-3189.

ویژگیهای بیوشیمیایی و تغذیهای میوه برخی از گلابیهای آسیایی و اروپایی (Pyrus spp.) کشتشده در شرایط آب و هوایی تهران

سمیه کدخدایی، و کاظم ارزانی

چکیده

گلابی یکی از مهمترین میوههای دانهدار در بازار جهانی میوه با ارزش غذایی بالا است. این مطالعه به منظور تعیین ترکیبات فنلی و برخی خواص شیمیایی گوشت و پوست میوه ۱۲ گلایی آسیایی و اروپایی انجام شد. اسید کلروژنیک و روتین به عنوان ترکیبات فنلی مهم در پوست میوه یافت شدند که با استفاده از HPLC اندازه گیری شدند. نتایج نشان داد که اسیدیته قابل تیتراسیون میوه (۲۸, ۰۰.۵۳-۰.۱۷)، مواد کل جامد محلول ،(۳۳.۱۷-۳۳.۱۳ درجه بریکس ,TSS)، سفتی (۷۰.۱-۷۰.۷کیلوگرم بر سانتی متر مربع) و یارامترهای رنگ افزایش یافت. بالاترین مقدار *L در KS7 (40.55) مشاهده شد، در حالی که کمترین مقدار در KS12 (14.26) و KS13 (14.78) بود. علاوه بر این، این مطالعه میزان مواد مغذی و فنل کل نمونههای میوه را ارزیابی کرد. رقم «شاهمیوه» بالاترین میزان فنل کل (۱۳۸.۰۱ میلی گرم در ۱۰۰ گرم وزن تازه) را نشان داد، در حالی که رقم KS7 کمترین میزان (٤٢٠.٠٢ میلی گرم در ۱۰۰ گرم وزن تازه) را داشت. یتاسیم فراوانترین ماده مغذی (۱.۱٦ میلیگرم در ۱۰۰ گرم وزن خشک) بود و پس از آن نیتروژن و کلسیم قرار داشتند. با افزایش فنل کل، مقدار روتین نیز افزایش یافت. تجزیه و تحلیل مؤلفههای اصلی تجزیه و تحلیل مولفه های اصلی (PCA) تمام داده ها نشان داد که ارقام گلابی اروپایی و آسیایی دسته بندی شده و در دو گروه مجزا قرار گرفتند. در نتیجه، ارقام و ژنوتیپهای مختلف گلابی اروپایی و آسیایی مورد مطالعه از نظر اکثر صفات بیوشیمیایی مورد مطالعه متفاوت بودند و روابط معنی داری بین برخی از صفات مشاهده شد. علاوه بر این، نتایج بهدست آمده به انتخاب بهترین ارقام یا ژنوتیپهای گلابی از نظر بالاترین میزان فنول و مواد مغذی، هم برای مصرف تازه و هم در صنعت آبمیوه گیری، کمک می کند.

Study on Hemogram and the Effect of Thermal Stress on Hemocytes and Development in *Dacus ciliatus* (Diptera: Tephritidae)

Maryam Ajamhassani^{1*}, Mohamed El Aalaoui², and Bita Valizadeh³

ABSTRACT

This study investigated the hemocyte profile, hemogram across all biological stages, and the morphological and frequency changes of hemocytes in the third instar larvae exposed to temperature stress. Cucumber fruits infected with insect larvae were collected and the third instar larvae were extracted from the fruit tissue. The hemolymph was then collected and, after staining with Giemsa solution, were identified under a light microscope. The hemogram analysis included DHC, THC, and blood volume across all biological stages. In the third instar larvae, plasmatocytes and granulocytes were the most abundant, comprising about 56% of the hemocyte population. In contrast, prohemocytes were most frequent in the first instar larvae, accounting for approximately 37%. THC was highest in the larvae, indicating a direct correlation between hemolymph volume and total hemocyte count. Temperature stress had a significant impact on hemocyte numbers. Heat stress, with temperatures up to 30 and 35°C, led to a notable increase in total cell count, granulocytes, and plasmatocytes. Conversely, cold temperatures resulted in a decrease in prohemocytes, plasmatocytes, granulocytes, and the total cell count compared to the control. Additionally, temperature stress induced hemocyte deformation, with plasmatocytes and granulocytes showing the most pronounced changes, including torn cell walls and loss of cell contents at 35°C. Cold stress had a greater effect on the shrinkage of prohemocytes than on the other cell types. Temperature stress also significantly affected the developmental characteristics of the fruit fly. Heat stress reduced the pupation length and emergence rates, while cold stress more prominently impacted birth rates. This study provides a foundation for further research into the physiological defense mechanisms of this pest.

Keywords: Developmental stage, *Dacus ciliatus*. DHC, Hemocyte identification, Temperature stress, THC.

INTRODUCTION

The Tephritidae family, commonly known as fruit flies, includes over 4,000 species worldwide. The larvae of this family feed on the seeds, fruits, and stems of various agricultural and horticultural crops, with approximately 30% of these species targeting the fruit tissue of truck crops (Norrbom, 2011). Among them, the

Ethiopian fruit fly, *Dacus ciliatus* (Loew) (Diptera: Tephritidae), is an oligophagous pest primarily affecting the Cucurbitaceae family. This pest is active in tropical and subtropical regions of Asia and Africa (Vayssières *et al.*, 2008, Abdallah *et al.*, 2012, EPPO, 2018) and is particularly destructive in Iran's fields and greenhouses (Barzkar *et al.*, 2017). The larvae of *D. ciliatus* cause significant damage to various cucurbit crops, including spring cucumbers,

¹ Department of Plant Protection, Faculty of Agriculture, Shahrood University of Techonology, Shahrood, Islamic Republic of Iran.

² National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat principal, 10090 Rabat, Morocco.

³ Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776. USA.

^{*}Corresponding author; e-mail: shahroodm@gmail.com

autumn cucumbers, Armenian cucumbers, pumpkins, melons, honeydew melons, and zucchini, leading to fruit spoilage and reduced market value. The damage begins when larvae penetrate the fruit tissue, leaving a visible entrance hole, and as they feed, they create tunnels that deform the fruit. Under severe infestation, a single fruit may contain multiple larvae at different developmental stages. Notably, D. ciliatus does not undergo obligatory diapause, allowing it to remain active year-round under favorable conditions, particularly in cucumber greenhouses, where it can devastate up to 90% of the crop yield if left unmanaged (Arghand, 1983, Paydar et al., 2020, Mohammad, 2022).

Understanding physiological characteristics, particularly immunological aspects of insects, is crucial for developing effective strategies to combat the pests using chemical and microbial agents. The immune response of insects serves as a key indicator of hemolymph stress or contamination. Sensitivity and resistance to pathogenic agents vary across different insect species and developmental stages. A strong immune system in insects can prevent the development of infections during microbial challenges, with the outcome largely depending on robustness of the insect's immune defenses (Washburn et al., 2000, Kanost et al., 2007). The first step in this field involves identifying hemocytes and their frequency across the insect's developmental stages (Valizadeh et al., 2017, Go et al., 2022).

The immune reactions of insects are influenced by various environmental and non-environmental factors. temperature changes, diapause, feeding, molting, starvation, and the entry of contaminants or infections hemolymph. These factors underscore the sensitivity of the circulatory system to stress and osmolality changes (Siva-jothy and Thompson 2002; Lee *et al.*, 2008). Osmolality, which refers to the concentration of solute particles in a solution, is a critical characteristic of hemolymph, playing an essential role in blood circulation, gas exchange, metamorphosis, adult emergence, and wing expansion (Jiang *et al.*, 2023; Salcedo *et al.*, 2023). Upon identifying a foreign agent, hemocytes such as plasmatocytes and granulocytes, react by altering their shape, type, and density, followed by processes like phagocytosis and nodulation, which are vital for the insect's innate immune response (Pech and Strand, 2000, Black *et al.*, 2022).

Temperature is a significant environmental factor that influences insect growth, body size, molting, reproduction, abundance, survival, generation time, and immunity (Vogel et al., 2022; Mutamisva et al., 2023). typically have Insects an optimal temperature range for growth and development, with deviations from this range negatively affecting their survival (Foray et al., 2014, Cui et al., 2018). Exposure to high or low temperatures can significantly alter hemocyte depending on the insect's growth stage and species, thereby affecting the insect's resistance to control measures (Browne et al., 2014; Vogel et al., 2022). Various studies have documented the effects of temperature on hemocyte morphology and numbers in different insects, including Phthorimaea operculella Zeller (Lep: Gelechiidae), Gromphadorhina coquereliana, and Megastigmus pistaciae (Hvm: Torymidae) (Pourali Ajamhassani, 2018; Lubawy and Stocinska, 2020, Ajamhassani et al., 2023).

Dacus ciliatus is a serious pest in fields greenhouses, remaining active throughout the year. Environmental temperature fluctuations or temperature stresses in greenhouses can affect the growth and physiological activities of this insect. These environmental changes may also alter the insect's sensitivity to various pesticides or natural enemies (Zhu et al., 2012). By studying how environmental changes affect the immune system of this fly, more effective control methods can be developed and implemented. Therefore, the purpose of this research was to identify the hemocytes, assess the hemogram, and evaluate the effects of thermal stress on the hemocyte profile and some biological characteristics of *D. ciliatus*.

MATERIALS AND METHODS

Insect Rearing

Cucumbers infected with D. ciliatus larvae were collected from infested cucumber greenhouses of Semnan City (35.5767° North, 53.3949° East), Semnan Province, Iran, during 2022 growing season. They were transferred to the laboratory under controlled conditions in growth chamber (temperature 24±1°C, relative humidity 60%, and light-dark ratio 14:10 hours). Growth chamber condition was checked daily. Contaminated cucumbers were placed in plastic containers (40 cm length×40 cm width×40 cm height). The first, second, and third instar larvae were distinguished based on body length and head capsule width (Dyar, 1980) [Figures 1 (a-c)]. The characteristics of larval instars are shown in Table 1. Feeding third instar larvae were utilized to identify hemocytes and determine related to hemogram. parameters Subsequently, infested cucumbers. consumed by larvae and nearing spoilage, were substituted with healthy cucumbers, and the larvae were carefully transferred to the healthy cucumbers using a brush.

Hemocyte Identification

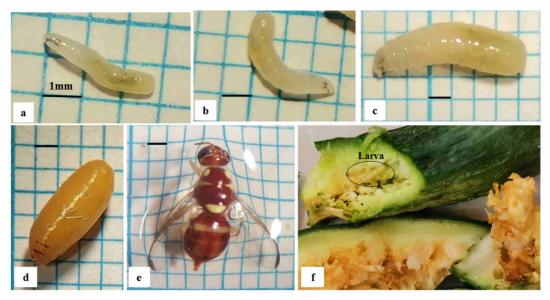
Hemocytes were identified by using Gupta keys and staining cells by Giemsa. Cells were observed using an Olympus BH2 light microscope at $40\times$ magnification and

identified based on size and morphological characteristics (Gupta, 1985; Jones, 1962).

Hemogram

Differential Hemocyte Count (DHC)

The larvae fed on greenhouse cucumber were used for DHC calculations. Differential hemocytes of larvae, pupae, and adults were calculated. Following hemolymph collection using a sterile needle from the area between abdominal segments 3 and 4, the samples were placed on a slide, and a smear was prepared using another slide. A staining solution composed of Giemsa (Merck KGaA, Germany) and distilled water in a 9:1 ratio was added to the slide and allowed to stand for 5 minutes. Subsequently, the slide was washed in distilled water and briefly immersed for 5 seconds in a saturated lithium carbonate solution to fix the cell staining (Yeager, 1945). After another rinse, the underside of the slide was dried using filter paper. One hundred hemocytes were randomly selected at 40× magnification and differentially counted using an Olympus BH2 microscope. Twenty-five samples from each biological stage were examined.


Total Hemocyte Count (THC)

For THC, approximately 1 μ L of hemolymph from two larvae was collected using a capillary tube and mixed with 10 μ L of Tyson buffer as an anticoagulant solution (NaCl2 72 Mm, Na2SO4 9 Mm, glycerol 43 Mm, methyl violet 0.06 Mm, distilled water) (Mahmood and Yusaf, 1985). Hemolymph and Tyson solutions were placed on Neubauer slides (HBG, Germany), and

Table 1. Morphometric size (mean±SE) of different larval development of *Dacus ciliatus* (n=20).

		Larval stages	
	First instar larvae	Second instar larvae	Third instar larvae
Body length (mm)	2.9±0.16	4.7±0.22	7.1±0.26
Head width (mm)	0.32 ± 0.02	0.67 ± 0.03	1.1 ± 0.45

Figure 1. Developmental stages of *Dacus ciliates*: (a) First instar larva, (b) Second instar larva, (c) Third instar larva, (d) Pupa, (e) Adult (female), and (f) Damage of larvae on cucumber (original photo).

hemocytes were counted using the Jones formula and light microscopy at $40 \times$ magnification (Jones *et al.*, 1962).

Hemocyte in×1 mm²×Dilution×Depth factor of chamber

No. of squares counted

Dilution= 10 times, Depth factor of the chamber= 10, and No. of squares counted= 5

Hemolymph Volume (HV)

Hemolymph volume directly was determined by extracting hemolymphs from developmental stages using micropipettes (Terra et al., 1975, Ghasemi et al., 2013). The weight of a piece of filter measured when paper was Subsequently, a proleg was cut from the larval abdomen, and all the hemolymph was collected by using Hamilton syringe (10 µL, Switzerland), placed on filter paper and weighed. Sampling was also conducted for pupae and adults. The difference between the weights of wet and dry filter paper sheets was recorded and considered as hemolymph volume. Fifteen insects from each developmental stage were included.

Effect of Thermal Stress on Hemocytes Profile

The effect of temperature stress on the number of hemocytes comprised four treatments (5, 24±1, 30, and 35°C) and four repetitions. Based on previous observations, infected fruits with larval entrance holes and deformation due to larval activity were found to contain various larval instars. These fruits were divided into four groups and exposed to different conditions: controlled (24±1°C), cold stress (5°C), and heat stress (30 and 35°C). Hemocyte counts in the third instar larvae of D. ciliatus were assessed after 24 hours. The control group comprised kept under growth chamber conditions (24±1°C). In each replicate, the hemolymph of three larvae (approximately 3 μL) was collected via a capillary tube and mixed with 20 µL of Tyson (anticoagulant solution). Cells in 3 µL of hemolymph were counted using a hemacytometer. To observe morphological changes in hemocytes under heat and cold stress, infected fruits were exposed to thermal stress (Pourali and Ajamhassani, 2018, Ajamhassani et al., 2023). After 24 hours, hemocytes from the third instar larvae were stained with Giemsa and examined using a light microscope at 40× magnification. Hemocyte deformation was then recorded.

Effect of Thermal Stress on Pupae

Fruits infected with larvae were divided into four groups within rearing containers and were subjected to test temperatures (5, 24 ± 1 , 30, and 35° C). After 24 hours, the fruits were transferred to growth chamber conditions (for the control treatment, the fruits were kept under growth chamber conditions (temperature 24±1°C, relative humidity 60%, and light-dark ratio 14:10 hours) for 24 hours. The dead larvae were removed from the fruits and the alive third instar larvae were transferred to fresh fruits to complete their life cycle and become pupae and adults. These fruits were checked daily. New puparium usually has a light brown color and body length is 4.8±0.17 mm (Figure 1-d). New pupae were separated daily and 2-old-days pupa were weighed. The other characteristics such as the pupal period, percentage of adult emergence, and adult longevity were examined (40 third instar larvae were examined for each treatment). After emerging, adult flies were gently transferred to the falcon tubes and supplied with a solution of water and honey to determine their longevity.

Statistical Analysis

All data obtained from a complete randomized design were compared by one-way Analysis Of Variance (ANOVA) followed by Tukey's test when significant differences were found at $P \le 0.05$ (SAS, 9.4). Differences between samplings (n= 3) were considered statistically significant at a probability less than 5%, and marked in figures and tables.

RESULTS

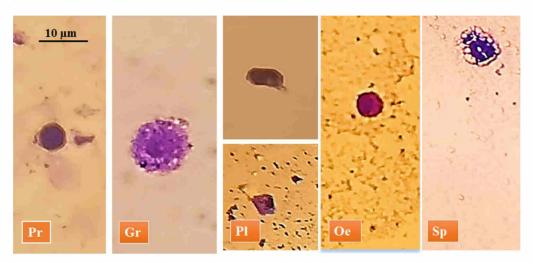
Identification of Hemocytes and Determination of Their Abundance

Five types of hemocytes were observed in the hemolymphs of *D. ciliatus* larvae, namely, prohemocytes, granulocytes, plasmatocytes, oenocytoids, and spherulocytes.

Prohemocytes are round and the smallest cells in terms of size (Table 2). They feature a large, central nucleus that occupies the majority of the cytoplasmic volume (Figure 2). The highest abundance of prohemocytes was observed in the first instar larvae (37 \pm 2.2%), whereas their number decreased in subsequent stages, with the lowest abundant observed in the third instar larvae and pupae (Table 3) (F= 56.3, df_{t,e}= 4,14, P \leq 0.0001).

Granulocytes with central or semi-central nuclei varied in sizes and were sometimes the largest cells (Figure 2). The cytoplasm surface contained numerous granules, which were visualized with Giemsa blue. The frequency of these cells was higher in the third instar larvae (29±1.5%) compared to other stages and lowest in the first instar larvae (16.5 \pm 2.3%) (Table 3) (F= 84, df_{te}= 4,14, $P \le 0.0001$). Plasmatocytes exhibited a spindle-shaped or eye-shaped morphology with varying sizes (Figure 2). The abundance of plasmatocytes was highest in the third instar larvae (26.4±2%) and lowest in the first instar larvae $(21\pm1.6\%)$ (Table 2), $(F=55.4, df_{t,e}=4,14, P \le 0.004)$. Oenocytoids were egg-shaped with lateral nuclei and were similar but slightly larger in size compared to prohemocytes (Figure 2, Table 2). The frequency of these cells was lower than the previous cells (Table 3) (F=107, $df_{t,e}=4,14$, P ≤ 0.0001). Spherulocytes of medium to large sizes were observed in larval hemolymph (Table 2) (Figure 2). Small spherules around the nucleus occupied the cytoplasm surface and had the least frequency of cells (Table 3) (F= 92.6, df_{t.e}= $4,14, P \le 0.0001$).

Table 2. Morphometric measurements of hemocytes in larvae of *Dacus ciliatus* (n= 20).


Hamaayita tyma	Size ($(\mu m)^a$
Hemocyte type	Length (mean±se)	Width (mean±SE)
Prohemocyte	3.1±2.4b	3±2.5b
Plasmatocyte	6.2±2.6ab	2.4±2.8bc
Granulocyte	8.2±3.3a	$6.2\pm2.6a$
Oenocytoid	3.2±1.5b	2.9±0.8b
Spherulocyte	6.5±3.1ab	5.3±2.8ab

^a Different letters in each column show significance using Tukey's test at P< 0.05).

Table 3. Frequency of hemocytes in developmental stages of *Dacus ciliatus* (n= 25).

Developmental stage	Frequency of hemocytes (%) ^a					
	Prohemocyte	Plasmatocyte	Granulocyte	Oenocytoid	Spherulocyte	
1 st Instar larva	37±2.2a	21±1.6bc	16.5±2.3c	11±0.5b	6±1.1a	
2 nd Instar larva	$30.3 \pm 1.6b$	23±0.8b	20±2.4b	14±0.7a	8±1.3a	
3 rd Instar larva	24.1±1.4cd	26.4±2a	29±1.5a	12±0.5b	7±1a	
Pupa	24.2±2.2cd	25.4±1.6a	27±0.8a	11.5±1.1b	$6.4\pm0.2a$	
Adult	27±1.3c	25.4±1.4a	26±1.3ab	8±0.6c	6a	

^a Different letters in each column show statistical differences among biological stages (Tukey's test, $P \le 0.05$).

Figure 2. Light microscopy pictures of *Dacus ciliatus* hemocytes stained with Giemsa. PR (Prohemocyte), PL (Plasmatocyte), OE (Oneocytoid), GR (Granulocyte), SP (Spherulocyte), and Scale bar= 10 μm.

Hemogram

According to Table 3, the weight of the first and second instar larvae was lower than that of other stages (F= 44.4, $df_{t,e}$ = 4,14, P \leq 0.0001). Due to the higher feeding of the third instar larvae, the weight of these larvae was higher significantly than that of the younger larvae. On the other hand, the amount of nutrition was also effective on the hemolymph volume; so, the hemolymph volume was higher in the third instar larvae,

pupae, and adults than in the early larval stages (F= 87.7, df_{t,e}= 4,14, P \leq 0.0001). Hemocyte number of adults (230.2±21.4) cells mm⁻³) decreased compared to the third instar larvae (314.4±22.4) cells mm⁻³) (Table 4), (F= 35.5, df_{t,e}= 4,14, P \leq 0.0001).

Effect of Thermal Stress on Hemocytes Profile

Significant changes were observed in the number of hemocytes of *D. ciliatus* larvae

Table 4. Body weight, Hemolymph Volum (HV), Total Hemocyte Count (THC), in developmental stages of *Dacus ciliates.*Developmental stage. Weight (mg) HV (uL) THC (cell mm⁻³)

Developmental stage	Weight (mg)	HV (μL)	THC (cell mm ⁻³)
1 st instar larva	0.08±0.01d	1±0.33cd	85.5±10d
2 nd instar larva	3±0.2c	1.5±0.2c	210±34.3c
3 rd instar larva	$17\pm0.4a$	3.1±0.3a	$314.4\pm22.4a$
Pupa	$14\pm0.4b$	2.9±0.3a	256±16.4b
Adult	18±1 a	2.2±0.21b	230.2±21.4bc

^a Different letters in each column show statistical differences among biological stages (Tukey's test, P≤ 0.05).

affected by cold and heat. The results showed that the total hemocyte count (F= 84.2, $df_{t,e}$ = 3.10, P≤ 0.0001), granulocytes $(F= 102.5, df_{t,e}= 3.10, P \le 0.0001),$ plasmatocytes (F= 109.35, df_{t.e}= 3,10, P\le 0.0001), and oenocytoids (F= 104, df_{t.e}= 3,10, $P \le 0.0001$) of larvae subjected to heat (30 and 35°C) were significantly higher than those of the control larvae. In all the aforementioned cases, except oenocytoids, a significantly lower number of hemocytes in larvae experienced cold stress compared to the control group. Prohemocyte number decreased under cold too stress. The total hemocyte count in the larvae exposed to 35° C (421 ± 25 cells mm⁻³) and 30° C (377±28.1 cells mm⁻³) was higher than that of the control larvae (340±11.5 cells mm⁻³). Moreover, cold stress at 5°C significantly decreased the number of hemocytes in larvae, reducing it to 262±15 cell mm⁻³ hemolymph (Figure 3).

Furthermore, the granulocyte count was higher in larvae placed at 35°C (177±14 cell mm⁻³) cell in mm³ and 30°C (145±15.5 cell mm⁻³) than in control larvae (107±11.3 cell mm⁻³). Similar to the previous case, the number of granulocytes significantly decreased under cold stress, being reduced to about half the number of hemocytes in the larvae (45 ± 6.5) cell mm⁻³ control hemolymph) (Figure 4). The changes observed in plasmatocytes under the influence of high and low temperatures were similar to those in granulocytes. In other words, the increase of these cells in heat stress and the decrease of plasmatocytes in cold were significant compared to the control. At 30 and 35°C, the rate of increase

of plasmatocytes, like granulocytes, fell into a statistical group (Figure 5).

Increases in oenocytoids differed at high temperatures, with 35°C caused a greater increase in the number of these cells. On the other hand, cold stress did not have a significant effect on the reduction of oenocytoids. Larvae that experienced cold for 24 hours showed no significant differences in the number of oeno-cytoids compared to the control group (Figure 6).

Under the influence of cold stress, prohemocytes exhibited a significant decrease compared to the control group, and their numbers reduced to about half. Based on the observations, the number of prohemocytes increased in higher temperatures but showed no significant difference with the control (Figure 7).

Morphological Changes of Hemocytes in *D. ciliatus* Affected by Thermal Stress

Heat and cold stress significantly affected the shape of hemocytes. Nonetheless, cells underwent greater changes in appearance under heat stress compared to cold. Granulocytes (55±2.3%) and plasmatocytes $(42\pm7\%)$ were deformed more than the other cells by temperatures of 30 and 35°C (Figure 9). At 30°C, the walls of the granulocytes were wrinkled; at the temperature of 35°C, after the cell wall was torn, the cell contents gradually came out of the cell (Figure 8). In some cases, cells were seen to disintegrate under the influence of 35°C. The cell walls of plasmatocytes and oenocytoids were also wrinkled by heat stress. Cold had the greatest effect on the morphology of prohemocytes (Figure 9). These cells were severely shrunk at 5°C, and the nuclei were compressed.

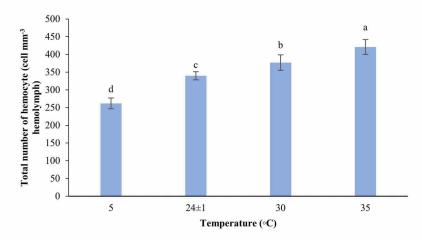


Figure 3. Effect of thermal stress on total hemocyte count in the third instar larvae of Dacus ciliates.

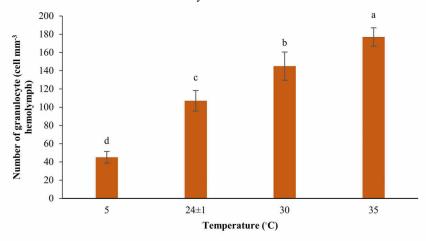


Figure 4. Effect of thermal stress on granulocyte number in the third instar larvae of Dacus ciliates.

Effect of Thermal Stress on Pupae

The pupal period was observed to be shorter in larvae that experienced heat stress than in the control group (F=76.5, $df_{t,e}$ = 3, 10, P \leq 0.002). The temperature of 35°C decreased the pupal period (6.4 \pm 0.5 days) more than the temperature of 30°C (8.5 \pm 0.2 days). The percentage of adult emergence in larvae subjected to both heat and cold stress was lower than in the control, although cold stress had a greater effect on this parameter (F= 98.3, $df_{t,e}$ = 3, 10, P \leq 0.0001). The

percentage of adult emergence in the larvae exposed to cold ($58\pm1.5\%$) was reduced by half compared to the control ($98\pm5.5\%$) (Table 5).

DISCUSSION

Hemocytes play a crucial role in the cellular immunity of insects, responding to various stresses and infections by altering their number, type, size, and shape (Lavine and Strand, 2002; Ebrahimi and Ajamhassani, 2020; Duarte *et al*, 2020). In *Dacus ciliatus*, five types of hemocytes were identified in the hemolymph: prohemocytes,

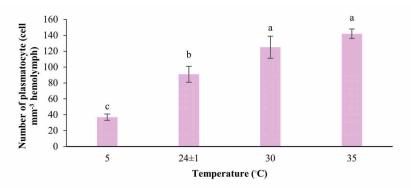


Figure 5. Effect of thermal stress on plasmatocyte number in the third instar larvae of *Dacus ciliates*.

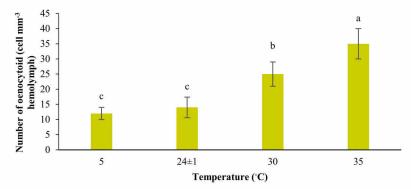


Figure 6. Effect of thermal stress on oenocytoid number in the third instar larvae of *Dacus ciliates*.

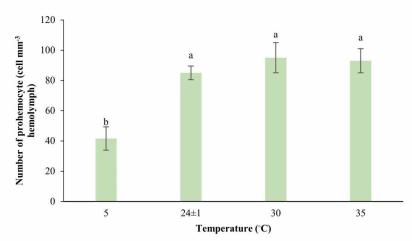
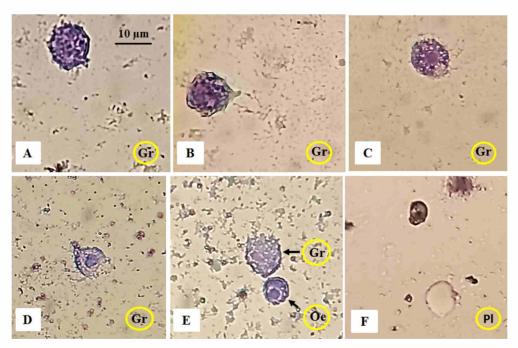



Figure 7. Effect of thermal stress on prohemocyte number in the third instar larvae of *Dacus ciliates*.

Figure 8. A, and B show the deformation of granulocytes; C shows the tearing of the cell wall in granulocytes affected by thermal stress at 30°C; D shows the exit of cellular contents from the granulocyte at 35°C; E shows the complete removal of cellular contents of the granulocyte and destruction of the nucleus as well as deformation of the oenocytoid, and F shows the shrinkage of the cell wall in plasmatocytes affected by cold stress.

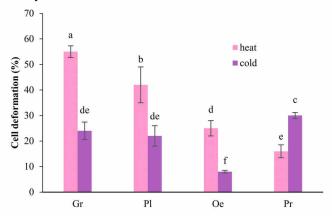


Figure 9. Cell deformation percentage of Dacus ciliatus affected by heat and cold stress.

Table 5. Survival status of *Dacus ciliatus* affected by thermal stress.^a

Temperature (°C)	Days until pupation	Pupal weight (mg)	Pupal period (Day)	Percentage of adult emergence (%)	Adult longevity (Day)
24±1	2±0.3a	14±0.4a	10±1a	98±5.5a	18.5±1.7a
5	2±0.6a	13.5±0.6a	11.7±0.6a	58±1.5c	20±2a
30	1±0.2a	12±0.2a	$8.5 \pm 0.2b$	84±5b	$16.5 \pm 1.8a$
35	$0.5\pm0.1b$	11.2±0.3a	$6.4 \pm 0.5c$	80±2.4b	17±2.2a

^a Different letters in each column show statistical differences among biological stages (Tukey's test, P≤ 0.05.

plasmatocytes, granulocytes, oenocytoids, and spherulocytes. It is important to note that, in some insects, these cell types can be reduced or transformed into other forms. For instance, different types of hemocytes have been observed in flies and mosquitoes. In Anastrepha obliqua (Macquart) (Diptera: Tephritidae), prohemocytes, granulocytes, adipohaemocytes, plasmatocytes, oenocytoids, and spherulocytes were identified in the hemolymph (Silva et al., 2002). Similarly, in Musca domestica Linnaeus, Chrysomya megacephala (Fabricius). and Chironomus ramosus (Fabricius), prohemocytes, plasmatocytes, granulocytes, oenocytoids, spherulocytes were observed (Pal and Kumar, 2014; Gaikwad et al., 2024). This variability suggests that there is no universal hemocyte pattern within this order (Bruno et al., 2022). The types and functions of hemocytes can vary not only between different insect orders but also among families, genera, and species within the same order (Gábor et al., 2020).

The Differential Hemocyte Count (DHC) in D. ciliatus revealed significant variations in the population of different hemocyte types across its life stages. Prohemocytes were the most abundant hemocytes in the hemolymph of the first instar larvae, but their density decreased as the larvae aged. Prohemocytes differentiate into plasmatocytes before being released from hematopoietic organs, undergoing mitosis to become plasmatocytes and granulocytes during cellular defense or wound healing processes (Yamashita and Iwabuki, 2001). Plasmatocytes and granulocytes were the most abundant hemocytes in the third instar larvae and pupae, with a higher concentration in the third instar larvae. These cells are critical for cellular defense processes. Previous research has shown that, Lepidoptera, plasmatocytes granulocytes account for approximately 80-90% of the total hemocyte population (Strand, 2008). It has been demonstrated that older larvae exhibit greater resistance to foreign factors compared to the younger

larvae, likely due to the higher abundance of key immune cells like plasmatocytes and granulocytes (Valadez-Lyra, 2011). In D. ciliatus, the number of plasmatocytes and granulocytes peaked in the third instar larvae but decreased in the pupal and adult stages. In contrast, the numbers of oenocytoids and spherulocytes were low across developmental stages, comprising approximately 6-11% of the total hemocyte population.

The hemogram of D. ciliatus revealed a direct correlation between the insect's weight and both the hemolymph volume and Total Hemocyte Count (THC). The third instar larvae, which are larger and consume more food, cause more damage to crops and have greater body size and weight compared to other stages. Consequently, their blood volume and THC were significantly higher. In contrast, the first instar larvae, which were smaller with less feeding activity, exhibited lower hemocyte counts and hemolymph volume. It has been established that nutrition and food type significantly influence hemolymph volume and hemocyte density (Manjula et al., 2020). Furthermore, the increased nutritional demands of older larvae and the heightened concentration of antimicrobial protein compounds may contribute to changes in the hemocyte population (Gupta, 1985; Mason et al., 2014). In adult flies, the reduced nutritional intake is associated with a significant decrease in circulating hemocytes compared to the third instar larvae.

Many insects are ectotherms, i.e. their primary source of heat comes from the environment. Consequently, drastic temperature changes can significantly affect their homeostasis and survival. The ability to tolerate environmental stress is, therefore, crucial for their fitness, activity, reproduction, survival, and immunological potential (Boher et al., 2016; Herren et al., 2023). In our study, we observed physiological changes in Dacus ciliatus hemocytes under short-term temperature stress (24 hours), specifically in their number and morphology.

The effects of heat and cold stress on hemocyte count and morphology were evident. As the temperature increased to 35°C, there was a significant rise in the number of hemocytes. This increase was attributed to cell division, particularly among prohemocytes, which differentiate into immunocytes in response to stress or the presence of foreign agents (Pandey et al., 2010). Additionally, granulocytes and plasmatocytes were observed to undergo cell division as a result of elevated temperatures (Amaral et al., 2010). However, at these higher temperatures, the cell walls of granulocytes and plasmatocytes were compromised, leading to the rupture of cell membranes and the release of cell contents (Ghasemi et al., 2013). Similar observations were made in Scrobipalpa ocellatella Gelechiidae), (Boyd) (Lep: where granulocytes were severely deformed, and oenocytoids, despite their thick cell walls, were torn under high-temperature stress. Prolonged heat stress in larvae led to the complete disintegration of cells as their contents were fully expelled (Ajamhassani, 2021).

Conversely, cold stress resulted in a decrease in hemocyte numbers and caused compression and shrinkage of prohemocytes. Under unfavorable weather conditions or temperature drops, insects tend to reduce their vital activities, such as feeding and mobility (Ajamhassani *et al.*, 2023). As a result, some hemocytes are removed from circulation and attach to the body walls

(Rowley and Ratcliffe, 1978). In coldexposed cockroaches, the hemocyte area was significantly smaller compared to the control larvae. Specifically, at 4°C, the hemocyte size in Gromphadorhina coquereliana markedly reduced was (Lubawy and Stocinska, 2020). These cells were no longer part of the circulating hemocyte population. Similar effects have been reported in other insect species, such as *Nicrophorus* vespilloides Herbst (Coleoptera: Silphidae) (Urbanski et al., 2017), Antheraea myllita (Drury) (Pandey et

al., 2010), and Yponomeuta mallinellus Zeller (Ajamhassani and Mahmoodzadeh, 2020). In our study, D. ciliatus exhibited comparable response to the thermal stress, where hemocyte size and morphology were notably altered by thermal Granulocytes and plasmatocytes showed significant deformation under heat stress, while cold stress led to a marked reduction in prohemocyte size. These findings further support the sensitivity of hemocyte morphology to temperature extremes, consistent with the observations in other insect species.

We observed a shortened pupal period in Dacus ciliatus individuals subjected to short-term heat stress. Additionally, the percentage of adult emergence was significantly lower in those exposed to both heat and cold, with cold stress having a more pronounced impact compared to the control group. Our findings suggest that the duration of heat stress plays a crucial role in influencing survival and the population dynamics of subsequent generations, which can ultimately affect damage levels, as highlighted by Herren et al. (2023). In their Tenebrio molitor study. Linnaeus (Coleoptera: Tenebrionidae) larvae were subjected to either short (2 hours) or long (14 hours) heat stress at 38°C, and the effects on larval survival and immune response were assessed. They found that brief exposure improved survival rates and enhanced antibacterial activity, whereas prolonged or delayed heat stress had less favorable outcomes, underscoring importance of stress duration and timing.

In contrast, Zheng et al. (2017) investigated the effects of a 2-hour heat stress at 35°C on *Grapholita molesta* (Busck) (Lepidoptera: Tortricidae) pupae. Their results indicated a significant increase in adult longevity and heat resistance, though fecundity was negatively impacted. This study demonstrates how, even short-term, mild heat stress can enhance certain aspects of fitness, such as longevity, which contrasts with the lack of significant changes in pupal weight and adult longevity

observed in our study. Ouda et al. (2022) D. ciliatus examined at constant temperatures of 15, 20, 25, and 30°C, maintaining infested squash fruits at these temperatures to measure developmental rates from egg to adult. Their findings showed that higher temperatures accelerated the development of immature stages, consistent with our observation accelerated development at elevated temperatures. Similarly, Mahmoud (2016) reported a reduction in the larval period of Bactrocera zonata (Saunders) (Diptera: Tephritidae) with increasing temperatures from 15 to 30°C. This observation aligns with our findings on the accelerated development of D. ciliatus, highlighting the broader impact of temperature developmental rates across different species.

Furthermore, high temperatures have been documented to reduce the developmental absoluta stages of Tuta Mevrick (Lepidoptera: Gelechiidae) (de Campos et al., 2021), and Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) when temperatures were increased to 30°C during their development from egg to adult. (Li et al., 2013). Despite insects having behavioral, morphological, and physiological adaptations to tolerate adverse environmental conditions, slight even deviations from the optimal temperature range for their growth can affect their survival and development (Mutamisva et al., 2023).

In our study, we found that temperature treatments did not significantly affect pupal weight or adult lifespan. This may be due to the larvae inside the fruits experiencing only a brief 24-hour temperature stress after nearly completing their feeding, suggesting that under these conditions, pupal weight and adult longevity remained largely unchanged. However, it is crucial to consider the physiological characteristics and sensitivity of each species to environmental changes.

Our findings revealed a positive effect of thermal stress on certain biological and physiological aspects of *D. ciliatus*. While

our study primarily focuses on the effects of thermal stress, understanding the broader implications, including the insect's immune response, can provide additional context. Specifically, future research should explore how thermal stress affects the insect's immune system and its ability to cope with other stressors, such as microbial agents and toxic substances. Investigating interaction between thermal stress and immune parameters, like antimicrobial peptides and detoxifying enzymes, could offer valuable insights into the pest's overall resilience. Such studies will be essential for developing comprehensive pest management strategies that account for environmental stress and biological factors.

CONCLUSIONS

In the present study, we investigated the impact of thermal stress on certain developmental characteristics and the hemocyte density of D. ciliatus. Our findings suggest that this insect exhibits sensitivity to thermal stress, which affects its development and physiological parameters. Given these results, it is crucial to conduct further research on the effects of thermal stress in greenhouse and field settings over extended periods. Understanding how thermal stress influences the survival and immune system of the insect, in both short and long terms, could provide valuable insights for managing its population and mitigating the damage it causes.

ACKNOWLEDGEMENTS

This research was done with the financial assistance of Shahrood University of Technology, and is hereby acknowledged.

REFERENCES

1. Abdallah, A.A., El-Saiedy, E.M.A., El-Fatih, M.M. and Shoula, M.E. 2012. Effect of Some

- Biological and Biochemical Control Agents against Certain Squash Pests. *Arch. Phytopathol.*, **45** (1): 73-82.
- Ajamhassani, M. 2021. Hemocyte Changes of Larvae of the Beet Moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) Affected by Thermal Stress. J. Entomol. Soc. Iran., 41(1):101–103. (In Persian with English Summary)
- Ajamhassani, M. and Mahmoodzadeh, M. 2020. Cellular Defense Responses of 5th Instar Larvae of the Apple Ermine Moth, *Yponomeuta malinellus* (Lepidoptera: Yponomeutidae) against Starvation, Thermal Stresses and Entomopathogenic Bacteria *Bacillus thuringiensis*. *J. Anim. Res.*, 4(2): 59–68. (In Persian with English Summary)
- Ajamhassani, M., Ebrahimizadeh, Z., Abdos, F. and Ahangi Rashti, B. 2023. Different Pistachio Cultivars Impair Hemocyte Frequencies in Diapausing and Nondiapausing Larvae of Pistachio Seed Chalcid, Megastigmus pistaciae (Hymenoptera: Torymidae). J. Entomol. Soc. Iran., 43(4): 347-360.
- Amaral, I.M.R., Neto, J.F.M., Pereira, G.B., Franco, M.B., Beletti, M.E., Kerr, W.E., Bonetti, A.M. and Ueira-Vieira, C. 2010. Circulating Hemocytes from Larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): Cell Types and Their Role in Phagocytosis. Micron. 41: 123-129.
- Arghand, B. 1983. Introduction Flies Dacus sp. and Study it in the Province Hormozgan. J. Plant Pest. Dis., 51(1): 9-3. (in Persian)
- Barzkar, M., Goldasteh, SH., Eslamizadeh, R. and Usefi, B. 2017. Study on the Population Dynamics and Spatial Distribution of the Cucurbit Fly; *Dacus ciliatus* Loew (Dip., Tephritidae). *J. Entomol. Res.*, 9(2): 131-142.
- Black, J. L.; Clark, M. K. and Sword, G. A. 2022. Physiological and Transcriptional Immune Responses of a Non-Model Arthropod to Infection with Different Entomopathogenic Groups. *PLoS ONE.*, 17: e0263620.
- Boher, F., Trefault, N., Estay, S. E. and Bozinovic, F. 2016. Ectotherms in Variable Thermal 521 Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species. Front. Physiol., 7: 302.

- Browne, N., Surlis, C. and Kavanagh, K.
 Thermal and Physical Stresses Induce a Short-Term Immune Priming Effect in Galleria mellonella Larvae. J. Insect Physiol., 63: 21-26.
- 11. Bruno, D., Montali, A., Gariboldi, M., Wronska, A., Kaczmarek, A., Mohamed, A., Tian, L., Casartelli, M. and Tettamanti, G. 2022. Morphofunctional Characterization of Hemocytes in Black Soldier Fly Larvae. *Insect Sci.*, 1-21.
- 12. De Campos, M. R., Béarez, P., Amiens-Desneux, E., Ponti, L., Gutierrez, A. P., Biondi, A., Adiga, A. and Desneux, N. 2021. Thermal Biology of *Tuta absoluta*: Demographic Parameters and Facultative Diapause. *J. Pest Sci.*, 94: 829–842.
- Duarte, J. P., Silva, C. E., Ribeiro, P. B., and Carcamo, M. C. 2020. Do Dietary Stresses Affect the Immune System of *Periplaneta* americana (Blattaria: Blattidae)? *Braz. J. Biol.*, 80: 73–80.
- 14. Dyar, H. C. 1890. The Number of Molts of Lepidopterous Larvae. *Psyche*. **5**: 420-422.
- 15. Ebrahimi, M., and Ajamhassani, M. 2020. Investigating the Effect of Starvation and Various Nutritional Types on the Hemocytic Profile and Phenoloxidase Activity in the Indian Meal Moth *Plodia interpunctella* (Hübner) (Lepidoptera: Pyralidae). *ISJ*, 17: 175–185.
- 16. Foray, V., Desouhant, E. and Gibert, P. 2014. The Impact of Thermal Fuctuations on Reaction Norms in Specialist and Generalist Parasitic Wasps. Funct. Ecol., 28: 411–423.
- Gábor, E., Cinege, G., Csordás, G., Rusvai, M., Honti, V. and Kolics, B. 2020.
 Identification of Reference Markers for Characterizing Honey Bee (*Apis mellifera*) Hemocyte Classes. *Dev. Comp. Immunol. (DCI)*, 109: 1-5.
- 18. Gaikwad, P., Gupta, A., Waghamare, N., Mukhopadhyaya, R. and Nath, B. B. 2024. Hemocytes of a Tropical Midge *Chironomus ramosus* (Diptera: Chironomidae). *Int. J. Trop. Insect Sci.*, 44: 265-271.
- 19. Ghasemi, V., Moharramipour, S., and Jalali Sendi, J. 2013. Circulating Hemocytes of Mediterranean Flour Moth, *Ephestia kuehniella* Zell (Lep: Pyralidae) and Their Response to Thermal Stress. *Invertebr. Surviv. J. (ISJ)*, **10**:128-140.

- 20. Go, M. S., Cho, Y., Park, K., Kim, M., Park, S. and Park, J. 2022. Classification and Characterization of Immune Haemocytes in the Larvae of the Indian Fritillary, *Papilio hyperbius* (Lepidopetra: Nymphalidae). *Eur. J. Entomol.*, 119: 430-438.
- Gupta, A. P., 1985. Cellular Elements in the Hemolymph. Comp. Biochem. Physiol. Pharmacol., 3: 401-451.
- 22. Hassan, G. M., El Aassar, M. R. and Khorchid, A. M. 2023. Implement of Some Biocontrol Tactics as an Innovative Management against Cucurbit Fly, *Dacus ciliatus* and Western Flower Thrips, *Frankliniella occidentalis* on Squash Crop. *Assiut J. Agri. Sci. (AJAS)*, 54(2): 202-219.
- 23. Herren, P., Hesketh, H., Dunn, A. M. and Meyling, N. V. 2023. Heat Stress Has Immediate and Persistent Effects on Immunity and Development of *Tenebrio molitor*. J. Insects Food Feed., 10(5): 835-853.
- 24. Jiang, M., Zhang, X., Fezzaa, K., E. Reiter, K., Kramer-Lehnert, V., Davis, B., Wei, Q., and Lehnert, M. 2023. Adaptations for Gas Exchange Enabled the Elongation of Lepidopteran Proboscises. *Curr. Biol.*, 33: 2888-2896.
- Jones, J. C. 1962. Current Concepts Concerning Insect Hemocytes. Am. Zool., 2: 209-246.
- 26. Kanost, M. R., Jiang, H., Yu, and X. Q. 2004. Innate Immune Responses of a Lepidopteran Insect, *Manduca sexta*. *Immunol*. *Rev*., 198:97–105.
- 27. Lavine, M. D., and Strand, M. R. 2002. Insect Hemocytes and Their Role in Immunity. *Insect Biochem Mol Biol.*, **32**: 1295–1309.
- Lee K. P., Simpson, S. J. and Wilson, K. 2008. Dietary Protein-Quality Influences Melanization and Immune Function in an Insect. Funct. Ecol., 22: 1052-1061.
- 29. Li, L. T., Wang, Y. Q., Ma, J. F., Liu, L., Hao, Y. T., Dong, C., Gan, Y. J., Dong, Z. P. and Wang, Q. Y. 2013. The Effects of Temperature on the Development of the Moth *Athetis lepigone*, and a Prediction of Field Occurrence. *J. Insect Sci.*, 13: 1-13.
- 30. Lubawy, J. and Sticinska, M. 2020. Characterization of *Gromphadorhina* coquereliana Hemolymph under Cold Stress. *Sci. Rep.*, **10**: 12076.

- 31. Mahmood, A., and Yousaf, M. 1985. Effect of Some Insecticides on the Haemocytes of *Gryllus bimaculatus*. de Geer. *Pak. J. Zool.*, 17: 71-84.
- 32. Mahmoud, A. A. 2016. Effect of Temperature on the Development and Survival of Immature Stages of the Peach Fruit Fly, *Bactrocera zonata* (Saunders) (Diptera: Tephritidae). *Afr. J. Agric. Res.*, **11(36):** 3375-3381.
- 33. Manjula, P., Lalitha, K. and Shivakumar, M. S. 2020. Diet Composition Has a Differential Effect on Immune Tolerance in Insect Larvae Exposed to *Mesorhabditis belari*, *Enterobacter hormaechei* and Its Metabolites. *Exp. Parasit.*, **208**: 1-7.
- 34. Mason, A. P., Smilanich, A. M. and Singer, M. S. 2014. Reduced Consumption of Protein-Rich Foods Follows Immune Challenge in a Polyphagous Caterpillar. *J. Exp. Biol.*, **217**: 2250-2260.
- 35. Mohammad, A. K. H. 2022. Biological and Control Study of the Cucurbit Fruit Fly, *Dacus ciliatus* (Leow) (Diptera: Tephritidae). *Biochem. Cell. Arch.*, **22(1)**: 2923-2926.
- 36. Mutamisva, R., Mbande, A., Nyamukondiwa, C. and Chidawanyika, F. 2023. Thermal Adaptation in Lepidoptera under Shifting Environments: Mechanisms, Patterns, and Consequences. *Phytoparasitica*, 51: 929-955.
- Norrbom, A. L. and Uchoa, M. A. 2011. New Species and Records of Anastrepha (Diptera: Tephritidae) from Brazil. *Zootaxa*, 2835: 61-67.
- 38. Ouda, M. I., Mousa, E. A. M. and Fatina, B. 2022. Biological Study of Cucurbit Fruit Fly, *Dacus ciliatus* (Loew) on Constant Temperatures. *Egypt. Acad. J. Biol. Sci., A Entomol.*, **15(4)**:121-128
- 39. Pal, R. and Kumar, K. 2014. A Comparative Study of Haemocytes in Three Cyclorrhaphous Dipteran Flies. *Int. J. Trop. Insect Sci.*, **34**: 207–216.
- 40. Pandey, J. P., Mishra, P. K., Kumar, D., Singh, B. M. K. and Prasad B. C. 2010. Effect of Temperature on Hemocytic Immune Responses of Tropical Tasar Silkworm, Antheraea mylitta D. Res. J. Immunol. (RJI), 3: 169-177.
- 41. Paydar, M., Moeini-Naghadeh, N., Jalilian, F. and Zamani, A. A. 2020. Comparative Field Study of Various Attractants of the Pumpkin

- Fruit Fly, *Dacus ciliatus* (Diptera: Tephritidae) in Kermanshah. *Iran. J. Plant Prot. Sci.*, **51(2)**: 171-179.
- 42. Pech, L. L. and Strand, M. R. 2000. Plasmatocytes from the Moth *Pseudoplusia includens* Induce Apoptosis of Granular Cells. *J. Insect Physiol.*, 46: 1565–1573.
- 43. Pourali, Z. and Ajamhassani, M. 2018. The Effect of Thermal Stresses on the Immune System of the Potato Tuber Moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). J. Entomol. Soc. Iran, 37: 515-525. (In Persian with English Summary)
- 44. Rowley, A. F. and Ratclife, N. A. A. 1978. Histological Study of Wound Healing and Hemocyte Function in the Wax-Moth Galleria mellonella. J. Morphol., 157: 181– 199.
- 45. Salcedo, M. K., Jun, B. H., Socha, J. J., Pierce, N. E., Valchos, P. P., and Combes, S. A. 2023. Complex Hemolymph Circulation Patterns in Grasshopper Wings. *Commun. Biol.* 6:313. 1-12.
- 46. Shapiro, M. 1979. Changes in Hemocyte Populations. In: "Insect Hemocytes", (Ed.): Gupta A. P. Cambridge University Press, Cambridge, PP. 475-524.
- 47. Silva, J. E. B., Boleli, I. C. and Simoes, Z. L. P. 2002. Hemocyte Types and Total and Differential Counts in Unparasitized and Parasitized *Anastrepha obliqua* (Diptera, Tephritidae) Larvae. *Braz. J. Biol.*, **62(4A)**: 689-699.
- 48. Siva-Jothy, M. and Thompson, J. 2002. Short-Term Nutrient Deprivation Affects Immune Function. *Physiol. Entomol.*, **27(3)**: 206-212.
- Strand, M. R. 2008. The Insect Cellular Immune Response. *Insect Sci.*, 15: 1-14
- 50. Terra, W. R., Bianchi, A. G., and Lara, F. J. S. 1975. Physical properties and chemical composition of the haemolymph of *Rhynchosciara americana* (Diptera) larvae. *CBP.*, **47**: 117-129.
- 51. Urbanski, A., Czarniewska, E., Baraniak, E. and Rosinski, G. 2017. Impact of Cold on the Immune System of Burying Beetle, *Nicrophorus vespilloides* (Coleoptera: Silphidae). *Insect Sci.*, 24: 443-454.
- Valadez-Lira, J. A., Gonzalez, J. M., Damas,
 G., Meja, G., Oppert, B., Padilla, C. and
 Guerra, P. 2011. Comparative Evaluation of

- Phenoloxidase Activity in Different Larval Stages of Four Lepidopteran after Exposure to *Bacillus thuringiensis*. *J. Insect Sci.*, **12(80)**: 1-11.
- 53. Valizadeh, B., Sendi, J., Khosravi, R. and Salehi, R. 2017. Establishment and Characterizations of a New Cell Line from Larval Hemocytes of Rose Sawfly Arge ochropus (Hymenoptera: Argidae). J. Entomol. Soc. Iran, 38(2): 173–186. (In Persian with English Summary)
- 54. Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of Immature Stages and Comparative Demography of Two Cucurbit-Attacking Fruit Flies in Reunion Island: *Bactrocera cucurbitae* and *Dacus ciliatus* (Diptera: Tephritidae). *Environ. Entomol.*, 37: 307-314.
- 55. Vogel, M., Shah, P. N., Voulgari-Kokota, A., Maistrou, S., Aartsma, Y., Beukeboom, L.W., Salles, J. F., Van Loon, J. J. A., Dicke, M. and Wertheim, B. 2022. Health of the Black Soldier Fly and House Fly under Mass-Rearing Conditions: Innate Immunity and the Role of the Microbiome. *J. Insects Food* Feed. 8: 857-878.
- 56. Washburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N. E., and Volkman, L. E. 2000. Co-infection of Manduca sexta larvae with polydnavirus from *Cotesia congregata* Increases Susceptibility to Fatal Infection by *Autographa californica* nucleopolyhedrovirus. *J. Insect Physiol.*, 46(2): 179-190.
- 57. Yamashita, M. and Iwabuchi, K. 2001. *Bombix mori* Prohemocytes Division and Differentiation in Individual Microcultures. *J. Insect Physiol.*, 47: 325-331.
- 58. Yeager, J. F. 1945. The Blood Picture of the Southern Armyworm (*Prodenia eridamin*). *J. Agric. Res.*, **71**: 1–40.
- 59. Zheng, J., Cheng, X., Hofmann, A. A., Zhang, B. O. and Ma, C. S. 2017. Are Adult Life History Traits in Oriental Fruit Moth Affected by a Mild Pupal Heat Stress? J. Insect Physiol., 102: 36–41.
- 60. Zhu, Q., He, Y., Yao, J., Liu, Y., Tao, L. and Huang, Q. 2012. Effects of Sublethal Concentrations of the Chitin Synthesis Inhibitor, hexaflumuron, on the Development

and Hemolymph Physiology of the Cutworm,

Spodoptera litura. J. Insect Sci., 12(27): 1-13.

Pacus ciliatus (Diptera: بررسی هموگرام و تأثیر استرس حرارتی بر هموسیت ها و رشد در Tephritidae)

مريم عجم حسني، محمد العلوي، و بيتا ولي زاده

چکیده

این یژوهش تاثیر تنشهای دمایی را بر سامانه ایمنی مگس جالیز :Dacus ciliatus Loew (Diptera (Tephritidae با بررسی مرفولوژی و تراکم سلولهای خونی به عنوان اجزای اصلی ایمنی حشره نشان می دهد. فاکتورهای مختلفی مانند تنش دما، تغییرات رژیم غذایی و ورود عفونتها و آلودگیها به همولنف، با تغییر يروفايل سلولهاي خوني سبب ياسخ ايمني حشره مي شوند. اين تحقيق متمركز بر يروفايل هموسيتها، هموگرام همه مراحل زیستی و تغییرات مرفولوژیکی و فراوانی هموسیتهای لاروهای سن سوم مگس جالیز در مقابل استرسهای دمایی بود. میوه های خیار آلوده به لارو، جمع آوری و به آزمایشگاه منتقل شدند. لاروهای سن سوم از بافتهای میوه خارج شدند. پس از استخراج همولنف از لاروها و رنگ آمیزی با محلول گیمسا، هموسیتها با استفاده از میکروسکوپ نوری، شناسایی شدند. در مطالعه هموگرام، پارامترهای THC ،DHC، و حجم همولنف در همه مراحل زیستی اندازه گیری شد. در لاروهای سن سوم، گرانولوسیتها و پلاسماتوسیتها در مجموع شامل ۵۶ درصد فراوانی، بیشترین جمعیت را بین هموسیتها داشتند. در مقابل، پروهموسیتها در حدود ۳۷%، بیشترین فراوانی را در لاروهای سن اول به خود اختصاص دادند. بالاترین THC در لاروهای سن سوم مشاهده شد که نشان دهنده ارتباط مستقیم بین حجم همولنف و تعداد کل سلولها بود. تنشهای دما تاثیر معنی داری بر تعداد هموسیتها نشان داد. در تنش گرما، افزایش دما تا ۳۰ و ۳۵ درجه سلسیوس، منجر به افزایش بارز تعداد کل سلولها، گرانولوسیتها و پلاسماتوسیتها شد. در مقابل، تنش سرما، سبب کاهش يروهموسيتها، گرانولوسيتها، يلاسماتوسيتها و تعداد كل سلولها در مقايسه با شاهد شد. به علاوه، تنش دما سبب تغيير شكل هموسيتها شد. يلاسماتوسيت ها و گرانولوسيت ها بارزترين تغييرات را تحت تنش گرمايي نشان مي دهند، از جمله یارگی دیواره سلولی و از بین رفتن محتویات سلولی در دمای ۳۵ درجه سلسیوس. استرس سرما، تأثير بيشتري بر انقباض پروهموسيت ها در مقايسه با ساير سلولها داشت. تنش دما همچنين به طور قابل توجهي بر ویژگی های رشدی مگس میوه تأثیر گذاشت. استرس گرمایی طول دوره شفیره و نرخ ظهور حشرات کامل را کاهش داد، در حالی که استرس سرما به طور برجستهتری بر نرخ تولد تأثیر داشت. این مطالعه نشان دهنده شناسایی اولیه هموسیت ها و تجزیه و تحلیل پاسخ ایمنی D. ciliatus به تغییرات دما است که پایه ای برای تحقیقات بیشتر در مورد مکانیسم های دفاع فیزیولوژیکی این آفت فراهم می کند.

Temperature-Dependent Development and Temperature Thresholds of total immature stage of Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) in Iran

Najmeh Ebrahimi¹

ABSTRACT

Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae), is one of the most important pests of agricultural crops in tropical and subtropical regions of the world. In this study, the developmental rate of C. ceratitis was studied at 10, 12, 15, 17, 20, 25, 27, 30, 32, and 35°C. The results showed a nonlinear relationship between temperatures and developmental rate. The best nonlinear models were Perfomance-1 and Performance-2 in Mazandaran and Fars Provinces, respectively. These models simulated the developmental rate of Mediterranean fruit fly accurately at temperatures ranging from 15 to 35 and 20 to 30°C, in Mazandaran and Fars Provinces, respectively, and the estimated optimal temperature of total immature stages was 31.9 and 31.8°C, respectively. The lower and upper temperature thresholds of the total immature stage in Mazandaran and Fars Provinces were estimated at 11.23 and 13.15°C, and 38.1 and 37.7°C, respectively. Between the two linear models, the Ikemoto linear model showed better-fit data compared with the ordinary model.

Keywords: Developmental rate, Fars Province, Linear models, Mazandaran Province, Nonlinear models.

INTRODUCTION

Fruit flies belong to the family Tephritidae, one of the largest and most economically important groups in the order Diptera (White and Elson-Harris, 1992; Li et al., 2013). The larvae of most Tephritid species develop in the seed and cause severe damage to fruit and vegetable crops in most tropical and subtropical countries. The Mediterranean fruit fly is one of the most damaging agricultural pests in the world. It is a severe pest of more than 350 species of fruits and vegetables (Thomas et al., 2001; Morales et al., 2007; White and Elson-Harris, 1992). In the last decade, the consequences of climate change on the distribution, abundance, and phenology of insect species have been widely studied.

With an estimated further increase in mean global temperatures of 0.8°C over the next 100 years, the biosphere can be expected to experience broad climate-related changes. The occurrence of insect pests could be impacted by these changes. Insects may respond to climate change in a variety of ways (Chandrakumara et al., Kambrekar et al., 2015; Yamamura and Kiritani, 1998). Various factors, particularly temperature, is a critical abiotic factor affecting the development, survival, and reproduction of insect species, fitness, or performance-related traits of insects (Azrag et al., 2018; Yadav et al., 2014). Insect distribution and abundance are highly affected by temperature and, generally, an increase in temperature within the limits tolerated by the insect results in a rapid

¹ Research Department of Agricultural Entomology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Islamic Republic of Iran. e-mail: N.ebrahimi@iripp.ir or n ebrahimi60@yahoo.com

population increase (Campbell *et al.*, 1974; Bale *et al.*, 2002; Mujica *et al.*, 2017).

The developmental rate of insects and other poikilothermic invertebrates is linearly dependent on Temperature from a lower developmental threshold (T_{min}) to the optimum Temperature (T_{opt}). This is because temperature affects many physiological processes and the activity of enzymes (Trudgill et al., 2005). Phenological models, using physiological time data, have been developed for Mediterranean fruit fly to predict the emergence of adults from the overwintering generation, egg hatching, larval, and pupal development, as well as generation time. These models, all based on a linear relationship between temperature and developmental rate, have been used to time pesticide application for Mediterranean fruit fly (Duyck et al., 2002; Grout and Stoltz, 2007; Duyck and Quilici, 2002). Linear approximation enables the estimation of lower temperature thresholds and thermal constants within a limited temperature range (Campbell et al., 1974; Honek 1999; Howell and Neven, 2000; Jarosik et al., 2002). The curvilinear models have not been routinely used of their complexity (Howell and Neven, 2000). Temperature is the single important most environmental factor determining development and survival of Tephritid fruit flies (Fletcher, Temperature effects on the development and stage-specific survival have been shown to influence both the quantity and quality of Tephritid fruit flies produced (Vargas et al., 1996; Vargas et al., 1997; Brévault and Quilici, 2000; Vargas et al., 2000; Duyck and Quilici, 2002; Trudgill et al., 2005; Grout and Stoltz, 2007; Rwomushana et al., 2008; Vayssières et al., 2008; Liu and Ye, 2009; Salum et al., 2013). Various Tephritid species have specific optimal temperature ranges for development that are limited by lower and upper thresholds. Development does not occur below and above these temperature limits, and this can vary both with developmental stage and geographical origin (Honék and Kocourek, 1990). Information on the thermal requirements of insect groups forms an essential basis for understanding and predicting the geographical distribution of the different insect groups.

This is the first study in which two linear and 26 nonlinear models have been used to model the effect of temperature on the development of this important fruit fly. The results will contribute to improve Integrated Pest Management (IPM) programs.

MATERIALS AND METHODS

Rearing Methods

To establish and maintain the insect colony and conduct the experiment, fruits infected with Mediterranean fruit fly were collected from citrus orchards Mazandaran and Fars Provinces. Infected citrus fruits were transferred to the growth chamber (in plastic boxes on sterilized sand) and phytotron (rearing of colony) at a temperature of 25±1°C and 60±10% RH and 16:8 (L:D). Larvae and adults were reared for two generations on artificial food (bran, yeast, water, sugar, sodium benzoate and citric acid) and hydrolyzed protein in Petri dishes and large cylindrical containers (Mafi Pashaklai, 2013).

Experimental Conditions

Rearing was conducted at (10, 12, 15, 17, 20, 25, 27, 30, 32, and 35±1°C), 60±5% RH, and a photoperiod of 16:8 (L:D) h in growth chambers. The environmental conditions of each phytotron were monitored with a temperature and relative humidity data logger.

Egg, Larval and Pupal Development

Three hundred to 1,000 eggs in groups of 100, less than one day old, were incubated on filter paper at 10, 12, 15, 17, 20, 25, 27, 30, 32, and 35±1°C. All eggs were checked

daily for hatching. The daily growth and development on artificial food and sterilized sand for larvae and pupae was monitored and recorded until the emergence of adult flies.

Developmental Rate and Mathematical Models

Developmental rate is the reciprocal of developmental time in days. These rates are used in linear and nonlinear models where data are added daily (Arbab et al., 2006). Development is completed when the sum of daily developmental rate values equals 1 (Curry et al., 1978). Therefore, the integral of the developmental rate function over time can be used to simulate the development of exposed organism to different temperatures (Arbab et al., 2006). The ordinary and Ikemoto linear and 26 nonlinear descriptive models were used to determine the relationship between temperature and Mediterranean fruit fly developmental rate. The parameters of interest are the lower and upper temperature thresholds (T_{min} and T_{max} , respectively), the optimal Temperature (Topt), and the thermal constant (K). Most models can estimate two or more parameters. In addition to the ordinary model, the Ikemoto linear model was used to obtain more reliable estimates of the lower temperature threshold and thermal constant (Ikemoto and Takai, 2000).

Three criteria including the Sum of Squared Error (SSE), adjusted coefficient of determination $(R^2_{adi}),$ and Akaike Information Criterion (AIC) were used to evaluate the nonlinear models. All nonlinear models in each stage were ranked using AIC, as the best statistical criterion (Akaike 1974), and the model with the smallest value of AIC was considered to be the best model for describing the temperature-dependent development of C. capitata. According to Burnham et al. (2011), models with $\Delta > 7$ were dismissed where Δ is the difference between AIC of the best model and the ith model. T_{fast}, the temperature that the

maximum development rate occur was calculated directly from some of the nonlinear models (Arbabtafti *et al.*, 2023). In addition to statistical criteria accuracy (Kontodimas *et al.*, 2004), biological significance (Briere *et al.*, 1999) were considered to select the best nonlinear model. The observed total development times of *C. capitata* in Mazandaran and Fars Provinces were compared with those estimated using the selected nonlinear models.

Statistical Analysis of Developmental Rate To determine the effect of different temperatures on the developmental time of the Mediterranean fruit fly, data were checked for normality. Then, one-way Analysis Of Variance (ANOVA) was used to determine the significant differences in developmental time of total immature stages (from egg to pupal stage) at constant temperatures (Minitab, 2000). differences among the treatments were compared using Tukey's test (α = 0.05). Comparison of development time of the two provinces was done by the Student's t-test. Minitab (ver. 19.2) software was used for all analyses. Excel 2016 was used for graph construction. Evaluation of the two linear and 26 nonlinear models was done by using Arthro Thermo Model (ATM) software (Mirhosseini et al., 2017) to describe the development rate (the reciprocal of development time) of *C. capitata* as a function of temperature. The ATM software calculates criteria and parameters for all models.

RESULTS

Developmental Time

No development occurred at 10 and 12°C (in Fars Province) and 10, 12, 15 and 17°C (in Mazandaran Province). The mean developmental time of total immature stages (from egg to pupal stage) at ten constant temperatures in two provinces, is shown in Table 1. One-way ANOVA showed a

Table 1. Developmental time of *Ceratitis capitata* total immature stages at ten constant temperatures.^a

Geographical population	Temperature (°C)	Total (Day)
M1	10	Mean±SE
Mazandaran	10	-
	12	- 50.50.5.34
	15	52.50±0.5 ^{aA}
		N=2
	17	38.2±0.87 bA
		N=20
	20	20.11±0.28 ^{cB}
		N=70
	25	15.09±0.22 dA
		N=94
	27	13.30±0.12 eA
	_,	N=121
	30	$11.24\pm0.21^{\text{ defA}}$
		N=66
	32	-
	35	$13\pm0.57^{\mathrm{defA}}$
		N=3
	F	632.27
	df	6,369
	P	0.000
Fars	10	-
	12	-
	15	-
	17	-
	20	26.01±0.17 ^{aA}
	20	N=121
	25	14.52±0.16 bA
	25	N=129
	27	13.39±0.10 ^{cA}
	27	N=133
		11.22±0.14 dA
	30	N=68
	32	-
	35	- -
	55 F	1832.81
		3,447
	df	
	P	0.000

^a Means followed by different lowercase letters in the columns are significantly different between different temperatures in each population (Tukey's test, P < 0.05) and the means followed with by capital letters were significantly different between two populations at each temperature (T-test, P < 0.05).

significant effect of temperature on development time for total immature stages of Mediterranean fruit fly in Mazandaran and Fars Provinces (P< 0.05). Total developmental time was extended at 15°C (52.50 days) and 20°C (26.01 days) in the population of Mazandaran and Fars Provinces, respectively.

Model Evaluation

Linear Models

Both linear models showed an acceptable fitness for total immature stages. The linear regression equation, the lower temperature threshold, and the thermal constant of the total immature stages of *C. capitata* are shown in Table 2. The Ikemoto linear model

Table 2. Linear regressions, lower Temperature threshold (T_{min}), and thermal constant (degree days) of *Ceratitis capitata* immature stages using two linear models.

Geographical population	Model	Stage	Linear equation	$T_{min}(^{\circ}\mathrm{C})$	K (DD)	R^2	R^2_{adj}	P
Mazandaran	Ordinary	Egg-pupa	R= 0.024385+0.0033905T	7.1921	294.9416	0.84082	0.80898	0.003
	Ikemoto	Egg-pupa	DT= 228.8627+10.8028D	10.8028	228.8627	0.94398	0.93278	0.00007
Fars	Ordinary	Egg-pupa	R= 0.060777+0.0050415T	12.0553	168.3525	0.98692	0.98039	0.006
	Ikemoto	Egg-pupa	DT= 188.5943+12.695D	12.695	188.5943	0.99341	0.99011	0.0002

had a higher value of R² and R²_{adj} than the ordinary model, indicating a slight degree of confidence in parameter estimates provided by the Ikemoto linear model. In addition to the ordinary model, the Ikemoto and Takai linear models were used to obtain more reliable estimates of the lower temperature threshold and thermal constant (Ikemoto and Takai, 2000). The Ikemoto linear model estimated lower temperature thresholds for total developmental of C. capitata, were 10.80 and 12.69°C, while the thermal constants of the total immature stages were 228.86- and 188.59-Degree Days (DD) in Provinces, Mazandaran and Fars respectively.

Nonlinear Models

The curves of the influence of temperature on the developmental rate of the total immature stages (from egg to pupae stage) fitted by 18 models in Mazandaran Province (Figure 1) and five models in Fars Province are shown in Figure 2. The values of R², RSS (SSE), AIC (Akaike Information Criterion), and R²_{adj} used to determine the goodness-of-fit, the models of the nonlinear models of the Mazandaran Province are shown in Table 3. Considering the AIC and biological criteria (T_0 , T_U , and T_{opt}), the Logan 6 model had the poorest and the Briere-1 model had the best fitness to the data for total immature development in Mazandaran (Table 5). The values of measurable parameters of the nonlinear developmental rate models in Fars are presented in Table 4. Among the non-linear models obtained from the Fars, only the polynomial model was accepted for total immature development based on AIC, however, biological criteria (T_0 , T_U , and T_{opt}) had the poorest ability to provide the growth and development model. Performance-2, and Briere-1 models provided more accurate estimates for T_0 , T_U , and T_{opt} in Fars Province (Table 6).

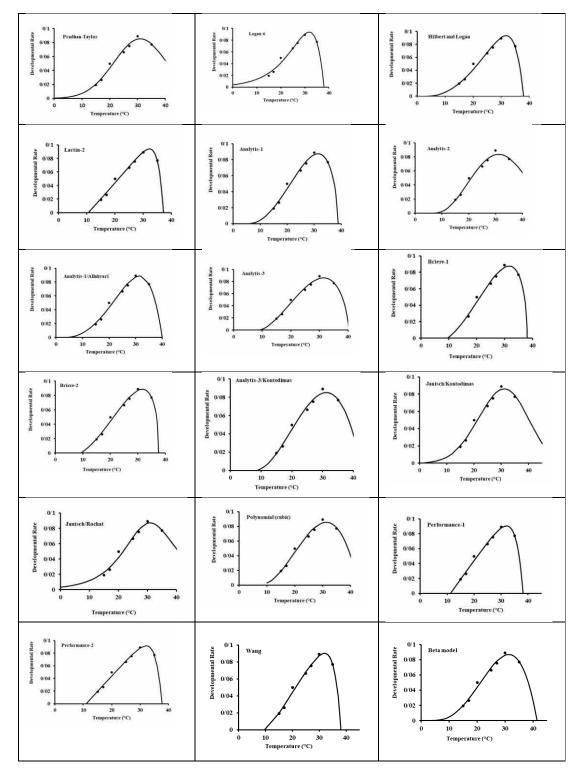
DISCUSSION

Determining the developmental time at different temperatures is necessary to calculate the developmental rate. The present findings in Mazandaran were different from the results of Ricalde et al. (2012) and Grout and Stoltz, 2007 at similar temperatures. Therefore, Ricalde et al. (2012), obtained the most extended period of developmental time of total immature stages of C.capitata was 71.20 days at 15°C and 16.90 days shortest, at 30°C. Furthermore, Grout and Stoltz reported that the longest developmental time of the total immature stages of *C.capitata* at 14°C was 83.6 days and the shortest, 21.2 days at 30°C. The differences in the obtained results can be caused by regional variability (e.g., temperature, humidity and rainfall), which can affect the development and survival capitata populations (Papadogiorgou et al., 2024). Linear models only estimate a lower temperature threshold, and this is proper for analysis of the phenology of insect populations due to simplifying the analysis (Ikemoto and Kiritani, 2019).

Table 3. Comparison of 26 developmental rate models based on the number of parameters, SSE, Akaike Information Criterion (AIC), and adjusted R^2 (R^2 _{adj}) for predicting egg, larva, pupa and total immature development stages of Ceratitis capitata in Mazandaran Province.

Model		No. of	Total			
		parameters	SSE	R ² adj	AIC	Ranka
Pradhan-Taylor		3	8.000005	0.9698	-73.1459	6
Davidsons logistic		3	0.0043	-0.4999	-45.8029	24
Logan-6		4	1.00004	0.9454	-69.0103	18
Hilbert and Logan		5	9.3209e-05	0.9346	-68.5861	19
Lactin-1		3	1.00004	0.9408	-68.4299	20
Lactin-2		4	5.000005	0.9752	-74.5425	3
Logan-10		5	9. 000005	0.9552	-68.3887	21
Analytis-1		5	6. 000005	0.9538	-71.0189	12
Analytis-2		5	8.000005	0.9414	-69.3496	17
Analytis-1/Allahyari		5	7. 000005	0.9498	-70.431	15
Analytis-3		5	6.000005	0.9530	-70.8958	14
Briere-1		3	6.000005	0.9785	-75.5218	1
Briere-2		4	6.000005	0.9716	-73.5736	5
Analytis-3/Kontodimas		3	7.000005	0.9746	-74.3637	4
Janisch/Kontodimas		4	8.000005	0.9610	-71.3618	11
Janisch/Rochat		4	1.00004	0.9509	-69.747	16
Sharpe and DeMichele		7	0.0274	NaN^b	-26.8023	26
Sharp and DeMichele/Schoolfield		7	0.0039	NaN	-40.4897	25
Sharp and DeMichele/Kontodimas	S	6	0.0013	-0.7976	-48.2395	23
Polynomial (cubic)		4	7.000005	0.9662	-72.3688	9
Sharpe-Schoolfield-Ikemoto	(SSI	7	3. 000005	NaN	-71.4554	10
model)		-	4.000005	0.0653	72.0102	-
Performance-1		5	4.000005	0.9653	-73.0182	7
Performance-2		4	5.000005	0.9766	-74.9404	2
Wang		6	4.000005	0.9303	-70.9876	13
Ratkowsky		4	3.00004	0.9705	-61.6343	22
Beta`		4	7.000005	0.9669	-72.5221	8

^a Rank is based on the AIC criteria. ^b NAN: The number of model parameters is equal to or greater than the observations and cannot be calculated Model.


In the present study, lower temperature thresholds and thermal constant were estimated using both ordinary and Ikemoto linear models. A comparison of the total developmental time at different temperatures showed that the linear range was up to 30° C for the population of Mazandaran and Fars Provinces. The R^2_{adj} coefficients used to fit the regression between temperature and the developmental rate were higher for the Ikemoto linear model on the two populations tested.

The lower temperature threshold for total immature stages was estimated by the

Ikemoto linear model at 10.80 and 12.69°C, Mazandaran and Fars Provinces, respectively. The lower temperature threshold values estimated by Ricalde et al. (2012) (9.10, 9.30, 9.60°C) and Grout and Stoltz (2007) (9.9°C) are closer in our result of Mazandaran Province. Based on Honek and Kocourek (1990) To decreased if K increased therefore, the thermal constant of total immature stages of C. capitata for the two linear ordinary and Ikemoto linear models were obtained at 294.94- and 228.86-degree days in Mazandaran

⁻ Data could not be fitted by the model.

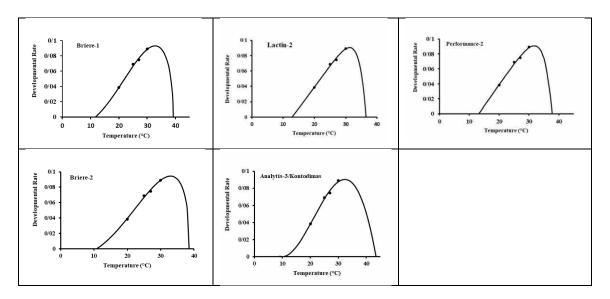


Figure 1. Observed development rate for the total immature stages of Mazandaran Province of *Ceratitis capitata* (dots) and 18 fitted nonlinear models (lines).

Figure 2. Observed development rate for total immature stages of Fars Province of *Ceratitis capitata* (dots) and 5 fitted nonlinear models (Lines).

Table 4. Comparison of 26 developmental rate models based on the number of parameters, SSE, Akaike Information Criterion (AIC), and adjusted $R^2(R^2_{adj})$ for predicting total immature development of Ceratitis capitata in Fars Province.

Model	No. of parameters	Total			
	-	SSE	R^2_{adj}	AIC	Rank ^a
Pradhan-Taylor	3	0.00001	0.9763	-45.3017	3
Davidsons logistic	3	0.0014	-1.9999	-25.9319	13
Logan-6	4	0.00001	NaN^b	-41.6177	10
Hilbert and Logan	5	_c	-	-	-
Lactin-1	3	0.00001	0.9647	-43.7057	5
Lactin-2	4	0.00001	NaN	-43.3518	8
Logan-10	5	-	-	-	-
Analytis-1	5	-	-	-	-
Analytis-2	5	-	-	-	-
Analytis-1/Allahyari	5	-	-	-	-
Analytis-3	5	-	-	-	-
Briere-1	3	0.000009	0.9791	-45.7944	2
Briere-2	4	0.00001	NaN	-43.5121	7
Analytis-3/Kontodimas	3	0.00001	0.9749	-45.0691	4
Janisch/Kontodimas	4	0.0015	NaN	-23.6038	14
Janisch/Rochat	4	0.00001	NaN	-40.8527	11
Sharpe and DeMichele	7	-	-	-	-
Sharp and DeMichele/Schoolfield	7	-	-	-	-
Sharp and DeMichele/Kontodimas	6	-	-	-	-
Polynomial (cubic)	4	0.0000	NaN	-227.7655	1
Sharpe-Schoolfield-Ikemoto (SSI model)	7	-	-	-	-
Performance-1	5	-	-	-	-
Performance-2	4	0.00001	NaN	-43.5767	6
Wang	6		-	-	-
Ratkowsky	4	0.00004	NaN	-37.9192	12
Beta`	4	0.00001	NaN	-43.2408	9

^a Rank is based on the AIC criteria. ^b NAN The number of model parameters is equal to or greater than the observations and cannot be calculated Model. ^c Data could not be fitted by the model.

Table 5. Values of the fitted coefficients and measurable parameters of 18 developmental rate models to describe immature stage development of the *Ceratitis capitata* in Mazandaran Province.

Model	Parameter	Value
Pradhan-Taylor	r_m	0.08524 (0.07732, 0.09316)
	T_{opt} (°C)	31
	<i>Τσ</i> (°C)	9.459 (7.418, 11.5)
Logan-6	Δ_T	4.99 (-27.04, 37.02)
	$\dot{\psi}$	0.004267 (-0.00202, 0.01055)
	$\stackrel{\prime}{ ho}$	0.1296 (-0.4758, 0.735)
	T_{max} (°C)	38.01 (31.58, 44.44)
	T_{opt} (°C)	31.9
Hilbert and Logan	D	56.45 (-1.123e+05, 1.124e+05)
8	Δ_T	3.526 (-62.35, 69.41)
	$\stackrel{-\iota}{\psi}$	0.5187 (-2048, 2049)
	T_{min} (°C)	3.911 (-112.4, 120.3)
	T_{max} (°C)	40 (-140.6, 220.6)
	T_{opt} (°C)	31.72
Lactin-2	Δ	1.929 (-4.485, 8.344)
Lactin-2	$\frac{\Delta}{\lambda}$	-1.047 (-1.08, -1.015)
	ρ	0.00435 (0.002843, 0.005857) 10.59
	T_{min} (°C)	
	T_{max} (°C)	41.55 (20.71, 62.39) 32.3
Analytis-1	$T_{opt}\left(^{\circ}\mathrm{C} ight)$	0.3931 (-11.38, 12.16)
Allarytis-1	-	
	m	0.6314 (-14.28, 15.54)
	n T (9C)	2.2 (-29.77, 34.17)
	$T_{min}(^{\circ}\mathrm{C})$	5.52 (-142.3, 153.3)
	$T_{max}(^{\circ}\mathbf{C})$	38.93 (-58.59, 136.4)
A 1 1 2	T_{opt} (°C)	31.09
Analytis-2	P	3.286e+05 (-4.495e+12, 4.495e+12
	m	2.735 (-25.89, 31.35)
	n Tu (OC)	4.132 (-3.505e+06, 3.505e+06)
	T_{min} (°C)	6.376 (-94.12, 106.9)
	T_{max} (°C)	55.92 (-39.66, 151.5)
	T_{opt} (°C)	31.09
Analytis-1/Allahyari	P	0.2319 (-6.458, 6.922)
	m	4 (-96.35, 104.4)
	n To (0.50)	2.038 (-54.85, 58.92)
	T_{min} (°C)	3.903 (-328, 335.8)
	T_{max} (°C)	39.97 (12.65, 67.29)
	T_{opt} (°C)	0.445 05 (0.0402 0.04020)
Analytis-3	а	9.417e-05 (-0.0102, 0.01039)
	m	0.6681 (-14.83, 16.17)
	n	1.72 (-17.79, 21.23)
	T_{min} (°C)	8.793 (-72.46, 90.05)
	T_{max} (°C)	40.2 (-84.11, 164.5)
	T_{opt} (°C)	31.09
Briere-1	a	4.951e-05 (3.529e-05, 6.373e-05)
	t_{min} (°C)	9.553 (6.264, 12.84)
	$T_{max}(^{\circ}\mathrm{C})$	38.07 (36.43, 39.7)
	T_{opt} (°C)	31.9
Briere-2	a	5.522e-05 (-0.0001026, 0.0002131
	n	2.192 (-3.56, 7.945)

Table 5 continued...

Continued of Table 5.

Model	Parameter	Value
	T _{min} (°C)	9.267 (-0.188, 18.72)
	$T_{max}(^{\circ}\mathrm{C})$	37.62 (25.82, 49.42)
	T_{opt} (°C)	31.64
Analytis-	a	1.351e-05 (6.226e-06, 2.08e-05)
/Kontodimas		
	T_{min} (°C)	7.963 (5.177, 10.75)
	$T_{max}(^{\circ}\mathrm{C})$	42.87 (39.27, 46.47)
	T_{opt} (°C)	31.23
Janisch/Kontodimas	D_{min}	4.968 (0.4977, 9.439)
	k	0.0742 (-0.2308, 0.3792)
	λ	0.05016 (-0.06608, 0.1664)
	T_{opt} (°C)	34.25 (-13.09, 81.58)
Janisch/Rochat	C	0.08659 (0.05224, 0.1209)
	a	1.116 (0.7389, 1.492)
	h	1.143 (0.9574, 1.328)
	$T_{max}(^{\circ}\mathrm{C})$	30.06 (10.85, 49.28)
	T_{opt} (°C)	30.9
Polynomial (cubic)	a_0	-1.372e-05 (-4.413e-05, 1.669e-05)
, ()	a_1	0.000812 (-0.001498, 0.003122)
	a_2	-0.01055 (-0.06684, 0.04575)
	a3	0.04067 (-0.3963, 0.4777)
	T_{min} (°C)	(, (,,,,
	T_{max} (°C)	42.849
	T _{opt} (°C)	31.3
Performance-1	$\overset{\cdot }{C}$	2.162 (-474.5, 478.8)
	K1	0.002354 (-0.5263, 0.531)
	K2	0.3431 (-3.903, 4.59)
	$T_{min}(^{\circ}\mathrm{C})$	11.23 (-3.707, 26.17)
	$T_{max}(^{\circ}C)$	38.1 (14.27, 61.92)
	T_{opt} (°C)	31.94
Performance-2	K2	0.3956 (-0.8109, 1.602)
	m	0.004867 (0.002948, 0.006786)
	$T_{min}(^{\circ}\mathrm{C})$	10.99 (7.62, 14.36)
	$T_{max}(^{\circ}C)$	37.71 (30.48, 44.93)
	T_{opt} (°C)	32.071
Wang	$\stackrel{\sim}{C}$	0.2473 (-68.09, 68.59)
8	<i>K1</i>	0.001469 (-14.51, 14.51)
	K2	0.3611 (-75.46, 76.18)
	m	3.15 (-3.069e+04, 3.07e+04)
	$T_{min}(^{\circ}\mathrm{C})$	9.626 (-89.9, 109.2)
	$T_{max}(^{\circ}C)$	38.06 (-284.2, 360.3)
	T_{opt} (°C)	31.97
Beta	rm	0.08657 (0.07226, 0.1009)
	$T_{min}(^{\circ}C)$	3.865 (-35.25, 42.98)
	$T_{max}(^{\circ}C)$	41.44 (31.5, 51.38)
	T_{opt} (°C)	31.29 (29.23, 33.35)

Province, while it was 168.35- and 188.59-degree days in Fars Province, respectively. The result reported by Grout and Stoltz

(2007) 337.8 (DD), and Ricalde *et al.* (2012) 350, 341 and 328 (DD) were higher than our results.

Table 6. Values of the fitted coefficients and measurable parameters of 5 developmental rate models to describe total immature stage development of the *Ceratitis capitata* in Fars Province.

Model	Parameter	Value
Lactin-2	Δ	-
	λ	-
	ρ	-
	T_{min} (°C)	-
	T_{max} (°C)	-
	T_{opt} (°C)	-
Analytis-3	a	-
-	m	-
	n	-
	$T_{min}(^{\circ}\mathrm{C})$	-
	$T_{max}(^{\circ}C)$	-
	T_{opt} (°C)	-
Briere-1	a	5.284e-05 (-0.0001954, 0.0003011)
	$t_{min}(^{\circ}\mathrm{C})$	11.61 (-21.42, 44.65)
	$T_{max}(^{\circ}C)$	39.25 (-21.12, 99.62)
	T_{opt} (°C)	32.81
Briere-2	a	6.26e-05
	n	2.383
	T_{min} (°C)	10.78
	$T_{max}(^{\circ}C)$	38.57
	T_{opt} (°C)	33.01
Performance-2	K2	0.3271
	m	0.005697
	$T_{min}(^{\circ}\mathrm{C})$	13.15
	$T_{max}(^{\circ}C)$	37.74
	T_{opt} (°C)	31.8

Many abiotic factors affect the growth and development of insects. Temperature is the most significant environmental influencing insect development, survival, behavior, and distribution (Fletcher, 1989). Biological parameters like developmental zero and the thermal constant are supposed to be the limiting factors in the geographic distribution of fruit flies (Ye, 2001). The developmental response of insects to temperature can help to predict their therefore, assist occurrence and, monitoring and control strategies for pests. Different species of Tephritidae have particular optimal temperature ranges for development, which are limited by low and high thresholds (Honék and Kocourek, 1990). Different temperature characteristics, may be affected by pest species (Honék, 1999), pest population (Lee and Elliott, 1998), growth, and development stages

(Honék, 1996; Kocourek and Stara, 2005) and other ecological factors such as food source (Golizadeh et al., 2007), and interspecies and intraspecies competition (Duyck and Quilici, 2004) and the difference may be due to one or a set of the above factors. Model selection is critical because of the significant differences between model predictions. Rebaudo and Rabhi (2018) point out that each of the criteria for model selection has its advantages disadvantages, therefore, a combination of different methods should be used in model selection, e. g. the AIC criteria can separate several models with the same R^2_{adj} and SSE. In most studies, the AIC index has been mentioned as the best statistical parameter to measure the validity of the models. Furthermore, model selection should be performed based on observations and biological and ecological information or

biological significance (Arbabtafti *et al.*, 2023). A standard method for evaluating the accuracy of the estimated critical temperatures is based on their comparison with experimental data (Kontodimas *et al.*, 2004).

CONCLUSIONS

The findings of this study, especially in relation to temperatures, can be used to accurately predicting *C. capitata* population development in different provinces and enable us to choose the best time for controlling this pest. Since the development rate of *C. capitata* may be influenced by factors such as host plants of *C. capitata*, further studies should be done on different host plants to obtain the best development models.

ACKNOWLEDGEMENTS

The financial and technical support of this research was provided by Department of Entomology, Iranian Research Institute of Plant Protection. Also, I would like to thank Dr. Roia Arbabtafti (Agricultural Research, Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection), Bruce L. Parker (Entomology Research Laboratory, University of Vermont) and Dr. Masood Amir-Maafi (Sunn Pest Department, Iranian Research Institute of Plant Protection) for their assistance.

REFERENCES

- Arbab, A., Kontodimas, D. C. and Sahragard, A. 2006. Estimating Development of *Aphis pomi* (DeGeer) (Homoptera: Aphididae) Using Linear and Non-linear Models. *Environ. Entomol.*, 5: 1208-1215.
- 2. Arbabtafti, R., Fathipour, Y. and Ranjbar-Aghdam, H. 2023. Thermal Requirements and Development Response to Constant

- Temperatures by *Sesamia cretica* (Lepidoptera: Noctuidae). *Int. J. Trop. Insect Sci.*, **43(2):** 561-579.
- 3. Akaike, H. 1974. A New Look at the Statistical Model Identification. *IEEE Trans Autom Control.*, **19**:716-723.
- Azrag, A. G., Pirk, C. W., Yusuf, A. A., Pinard, F., Niassy, S. and Mosomtai, G. 2018. Prediction of Insect Pest Distribution as Influenced by Elevation: Combining Field Observations and Temperature-Dependent Development Models for the Coffee Stink Bug, Antestiopsis thunbergii (Gmelin). Plos One, 13: 1-18.
- Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M. and Brown, V. K. 2002. Herbivore in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Change Biol., 8: 1-16.
- Brévault, T. and Quilici, S. 2000. Relationships between Temperature, Development and Survival of Different Life Stages of the Tomato Fruit fly, Neoceratitis cyanescens. Entomol. Exp. Appl., 94: 25-30.
- 7. Briere J. F., Pracros, P., Le Roux, A. Y. and Pierre, S. 1999. A Novel Rate Model of Temperature Dependent Development for Arthropods. *Environ. Entomol.*, **28:**22–29
- 8. Burnham, K. P., Anderson, D. R. and Huyvaert, K. P. 2011. AIC Model Selection and Multimodel IInference in Behavioral Ecology: Some |Background, Observations, and Comparisons. *Behav Ecol Sociobiol.*, **65**:23-35.
- Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. and Mackauer, M. 1974. Temperature Requirements of Some Aphids and Their Parasites. *J. Appl. Ecol.*, 11: 431-438
- Chandrakumara, K., Sau, A. K., Ankur; R., Tanwar, A. K. and Hadimani, B. N. 2024. Variations in the Biological and Ecological Attributes of Insects due to Climate Change: A Review. *Indian J. Entomol.*, 86(1): 319.
- Curry, G. L., Feldman, R. M. and Sharp, P. J. H. 1978. Foundation on Stochastic Development. *J. Theor. Biol.*, 74: 397-410.
 - 12. Duyck, P. F. and Quilici, S. 2002. Survival and Development of Different Life Stages of Three *Ceratitis* spp. (Diptera: Tephritidae) Reared at Five Constant Temperatures. *Bull. Entomol. Res.*, **92**: 461-469.

- 13. Duyck. P. F., Quilici, S. and Glenac, S. 2002. Comparative Study of the Developmental Biology of Three Species of Fruit Flies (*Ceratitis* spp.) (Diptera: Tephritidae), Pests of Fruit Crops on Reunion Island. *Proceedings of 6th International Fruit Fly Species of fruit Fly Symposium*, 6-10 May, Stellenbosch, South Africa, PP. 67-69.
- 14. Duyck, P. F., Patrice David, P. and Quilici, S. 2004. A Review of Relationships between Interspecific Competition and Invasions in Fruit Flies (Diptera: Tephritidae). *Ecol. Entomol.*, **29** (5): 511-520.
- 15. Fletcher, B. S. 1989. Temperature Development Rate Relationships of the Immature Stages and Adults of Tephritid Fruit Flies. In: "Fruit Flies Their Biology, Natural Enemies and Control", (Eds.): Robinson, A. S. and Hooper, G. Vol. 3A, Elsevier, Amsterdam.
- Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2007. Temperature Dependent Development of Diamondback Moth, *Plutella xylostella* (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. *J. Insect Sci.*, 14: 309-316.
- 17. Grout, T. G. and Stoltz, C. S. 2007. Developmental Rates at Constant Temperatures of Three Economically Important *Ceratitis* spp. (Diptera: Tephritidae) From Southern Africa. *Environ. Entomol.*, **36(6)**: 1310-1317.
- Honék, A. and Kocourek, F. 1990. Temperature and Development Time in Insects: A General Relationship between Thermal Constants. *Zool. Jahrb. Abt. Syst.*, 117: 401-439.
- 19. Honek, A. 1999. Constraints on Thermal Requirements for Insect Development. *Entomol. Sci.*, **2**:615-621.
- Howell, J. F. and Neven, L. G. 2000. Physiological Development Time and Zero Development Temperature of the Codling Moth (Lepidoptera: Tortricidae). Environ. Entomol., 29: 766-772.
- Ikemoto, T. and Kiritani, K. 2019. Novel Method of Specifying Low and High Threshold Temperatures Using Thermodynamic SSI Model of Insect Development. *Environ. Entomol.*, 48(3): 479-488.
- 22. Ikemoto, T. and Takai, K. 2000. A New Linearized Formula for the Law of Total

- Effective Temperature and the Evaluation of Line-Fitting Methods with Both Variables Subject to Error. *Environ*. *Entomol.*, **29:** 671–682.
- 23. Jarosik, V., Honek, A. and Dixon, A. F. G. 2003. Development Rate Isomorphy in Insects and Mites. *Am. Nat.*, 4:497-510.
- 24. Kambrekar, D. N., Guledgudda, S. S., Katti, A. and Kumar, M. 2015. Impact of Climate Change on Insect Pests and Their Natural Enemies. *Karnataka J. Agric. Sci. Spl. Issue*, **28**(5): 814-816.
- 25. Kocourek, F. and Stara, J. 2005. Predictive Value of a Model of the Flight Activity of *Adixophyes orana* (Lep.: Tortricidae). *J. Pest Sci.*, **78**: 205-211.
- 26. Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. and Economou, L. P. 2004. Comparative Temperature-Dependent Development of Nephus includens and Nephus bisignatus (Kirsch) (Boheman) (Coleoptera: Coccinellidae) Preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of a Linear and Various Nonlinear Models Using Specific Criteria. Entomol., 33: 1-11.
- 27. Lee, J. H. and Elliott, N. C. 1998. Comparison of Developmental Responses to Temperature in *Aphelinus asychis* (Walker) from Two Different Geographic Regions. *Southw. Entomol.*, 23(1): 77-82.
- 28. Li, Z. H., Jiang, F., Ma, X., Fang, Y., Sun, Z., Qin, Y. and Wang, Q. 2013. Review on Prevention and Control Techniques of Tephritidae Invasion. *Plant Quarantine*, **27(2)**: 1–10.
- Liu, X. and Ye, H. 2009. Effect of Temperature on Development and Survival of *Bactrocera correcta* (Diptera: Tephritidae). *Sci. Res. Essays*, 4(5): 467-472.
- 30. Mafi Pashaklaei, Sh. A. 2013. Study on rearing Mediterranean fruit fly Ceratitis capitata Wied. on artificial diets under laboratory conditions (Final research project report). Agricultural Research, Education and Extension Organization, Iranian Research Institute of plant protection, 52 pp.
- 31. Mirhosseini, M. A., Fathipour, Y. and Reddy, G. V. P. 2017. Arthropod Development's Response to Temperature: A Review and New Software for

- Modeling. *Ann. Entomol. Soc. Am.*, **110**: 507-520
- 32. Morales. P., Cermeli, M., Godoy, F. and Salas, B. 2007. Lista de Hospederos de la Mosca del Mediterráneo Ceratitis capitata Wiedemann (Diptera: Tephritidae) Basada en los Registros del Museo de Insectos de Interés Agrícola del INIA CENIAP. Entomotropica, 19(1): 51-54.
- 33. Mujica, N., Sporleder, M., Carhuapoma, P. and Kroschel, J. 2017. A Temperature-Dependent Phenology Model for *Liriomyza huidobrensis* (Diptera: Agromyzidae). *J. Econ. Entomol.*, **110** (3): 1333-1344.
- 34. Papadogiorgou, G. D., Papadopoulos, A. G., Moraiti, C. A., Verykouki, E. and Papadopoulos, N. T. 2024. Latitudinal Variation in Survival and Immature Development of *Ceratitis capitata* Populations Reared in Two Key Overwintering Hosts. *Sci. Rep.*, **14**: 467.
- 35. Rebaudo, F. and Rabhi, V. B. 2018. Modeling Temperature-Dependent Development Rate and Phenology in Insect Review of Major Developments, Challenges, and Future Directions. *Entomol. Exp. Appl.*, **166**: 607-617.
- 36. Ricalde, M. P., Nava, D. E., Loeck, A. E. and Donatii, M. G. 2012. Temperature-Dependent Development and Survival of Brazilian Populations of the Mediterranean Fruit fly, *Ceratitis capitata*, from Tropical, Subtropical and Temperate Regions. *J. Insect Sci.*, **12(33)**: 1-10.
- 37. Rwomushana, I., Ekesi, S., Ogol, C. K. P. O. and Gordon, I. 2008. Effect of Temperature on Development and Survival of Immature Stages of *Bactrocera invadens* (Diptera: Tephritidae). *J. Appl. Entomol.*, **132**: 832-839.
- Salum, J. K., Mwatawala, M. W., Kusolwa, P. M. and De Meyer, M. 2013. Demographic Parameters of the Two Main Fruit Fly (Diptera: Tephritidae) Species Attacking Mango in Central Tanzania. J. Appl. Entomol., 138: 141-148.
- 39. Thomas, M. C., Heppner, J. B., Woodruff, R. E., Weems, H. V., Steck, G. J. and Fasulo, T. R. 2001. *Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann)*

- (Insecta: Diptera: Tephritidae). UF/IFAS Extension,
- https://edis.ifas.ufl.edu/publication/IN371.
- 40. Trudgill, D. L., Honek, A., Li, D. and Van Straalen, N. M. 2005. Thermal time-concepts and utility. *Ann. Appl. Biol.*, **146**:1-14
- 41. Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. and Kanehisa, D. T. 1996. Survival and Development of Immature Stages of Four Hawaiian Fruit Flies (Diptera: Tephritidae) Reared at Five Constant Temperatures. *Ann. Entomol. Soc. Am.*, **89**: 64-69.
- 42. Vargas, R. I., Walsh, W. A., Kanehisa, D. J., Stark, D. and Nishida, T. 2000. Comparative Demography of Three Hawaiian Fruit Flies (Diptera: Tephritidae) at Alternating Temperature. *Ann. Entomol. Soc. Am.*, **93**: 75-81.
- 43. Vargas, R. I., Walsh, W. A., Kanehisa, D. T., Jang, E. B. and Armstrong, J. W. 1997. Demography of four Hawaiian Fruit Flies (Diptera: Tephritidae) Reared at Five Constant Temperatures. *Ann. Entomol. Soc. Am.*, **90**: 162-168.
- 44. Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of Immature Stages and Comparative Demography of Two Cucurbit-Attacking Fruit Flies in Réunion Island: *Bactrocera cucurbitae* and *Dacus ciliatus* (Diptera: Tephritidae). *Environ. Entomol.*, 73(2): 307-314.
- 45. White, I. M. and Elson-Harris, M. M. 1992. Fruit Flies of Economic Significance: Their Identification and Bionomics. CAB International, Wallingford, 601 PP.
- 46. Yadav, R. and Chang, N. T. 2014. Effects of Temperature on the Development and Population Growth of the Melon Thrips, *Thrips palmi*, on Eggplant, *Solanum melongena*. *J. Insect Sci.*, **14**: 78.
- 47. Yamamura, K. and Kiritani, K. 1998. A Simple Method to Estimate the Potential Increase in the Number of Generations under Global Warming in Temperate Zones. *Appl. Entomol. Zool.*, **33**: 289-298.
- 48. Ye, H. 2001. Distribution of the Oriental Fruit Fly (Diptera: Tephritidae) in Yunnan Province. *Entomol. Sin.*, **8(2)**: 175-182.

رشد نمو وابسته به دما و آستانه های دمایی کل مراحل نابالغ مگس میوه مدیترانه ای، Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) ایران

نجمه ابراهيمي

چکیده

مگس ميوه مديترانهاي (Diptera: مگس ميوه مديترانهاي (Ceratitis capitata (Wiedemann, 1824) ((Tephritidaeیکی از مهمترین آفات محصولات کشاورزی مناطق گرمسیری و نیمه-گرمسیری جهان است. در این پژوهش نرخ رشد و نمو مگس میوه مدیترانهای در دماهای 10، 12، 15، 17، 20، 25، 27، 30، 32، 35 درجه سلسيوس بررسى شد. يافته هاى حاصل وجود رابطه غیرخطی بین دما و نرخ رشد و نمو را نشان داد. از بین مدلهای غیر خطی، مدل پرفورمانس-1 و پرفورمانس-2 به ترتیب در دو استان مازندران و فارس بیشترین برازش را روی مقادیر مشاهده شده نرخ رشد و نمو را نشان دادند. در استان مازندران، مدل پرفورمانس -1 ضمن شبیه سازی نزدیک به واقعیت رشد و نمو مگس میوه مدیتر انهای در گستره دمایی 15 تا 35 درجه سلسيوس، دماى بهينه رشد و نمو كل دوره نابالغ مگس ميوه مديترانهاي را 31.94 درجه سلسیوس برآورد کرد و همچنین در استان فارس مدل پرفورمانس-2، در گستره دمایی 20 تا 30 درجه سلسیوس، دمای بهینه رشد و نمو کل دوره نابالغ مگس میوه مدیترانهای را 31.8 درجه سلسیوس برآورد کرد. دمای آستانه یابین برای رشد و نمو کل دوره نابالغ مگس میوه مدیترانهای در استان مازندران با استفاده از مدل پرفورمانس -1، 11.23 و در استان فارس با استفاده از مدل يرفورمانس-2، 13.15 درجه سلسيوس برآورد شد. دماي آستانه بالا نیز برای رشد و نمو کل مراحل نابالغ مگس میوه مدیترانهای در استان مازندران با استفاده از مدل مدل پر فور مانس -1، 38.1 درجه سلسیوس و در استان فارس مدل پر فور مانس-2، 37.74 درجه سلسیوس، تخمین زده شد. در بین مدلهای خطی مورد بررسی، مدل خطی ایکیموتو توانست دمای آستانه پایین و نیاز دمایی مراحل مختلف نابالغ مگس میوه مدیترانهای را با دقت بیشتری بر آور د نماید.

Volatile Organic Compounds (VOC) Produced by Paraconiothyrium archidendri F10 as Biofungicidal Materials for Ganoderma boninense

Anisa Lutfia¹* and Bedah Rupaedah¹

ABSTRACT

In this study, a soil fungus isolated from a healthy, disease-free oil palm plantation was evaluated for its inhibitory activity in vitro, with the aim of assessing its effectiveness as a bio-inoculant. The soil fungus was sequenced for the ITS-rDNA region, and its similarity was analyzed through bioinformatics using BLASTn searches and phylogenetic tree construction. Volatile Organic Compounds (VOCs) were produced through batch fermentation on Potato Dextrose Agar (PDA). The inhibitory activity against the radial growth of G. boninense was evaluated using the vapor assay method. The VOC profile and other metabolites were analyzed using GC-MS. The inhibitory mechanism between VOCs and target proteins was studied through in silico analysis. VOCs produced by P. archidendri F10 were found to inhibit G. boninense mycelium growth by up to 55.8% in four days, with the mycelium exhibiting wavy, non-smooth, and wrinkled morphology, abnormal branching, fused, defective hyphae, and lysis through microscopy imaging. The molecular docking analysis revealed that 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione had the strongest binding affinity at -8.5 kcal mol⁻¹, forming one hydrogen bond with Tyr646 at a distance of 2.98 Å. Another notable ligand was 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate, with a binding affinity of -5.6 kcal mol⁻¹ and one hydrogen bond with His698 at 3.05 Å. The remaining ligands did not form hydrogen bonds. Thus, P. archidendri F10 has potential as a biofungicide for controlling G. boninense in the future.

Keywords: Antifungal metabolites, Basal stem rot, Biofungicide, Soil fungus, Vapour assay.

INTRODUCTION

The pathogenic fungus, Ganoderma boninense Pat., is a significant issue in industrial plants, leading to basal stem rot disease and a decrease in oil palm production. Ganoderma boninense Pat. is a soil-borne fungal pathogen that causes Basal Stem Rot (BSR) disease in oil palm (Paterson, 2019). The pathogen is difficult to control, and the use of synthetic fungicides is not a sustainable solution, given their adverse impact on the environment and public health. Synthetic fungicides, such as dazomet and hexacanazole, offer a temporary solution for controlling G. boninense (Maluin et al., 2020). However, the prolonged use of synthetic antifungal agents can lead to the antifungal resistance, death of non-target microorganisms, and degradation of ecosystem function (Fang et al., 2018). One approach that has gained attention in recent years is biological control, which involves the use of Microbial Biocontrol Agents (BCAs) to control plant diseases. Fungi have been shown to be effective biocontrol agents against a wide range of phytopathogens due to their diverse mechanisms, including antibiosis, host resistance induction, mycoparasitism, and niche competition for nutrients and space

¹ Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, Bogor, West Java 16911, Indonesia.

^{*} Corresponding author; e-mail: anis031@brin.go.id

(Latz et al., 2018). One promising area of research in fungal BCAs is Volatile Organic Compounds (VOCs) that exhibit strong inhibitory activity against phytopathogenic microbes. These compounds are defined as small, carbon-based molecules that have a low water solubility and a high vapour pressure, which allows them to be present in a gaseous state under normal ambient conditions, such as at a pressure of 1 atm and a temperature of 25°C. VOCs are a blend of volatile metabolites produced by both microbial and plant sources, which is referred to as "volatilome" (Farbo et al., 2018). These compounds are distinguished by functional effects in the soil, greater ability to disperse, and stronger antifungal properties. Muscodor albus (Xylariaceae) was the first commercially and successful fungus being a BCA, known for its bioactive volatilome. This endophytic fungus, found in Cinnamomum zeylanicum, produces a range of volatiles, including acids, alcohols, esters. and terpenoids that exhibit antimicrobial activity against post-harvest pathogens responsible for the decay of perennial fruit trees (Saxena and Strobel, 2021). In more recent studies, some fungal species have been investigated and reported to produce antifungal VOCs such as Aureobasidium pullulans (Sarcotheciaceae) (Don et al., 2021), Lasiodiplodia avicenniae (Botryosphaeriaceae) (Hartanto et al., 2023), Sarocladium brachiariae (Sarocladiaceae) (Yang et al., 2021), Trichoderma atroviride (Hypocreaceae) (Rao et al., 2022), and Trichoderma koningiopsis (Kong et al.,

In this study, the development of effective BCAs for controlling *G. boninense* was investigated in soil inhabitants of healthy and non-infected oil palm plantations. The aim of this study was to evaluate the *in vitro* bioactivity of a soil fungus obtained from local oil palm plantations against *G. boninense*. The results will contribute to the development of sustainable and eco-friendly approaches to controlling BSR disease, ensuring the continued productivity of oil palm cultivation while reducing the impact

of synthetic biocides on the environment and public health.

MATERIALS AND METHODS

Fungal Isolate and Molecular Identification

The soil fungus, Paraconiothyrium isolate F10, was isolated from a healthy and uninfected oil palm plantation soils in Bogor, Indonesia. The pathogenic fungus, G. boninense strain SSU008 used in this study, is a collection of the Indonesian Oil Palm Research Institute (PPKS Marihat). Simalugun Regency, North Sumatra, Indonesia. This study was conducted in 2023 at the Laboratory Microbiology, Research Centre for Applied Microbiology, National Research (BRIN), Serpong, Innovation Agency Indonesia. The isolates were maintained in Potato Dextrose Agar (PDA) medium. Molecular identification was performed commercially by sending the fungal specimen, isolate F10 to Macrogen, Inc. (Singapore). Raw sequences was retrieved and checked for its similarity to online database using BLASTn for ITS-rDNA region. A phylogenetic tree was constructed to assign the fungal species based on clustering analysis among accessions using MEGAXI. The confirmed species was submitted to GenBank and given with an accession code for P. archidendri F10 (OQ835627).

VOC Production in Submerged Fermentation

Potato Dextrose Broth (PDB) was used as a fermentation medium for VOCs production. The fungus, *P. archidendri* F10 was grown in 50 mL of PDB in a 250-mL flask at 28°C for 14 days. The Cell-Free Supernatant (CFS) was filtered using a Whatman filter paper No. 1 and centrifuged at 10,000×g for 15 minutes. The resulting

CFS was extracted thrice using a laboratory grade Ethyl Acetate (EtOAc) in a ratio of 1:1 and shaken vigorously for 3 days. The EtOAc layer was separated using a separator funnel and concentrated *in vacuo* using a Buchi Rotavapor® R-300.

Antifungal Vapor Assay

The antifungal activity of VOCs produced by P. archidendri F10 against G. boninense was assessed using a modified disc diffusion or vapor assay (Bismarck et al., 2019). An active-growing colony of G. boninense was placed in the center of PDA medium, while a disc (Ø 6-mm) containing Ethyl Acetate (EtOAc) extract or saturated VOCs was placed in the center of the lid of the agar plate. The plates were then incubated for five days at 28°C while standing on their lids. A control plate was also prepared with only the colony of G. boninense in the center. The assay was performed in triplicate. The percentage of radial growth inhibition (%) was calculated as follows:

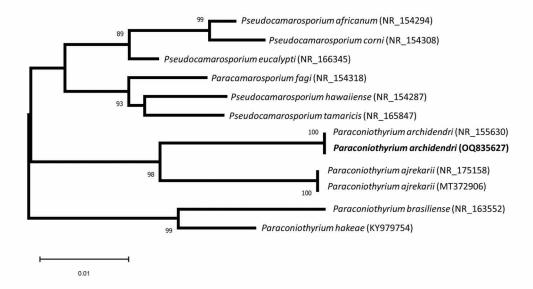
 $(\%) = [(D1 - D2)/D1] \times 100\%,$

Where, D1 is the radial growth (mm) of the control plate and D2 is the radial growth of the treated plates. The surface morphology of the treated colony or mycelium was examined using a scanning electron microscope (JSM-6510LA JEOL SEM). The slide was fixed and coated with platinum (35 s: 30 mA) using 10kV.

GC-MS Profiling of VOC

A qualitative analysis of the sample containing VOCs was conducted using an Agilent column (Type 19091S-433: 93.92873 DB-5MS UI, 5% Phenyl Methyl Silox) with dimensions of 30 m×250 μ m×0.25 μ m and a temperature range from 0 to 325°C (with a final hold time of 1 min) for injection. The analytical instrument used an Agilent-type 7890 (GC) and 5977A (MSD).

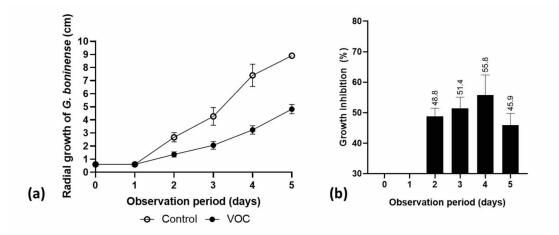
Molecular Docking of Antifungi as Anti-Ganoderma boninense


Major compounds as determined from the highest relative peak area were subjected to molecular docking studies. Chemical structure of each compound was retrieved from an online database. Protein target used in this study was chitin synthase as commonly involved in the cell wall synthesis, which serves as the factory of protective layer of *G. boninense*. The sequence of protein target with an entry code: A0A5K1JXQ5 was retrieved from UniProt database (https://www.uniprot.org/) and modelled utilizing the SWISS-MODEL web server (https://swissmodel.expasy.org/).

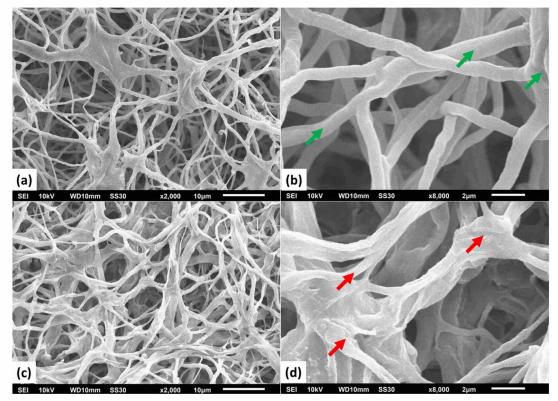
RESULTS AND DISCUSSION

Species Assignment of Isolate F10

Molecular identification based on the ITSrDNA sequence analysis and BLASTn results showed that isolate F10 had the similarity (> 99%) closest with Paraconiothyrium archidendri. Further analysis through phylogenetic construction using a neighbor-joining tree showed that isolate F10 was clustered together and had a similar resemblance with P. archidendri CBS 168.77 (Figure 1), a type fungus material isolated from its host plant, Archidendron bigeminum (Fabaceae) in Myanmar (Verkley et al., 2014). To our understanding, the discovery of P. archidendri F10 may be regarded as a new report as a soil inhabitant, especially from healthy oil palm plantation Furthermore, it has been reported that certain related taxa belonging to the genera Paracamarosporium and Pseudopithomyces have been found to act as leaf endophytes, specifically in the petioles of *E. guineensis*. Notably, these taxa exhibit the ability to produce exopolysaccharides under laboratory conditions (Yurnaliza et al., 2021). It can be implied that the presence of Paraconiothyrium members and other related taxa within the soils may establish


Figure 1. Phylogenetic tree of *P. archidendri* isolate F10 using ITS-rDNA for sequence homology studies. Sequence of reference strains was retrieved from GenBank accessions. Bootstrap value (%) of 1000 replications.

functional plant-microbe associations through a pathway that transitions from saprotrophic to hemi-/biotrophic modes in the living tissue of oil palm. However, the specific functional traits are yet to be fully uncovered. A more recent study has reported the occurrence of P. archidendri as a saprophytic fungus in the plant litters of Magnolia sp. in China (Tennakoon et al., 2022). The presence of P. archidendri and other taxa within the Didymosphaeriaceae family is expected to have a crucial impact on nutrient cycling in forest ecosystems. This is because the majority of members within this family are cosmopolitan, and most of them are known to function as saprobes (Zhang et al., 2012). The ability of these fungi to decompose organic matter, including plant litter, results in the release of crucial nutrients back into the soil. This process, in turn, promotes the growth and development of new vegetation, highlighting the critical role played by these fungi in the maintenance of healthy and sustainable ecosystems (Wanasinghe and Mortimer, 2022). There is still limited research on the role of P. archidendri as a biocontrol agent.

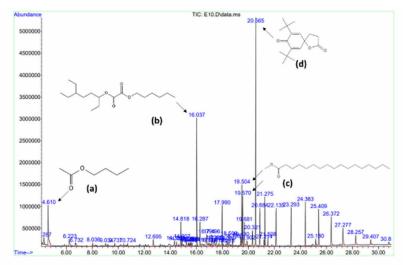

However, other related species, Paraconiothyrium brasiliense LT161, have shown potential as bio-control agents due to their production of antifungal metabolites effective against various phytopathogens (Han etal., 2012). Additionally, Coniothyrium minitans, reclassified Paraphaeosphaeria minitans, demonstrated mycoparasitic activity against Sclerotinia sclerotiorum (Verkley et al., 2014; Patel et al., 2021).

Inhibition of Ganoderma boninense

The production of VOCs by *P. archidendri* F10 was found to inhibit the growth of *G. boninense* mycelium (Figure 2). On PDA medium, the maximum growth of *G. boninense* was observed on the fifth day of incubation, reaching 9 cm. Conversely, on disc volatilization plate, the radial growth of *G. boninense* was halted at 4.81 cm. The inhibition commenced on the second day and peaked on the fourth day, with a recorded inhibition rate of 55.8%, which subsequently declined on the fifth day

Figure 2. (a) Radial growth of *G. boninense* exposure to VOCs produced by *P. archidendri* F10, and (b) Growth inhibition (%). The error bars indicate the standard deviation that was calculated from three replicates.

Figure 3. (a) The ultrastructure of G. boninense in the control plate at 2000° , and (b) 8000° magnification. The images as pointed with green arrows showed smooth, and well-branched hyphal networks, indicative of healthy fungal growth without damage. (c) The ultrastructure of G. boninense after 5-d exposure to VOCs at 2000° , and (d) 8000° magnification. The images as pointed with red arrows showed thinning, shrinkage, and reduced network density, with some sections collapsed or broken.



(45.9%). This decline may be attributed to the maximum growth of G. boninense colony (9 cm), which likely outcompeted the rate of inhibition induced by the VOCs. The observation of maximum inhibition of radial growth on the fourth day, followed by stagnation in inhibition thereafter, can be attributed to the assumption that the gaseous form of VOCs had diffused completely into the fungal colony and reached saturation. This may explain why there was no further inhibition of growth on the subsequent day. VOCs emission is a crucial antifungal mechanism exhibited by antagonistic microorganisms. The activity of these VOCs is observed to range from proximal interactions through water diffusion to distant interactions via air diffusion (Spadaro and Droby, 2016). Due to their volatile nature, microbial VOCs have shown great potential as biofumigants in air-tight environments (Tilocca et al., 2020). These compounds possess physical properties that allow for the rapid saturation of the atmosphere with bioactive concentrations. When applied using an antagonistic isolate, the continuous exposure of VOCs may occur, leading to a potential permanent inhibition within a closed system, for example the porous soil against the soilborne pathogen, G. boninense. The disc volatilization assay was initially employed to demonstrate the existence of VOCs produced by P. archidendri F10, which could then be subjected to profiling using Gas Chromatography-Mass Spectrometry The ultrastructure (GC-MS). of G. boninense mycelium following exposure to P. archidendri F10 VOCs after five days is presented in Figure 3. Under 2,000× magnification, the branching pattern and hyphal diameter of mycelium in the control and VOCs treatment were found to be nearly indistinguishable. However, at 8,000× magnification, differences between the two treatments were observed. Specifically, in the control plate, the mycelium displayed normal diameter, smooth surface, and proper branching. On the other hand, in the VOCs treatment, the mycelium appeared to be

wavy, non-smooth, and wrinkled, with abnormal branching and fused, defective hyphae that underwent lysis from within. structural difference is likely responsible for the observed inhibition of maximum growth in G. boninense under the VOCs treatment. Similar observations of abnormal hyphal morphology and wrinkling have been reported in G. boninense exposed to VOCs produced by Streptomyces sp. GMR22 and Nocardiopsis alba GME01 and GME22 (Islamiati et al., 2022; Widada et al., 2021).

Volatile Organic Compounds (VOC) as Antifungal Metabolites

GC-MS analysis was performed to determine the profile of VOCs produced by P. archidendri F10, which produced a total of 54 detections (Figure 4). A total of 27 VOCs was identified in the aromatic groups such as alcohols, alkanes, esters, ketones, and lipids. The major chemical components were esters while the relative abundance based on the percentage of peak area were follow: ranked as 7,9-ditert-butyl-1oxaspiro[4.5]deca-6,9-diene-2,8-dione (16.72%), followed by 2-O-(6-ethyloctan-3yl) 1-O-hexyl oxalate (8.71%), methyl heptadecanoate (8.66%), butyl acetate (5.66%), and other minor components (<5%). The existence of 7,9-ditert-butyl-1oxaspiro[4.5]deca-6,9-diene-2,8-dione has been documented from various plant sources such as Allium chinense (Amaryllidaceae) (Rhetso et al., 2021), Garcinia cambogia and Garcinia indica (Clusiaceae) (Jayakar et al., 2020), Nigella sativa (Ranunculaceae) (Pachaiappan et al., 2022), Portulacaria afra (Didiereaceae) (Tabassum et al., 2023), and a seaweed, Chara baltica (Characeae) (Tatipamula et al., 2019). Despite the lack of information towards its antifungal properties, this compound has been reported to exhibit several pharmacological activities, including antibacterial, antioxidant, antiinflammatory, anti-analgesic, and cytotoxic effects (Pachaiappan et al., 2022; Tabassum

Figure 4. GC-MS spectra of EtOAc extract of *P. archidendri* F10 showing three major compounds based on the highest relative peak area (%). (a) butyl acetate, (b) 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate, (c) methyl heptadecanoate, and (d) 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione.

et al., 2023; Tatipamula et al., 2019). The second most abundant compound, oxalic acid, 6-ethyloct-3-yl hexyl ester has been reported to display a broad spectrum of antifungal activity against Aspergillus niger, Fusarium oxysporum, Penicillium funiculosum, and Trichoderma reesei in the form of phytosterols from Anogeissus pendula: Combretaceae (Sharma et al., 2019). Methyl heptadecanoate, a member of the Fatty Acid Methyl Ester (FAME) family, shows promise as a bio-fungicide against G. boninense. These esters have also been designated as biomarkers to screen for resistant oil palm progenies, as they exhibit elevated expression levels during G. boninense interactions (Rozlianah et al., 2015). Fatty acid derivatives have been identified as regulators of various responses to G. boninense in both non-infected and infected roots. The increased abundance of these metabolites in infected roots is attributed to their crucial role in pathogen defense mechanisms (Isha et al., 2020). Therefore, the external application of P. archidendri F10 into oil palm seedlings may be prospective in the future. Butyl acetate is an ester form of acetic acid that is found to exhibit diverse antifungal activities. For instance, the compound can initiate

apoptotic cell death mechanisms in baker's yeast, Saccharomyces cerevisiae (Rego et al., 2014). Additionally, a mixture of Volatile Organic Compounds (VOCs) produced by Nocardiopsis alba, including acetic acid and its derivatives, has been shown to be effective against G. boninense (Widada et al., 2021). In another study, the VOCs produced by Hanseniaspora uvarum (Saccharomycodaceae) were found to effectively control the incidence of Botrytis cinerea in cherries and strawberries (Ruiz-Moyano et al., 2020). The VOCs produced Phaeosphaeria nodorum (Phaeosphaeriaceae) contained a significant proportion of acetic acid and its derivatives, which inhibit the growth of post-harvest phytopathogenic fungi, such as Monilinia fruticola (Pimenta et al., 2012). Based on the SEM analysis results, it can be inferred that the inhibitory mechanism of the VOCs may involve the activation of multiple mechanisms and targets, working together synergistically to control the mycelium mass. The observed reduction in hyphal size and wrinkling of the mycelial network may be a result of signal molecules from external sources (i.e., VOCs) triggering intrinsic mechanisms that lead to delayed growth. It is also possible that these mechanisms target

less common components beyond the general aspects of fungal cell walls, such as chitin, mannoproteins, and glucans, which are usually the first structures to be inhibited (Ibe and Munro, 2021).

Docking Study of Antifungal Compounds

Chemical information of the selected compounds or VOCs produced by P. archidendri F10 and a standard antifungal compound in the field, dazomet, is presented in Table 1. In Table 2, the data of protein modeling was provided based on the representative criteria or descriptions given in the web server. The model was solely chosen for its high Global Model Quality Estimation (GMOE) and sequence identity based on the available model from Ganoderma sinense ZZ0214-1 (Figure 5). The protein model was validated using the Ramachandran plot, constituting a high score of core value, which was 80%, to represent an excellent quality of target protein (Figure 5). The binding affinity of each VOC produced by P. archidendri F10 produced a higher score than dazomet as a control (Table 3). The interactions between ligands or VOCs with the target protein are presented in Figures 6 and 7. Visualization of the docking results revealed distinct patterns of chemical bonding interactions for each compound, where all compounds tended to bind to the hydrophilic region of the target protein. Only methyl heptadecanoate demonstrated a tendency to interact with the hydrophobic region. These differences were due to the different types of amino acids involved in the interactions and their residues.

The obtained binding affinity values (ΔG) for the ligands in this study provide insights into their potential interactions with the target protein. The negative ΔG values indicated thermodynamically favorable binding, with more negative values representing stronger interactions. The ligand with the most negative ΔG value, 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione,

suggested the strongest binding affinity to the

target protein. The absence of reported hydrogen bonds and interaction distances for Dazomet and Butyl acetate might suggest that their binding may be primarily driven by hydrophobic interactions or other noncovalent forces. On the other hand, Methyl heptadecanoate showed a higher binding and a possible hydrophobic affinity interaction, possibly implying that the hydrophobic region of the target protein plays a role in its binding. In contrast, 2-O-(6ethyloctan-3-yl) 1-O-hexyl oxalate and 7,9ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione exhibited hydrogen bonding interactions with specific amino acid residues. This suggests the presence of potential hydrogen bond donor and acceptor sites in the ligands and the target protein, indicating specific binding pockets. The distances observed between the ligands and the interacting amino acid residues are consistent with typical hydrogen bond lengths, reinforcing the possibility of these interactions. Overall, the diversity in binding affinities and interactions observed among the ligands reflects the complexity of ligandprotein interactions and highlights the role of different forces contributing to the binding. Fungal Cell Wall (FCW) is a fundamental element of hyphae, essential for providing support, structural maintaining cellular morphology, and defending against environmental stresses. FCW is primarily composed of polysaccharides, including chitin and β-glucans, as well as proteins and lipids (Gow et al., 2017). Disruption or inhibition of these cell wall components can result in significant morphological abnormalities, undermining the integrity of the hyphae and ultimately leading to cellular death (Zhang et al., 2019). Molecular docking analysis indicates that the identified Volatile Organic Compounds (VOCs) may interact with specific targets within the fungal cell wall or associated proteins, potentially leading to the observed structural damage. For example, VOCs such as Dazomet and Butyl acetate exhibit significant hydrophobic interactions with the target proteins, despite the absence of specific hydrogen bond

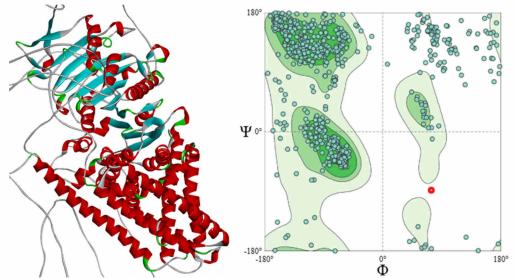


Table 1. PubChem CID, molecular weight and formula of the tested compounds.

No.	Compound(s)	PubChem	Molecular weight (g	Molecular
		CID	mo ^{l-1})	formula
1.	Dazomet	10788	162.3	$C_5H_{10}N_2S_2$
2.	Butyl acetate	31272	116.16	$C_6H_{12}O_2$
3.	2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate	6420420	314.5	$C_{18}H_{34}O_4$
4.	Methyl heptadecanoate	15609	284.5	$C_{18}H_{36}O_2$
5.	7,9-Ditert-butyl-1-oxaspiro[4.5]deca-6,9-	545303	276.4	$C_{17}H_{24}O_3$
	diene-2,8-dione			

Table 2. The information of 3D structure model of target protein.

Protein name	GMQE	Amino	Sequence	Sequence	Description
(Sequence ID)		acid(s)	similarity	identity (%)	(Sequence ID)
Chitin synthase	0.66	1102	0.60	95.17	Chitin synthase
(A0A5K1JXQ5)					(A0A2G8SQ05)

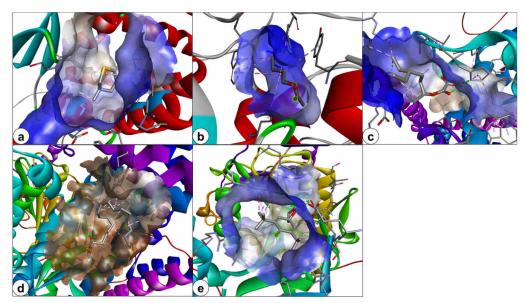
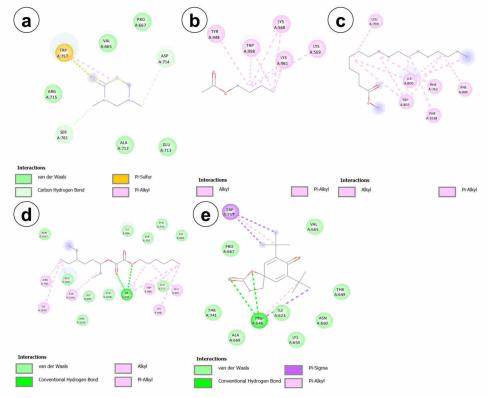


Figure 5. Three dimensional structure of the protein model, chitin synthase (Left). Ramachandran plot of a model chitin synthase of *Ganoderma boninense* (Right).


Table 3. Docking profile of the tested compounds against chitin synthase of *G. boninense*.

Ligand(s)	Binding affinity/ ΔG (kcal/mol)	Number of H- bond (Residue)	Interaction of hydrogen with amino acid residues (Distance)
Dazomet	-4.1	-	-
Butyl acetate	-4.4	-	-
Methyl heptadecanoate	-4.6	-	-
2- <i>O</i> -(6-ethyloctan-3-yl) 1- <i>O</i> -hexyl oxalate	-5.6	1	His698 (3.05 Å)
7,9-di <i>tert</i> -butyl-1- oxaspiro[4.5]deca-6,9-diene-2,8- dione	-8.5	1	Tyr646 (2.98 Å)

Figure 6. Three-dimensional interaction between VOC and chitin synthase from *G. boninense*. Interacting pockets represent the degree of hydrophobic region of target protein ranging from high (brown) to low (blue): (a) Dazomet, (b) Butyl acetate, (c) 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate, (d) Methyl heptadecanoate, and (e) 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione.

Figure 7. Two-dimensional interaction between VOC and chitin synthase from *G. boninense*. Possible bonds were visualized between receptor or amino acid residues with the ligands: (a) Dazomet, (b) Butyl acetate, (c) 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate, (d) Methyl heptadecanoate, and (e) 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione.

These interactions. hydrophobic interactions are likely to disrupt the hydrophobic domains within cell wall proteins or enzymes involved in cell wall synthesis (Dover et al., 2007). The disruption may compromise the integrity of the cell wall, resulting in thinning and weakening of its structure. This weakening renders the cell wall more susceptible to environmental stress and mechanical damage, as evidenced by the alterations observed in the treated hyphae. Butyl acetate and its derivatives exhibit both antifungal and fungal-stimulating properties, which vary depending on the target species and source. In co-cultures of Trichoderma sp. and Bacillus subtilis, butyl acetate was identified as the predominant compound exerting antifungal activity against Colletotrichum gloeosporioides, effectively inhibiting its growth and spore formation (Emanuel et al., 2020). Conversely, butyl acetate and other acetate esters derived from apple fruit were found to stimulate the adhesion and germination of Botrytis cinerea conidia, indicating a potential role in the fungal life cycle (Filonow, 2002). In contrast, VOCs like 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate and 7,9-ditert-butyl-1oxaspiro[4.5]deca-6,9-diene-2,8-dione demonstrate strong binding affinities and form specific hydrogen bonds with amino acid residues such as His698 and Tyr646. These interactions likely occur at critical sites on fungal enzymes or structural proteins. The binding of these VOCs to key residues may inhibit the function of the enzymes involved in chitin or glucan synthesis, which are crucial for cell wall construction. This inhibition can lead to defective synthesis and, consequently, a weakened cell wall structure.

CONCLUSIONS

A soil-borne fungus, *P. archidendri* F10, isolated from healthy oil palm plantation soils showed antifungal activity against the basal stem rot agent, *G. Boninense*. This was

evidenced through *in vitro* assay, surface morphology of abnormal hypha formation, and potent bioactive VOCs revealing four major components. i.e., 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione, 2-O-(6-ethyloctan-3-yl) 1-O-hexyl oxalate, methyl heptadecanoate, butyl acetate, and other minor components. Based on the *in silico* evaluation, four VOCs may have targeted the cell wall integrity by binding with the chitin synthase as a mode of antifungal action.

REFERENCES

- Bismarck, D., Dusold, A., Heusinger, A. and Muller, E. 2019. Antifungal in vitro Activity of Essential Oils against Clinical Isolates of Malassezia pachydermatis from Canine Ears: A Report from a Practice Laboratory. Complement. Med. Res., 27: 143-154.
- Don, S. M. Y., Schmidtke, L. M., Gambetta, J. M. and Steel, C. C. 2021. Volatile Organic Compounds Produced by *Aureobasidium* pullulans Induce Electrolyte Loss and Oxidative Stress in *Botrytis cinerea* and *Alternaria alternata*. Res. Microbiol., 172: 103788.
- 3. Dover, L. G., Alderwick, L. J., Brown, A. K., Futterer, K. and Besra, G. S. 2007. Regulation of Cell Wall Synthesis and Growth. *Curr. Mol. Med.*, 7: 247-276.
- 4. Emanuel, R. V., César Arturo, P. U., Lourdes Iveth, M. R., Homero, R. D. L. C. and Nahuam, C. A. M. 2020. In Vitro Growth of *Colletotrichum gloeosporioides* is Affected by Butyl Acetate, A Compound Produced during The Co-Culture of *Trichoderma* sp. and *Bacillus subtilis*. *3 Biotech*, **10**: 1-14.
- Fang, W., Yan, D., Wang, X., Huang, B., Wang, X., Liu, J., Liu, X., Li, Y., Ouyang, C., Wang, Q. and Cao, A. 2018. Responses of Nitrogen-Cycling Microorganisms to Dazomet Fumigation. Front. Microbiol., 9: 2529.
- Farbo, M. G., Urgeghe, P. P., Fiori, S., Marcello, A., Oggiano, S., Balmas, V., Hassan, Z. U., Jaoua, S. and Migheli, Q. 2018. Effect of Yeast Volatile Organic Compounds on Ochratoxin A-Producing Aspergillus carbonarius and A. ochraceus. Int. J. Food Microbiol., 284: 1-10.

- Filonow, A. B. 2002. Mycoactive Acetate Esters from Apple Fruit Stimulate Adhesion and Germination of Conidia of the Gray Mold Fungus. J. Agric. Food Chem., 50: 3137-3142.
- 8. Gow, N. A. R., Latge, J. P. and Munro, C. A. 2017. The Fungal Cell Wall: Structure, Biosynthesis, and Function. *Microbiol. Spectr.*, 5: 10-1128.
- Han, M., Liu, T., Cai, X., Chen, K., Liu, C., Brian, K., Xue, Y. and Gu, Y. 2012. A New Endophytic Paraconiothyrium brasiliens LT161 Shows Potential in Producing Antifungal Metabolites against Phytopathogens. Afr. J. Microbiol. Res., 6: 7572-7578.
- Hartanto, A., Munir, E., Basyuni, M., Saleh, M. N., Hastuti, L. D. S., Yurnaliza, Y., Nurtjahja, K. and Lutfia, A. 2023. Antifungal Activity of Volatile Organic Compounds (VOC) by an Endophytic Fungus, Lasiodiplodia avicenniae P2P4 from Avicennia alba against Fusarium oxysporum. Rasayan J. Chem., 16: 182-187.
- Ibe, C. and Munro, C. A. 2021. Fungal Cell Wall: An Underexploited Target for Antifungal Therapies. *PLoS Pathog.*, 17: e1009470.
- Isha, A., Yusof, N. A., Shaari, K., Osman, R., Abdullah, S. N. A. and Wong, M. Y. 2020. Metabolites Identification of Oil Palm Roots Infected with *Ganoderma boninense* using GC–MS-based Metabolomics. *Arab. J. Chem.*, 13: 6191-6200.
- Islamiati, E. D., Widada, J., Wahyuningsih,
 T. D. and Widianto, D. 2022. Volatile
 Organic Compounds of Streptomyces sp.
 GMR22 Inhibit Growth of Two Plant
 Pathogenic Fungi. Agric. Nat. Res., 56: 899-908.
- Kong, W. L., Ni, H., Wang, W. Y. and Wu, X. Q. 2022. Antifungal Effects of Volatile Organic Compounds Produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front. Microbiol., 13: 1013468.
- 15. Jayakar, V., Lokapur, V. and Shantaram, M. 2020. Identification of the Volatile Bioactive Compounds by GC-MS Analysis from the Leaf Extracts of *Garcinia cambogia* and *Garcinia indica. Med. Plant.*, **12:** 580-590.
- Latz, M. A. C., Jensen, B., Collinge, D. B. and Jørgensen, H. J. L. 2018. Endophytic Fungi as Biocontrol Agents: Elucidating

- Mechanisms in Disease Suppression. *Plant Ecol. Divers.*, **11:** 555-567.
- 17. Maluin, F. N., Hussein, M. Z. and Idris, A. S. 2020. An Overview of the Oil Palm Industry: Challenges and Some Emerging Opportunities for Nanotechnology Development. *Agronomy*, **10:** 356.
- Pachaiappan, R., Nagasathiya, K., Singh, P. K., Gopalakrishnan, A.V., Velusamy, P., Ramasamy, K., Velmurugan, D., Kandasamy, R., Ramasamy, P. and Gopinath, S. C. B. 2022. Phytochemical Profile of Black Cumin (Nigella sativa L.) Seed Oil: Identification of Bioactive Anti-Pathogenic Compounds for Traditional Siddha Formulation. Biomass Convers. Biorefin., 13: 14683-14695.
- Patel, D., Shittu, T. A., Baroncelli, R., Muthumeenakshi, S., Osborne, T. H., Janganan, T. K. and Sreenivasaprasad, S. 2021. Genome Sequence of the Biocontrol Agent Coniothyrium minitans Conio (IMI 134523). Mol. Plant Microbe Interact., 34: 222-225.
- Paterson, R. R. M. 2019. Ganoderma boninense Disease of Oil Palm to Significantly Reduce Production After 2050 in Sumatra if Projected Climate Change Occurs. Microorganisms, 7: 24.
- 21. Pimenta, R. S., da Silva, J. F. M., Buyer, J. S. and Janisiewicz, W. J. 2012. Endophytic Fungi from Plums (*Prunus domestica*) and Their Antifungal Activity against *Monilinia fructicola*. *J. Food Prot.*, **75**: 1883-1889.
- Rao, Y., Zeng, L., Jiang, H., Mei, L. and Wang, Y. 2022. *Trichoderma atroviride* LZ42 Releases Volatile Organic Compounds Promoting Plant Growth and Suppressing *Fusarium* Wilt Disease in Tomato Seedlings. *BMC Microbiol.*, 22: 88.
- Rego, A., Duarte, A. M., Azevedo, F., Sousa, M. J., Corte-Real, M. and Chaves, S. R. 2014.
 Cell Wall Dynamics Modulate Acetic Acid-Induced Apoptotic Cell Death of Saccharomyces cerevisiae. Microb. Cell, 1: 303-314.
- Rhetso, T., Seshadri, R. M., Ramnath, S. and Venkataramegowda, S. 2021. GC-MS based Metabolite Profiling and Antioxidant Activity of Solvent Extracts of *Allium chinense* G Don Leaves. *Not. Sci. Biol.*, 13: 10791.
- Rozlianah, F. S., Jualang, A. G. and Chong, K. P. 2015. Fatty Acids and Phenols Involved in Resistance of Oil Palm to *Ganoderma* boninense. Adv. Environ. Biol., 9: 11-16.

- Ruiz-Moyano, S., Hernandez, A., Galvan, A. I., Cordoba, M. G., Casquete, R., Serradilla, M. J. and Martin, A. 2020. Selection and Application of Antifungal VOCs-Producing Yeasts as Biocontrol Agents of Grey Mould in Fruits. Food Microbiol., 92: 103556.
- Saxena, S. and Strobel, G. A. 2021. Marvellous *Muscodor* spp.: Update on Their Biology and Applications. *Microb. Ecol.*, 82: 5-20.
- Sharma, M., Saini, S., Soniya and Agrawal,
 R. D. 2019. Isolation and Identification of Phytosterols from *Anogeissus pendula* (Edgew) and Their Antimicrobial Potency. *J. Pharmacogn. Phytochem.*, 8: 1665-1670.
- Spadaro, D. and Droby, S. 2016. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. *Trend. Food* Sci. Technol., 47: 39-49.
- 30. Tabassum, S., Ahmad, S., Khan, K. R., Ali, B., Usman, F., Jabeen, Q., Sajid-ur-Rehman, M., Ahmed, M., Zubair, H. M., Alkazmi, L., Batiha, G. E. S., Qamar-uz-Zaman and Basit, A. 2023. Chemical Profiling and Evaluation Toxicological, Antioxidant, Anti-Inflammatory, Anti-Nociceptive and Inhibitory Potential Tyrosinase ofPortulacaria afra using In-Vitro, In-Vivo and In-Silico Studies. Arab. J. Chem., 16: 104784.
- 31. Tatipamula, V. B., Killari, K. N., Prasad, K., Rao, G. S. N. K., Talluri, M. R., Vantaku, S., Bilakanti, D. and Srilakshmi, N. 2019. Cytotoxicity Studies of the Chemical Constituents from Marine Algae *Chara baltica. Ind. J. Pharm. Sci.*, **81:** 815-823.
- Tennakoon, D. S., Thambugala, K. M., de Silva, N. I., Suwannarach, N. and Lumyong, S. 2022. A Taxonomic Assessment of Novel and Remarkable Fungal Species in Didymosphaeriaceae (Pleosporales,

- Dothideomycetes) from Plant Litter. *Front. Microbiol.*, **13**: 1016285.
- 33. Tilocca, B., Cao, A. and Migheli, Q. 2020. Scent of a Killer: Microbial Volatilome and Its Role in the Biological Control of Plant Pathogens. *Front. Microbiol.*, **11**: 41.
- 34. Verkley, G. J. M., Dukik, K., Renfurm, R., Göker, M. and Stielow, J. B. 2014. Novel Genera and Species of Coniothyrium-like Fungi in Montagnulaceae (Ascomycota). *Persoonia*, 32: 25-51.
- 35. Wanasinghe, D. N. and Mortimer, P. E. 2022. Taxonomic and Phylogenetic Insights into Novel Ascomycota from Forest Woody Litter. *Biology*, **11:** 889.
- 36. Widada, J., Damayanti, E., Alhakim, M. R., Yuwono, T. and Mustofa, M. 2021. Two Strains of Airborne *Nocardiopsis alba* Producing Different Volatile Organic Compounds (VOCs) as Biofungicide for *Ganoderma boninense*. *FEMS Microbiol. Lett.*, 368(20): 1-10
- 37. Yang, Y., Chen, Y., Cai, J., Liu, X. and Huang, G. 2021. Antifungal Activity of Volatile Compounds Generated by Endophytic Fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS One, 16: e0260747.
- 38. Yurnaliza, Y., Jamilah, I., Hartanto, A. and Lutfia, A. 2021. Screening of Endophytic Fungi from Oil Palm (*Elaeis guineensis*) in Producing Exopolysaccharides. *Biodiversitas*, 22: 1467-1473.
- 39. Zhang, Y., Crous, P. W., Schoch, C. I. and Hyde, K. D. 2012. Pleosporales. *Fungal Divers.*, **52**: 1-225.
- 40. Zhang, J., Jiang, H., Du, Y., Keyhani, N. O., Xia, Y., and Jin, K. 2019. Members of Chitin Synthase Family in *Metarhizium acridum* Differentially Affect Fungal Growth, Stress Tolerances, Cell Wall Integrity and Virulence. *PLoS Pathog.*, **15**: e1007964.

ترکیبات آلی فرار (VOC) تولید شده توسط Paraconiothyrium archidendri F10 به عنوان مواد زیستی ضد قارچ برای

انیسا لطفیا، و بداح رویایده

چکیده

در این یژوهش، یک قارچ خاکزی جدا شده از یک مزرعه نخل روغنی(oil palm) سالم و عاری از بیماری، به منظور بررسی فعالیت مهارکنندگی آن در شرایط آزمایشگاهی (in vitro) و با هدف ارزیابی اثربخشی آن به عنوان یک مایه تلقیح زیستی، ارزیابی شد. قارچ خاکزی برای ناحیه ITS-rDNA توالی یابی شد و شباهت آن از طریق بیوانفورماتیک با استفاده از جستجوهای BLASTn و ساخت درخت فیلوژنتیکی تجزیه و تحلیل گردید. ترکیبات آلی فرار (VOCs) از طریق تخمیر دستهای روی محیط کشت سیبزمینی دکستروز آگار (PDA) تولید شد. فعالیت بازدارندگی در برابر رشد شعاعی G. boninense با استفاده از روش سنجش بخار (vapor assay) ارزیابی شد. پروفیل VOC و سایر متابولیتها با استفاده از GC-MS تجزیه و تحلیل گردید. مکانیزم مهاری(inhibitory mechanism) بین VOCها و یروتئینهای هدف از طریق آنالیز in silico بررسی شد. VOCهای تولید شده توسط P. archidendri F10 رشد میسلیوم VOCهای تولید شده توسط ۵۵.۸٪ در چهار روز مهار کرد، به طوری که میسلیوم از طریق تصویربرداری میکروسکویی، مورفولوژی موج دار، غیرصاف (non-smooth) و چروکیده (wrinkled morphology)، شاخهبندی غیرطبیعی، هیفهای متصل (fused) و معیوب و لیز (lysis) را نشان داد. آنالیز داکینگ مولکولی (fused) و المعیوب و لیز analysis) نشان داد که deca-6,9-diene-2,8-dione عشان داد که deca-6,9-diene-2,8-dione عشان داد که میل ترکیبی را در ۸.۵ - کیلوکالری بر مول دارد و یک پیوند هیدروژنی با Tyr646 در فاصله ۲.۹۸ آنگستروم تشكيل مي دهد. ليگاند قابل توجه ديگر ٢-٥-(۶-اتيل اكتان-٣-ايل) ١-٥-هگزيل اگزالات بود كه ميل ترکیبی -۵.۶ کیلوکالری بر مول و یک پیوند هیدروژنی با His698 در ۳.۰۵ آنگستروم داشت. یکی دیگر از ليگاندهاي قابل توجه، 1-O-hexyl oxalate (6-ethyloctan-3-yl) الكاندهاي قابل توجه، 2-O-(6-ethyloctan-3-yl) کیلوکالری بر مول و یک پیوند هیدروژنی با His698 در ۳.۰۵ آنگستروم بود. لیگاندهای باقی مانده پیوند هیدروژنی تشکیل ندادند. بنابراین، P. archidendri F10 یتانسیل استفاده به عنوان یک قارچکش زیستی برای کنترل G. boninense در آبنده را دارد.

Instructions for Contributors to the Journal of Agricultural Science and Technology (JAST)

GENERAL

JAST publishes the results of research in the various aspects of science applying to the different areas of agriculture and natural resources from all over the world. Electronic copy of the manuscript, not already sent elsewhere for publication should be submitted to Journal of Agricultural Science and Technology's website at: www.jast.ir.

PREPARATION OF THE MANUSCRIPTS

For non-English speaking authors it is highly recommended to put their manuscripts for English language editing before submission. Manuscripts with no enough English standards will be rejected before scientific evaluation.

Manuscripts must be typed, double spaced, line numbered. Make sure that your manuscript not to be more than 20 pages of A4 size, one column form, double spaced lines (font12), roughly equal to 4500-5000 words. The heading of each manuscript should include the title, author's name(s) and complete address(es). It is necessary for the corresponding author to provide institutional affiliation and e-mail address.

The manuscript should usually be divided into the following sections: Abstract, Introduction, Materials and Methods, Results, Discussion and finally References. An abstract not exceeding 250 words should cite the reasons for doing work, objectives and topics covered, brief description of methods used, results and conclusions.

Introduction should be short and include: a brief statement of the problem that specifies the work, the findings of others and an explanation of the general approach and objectives. Materials and Methods should be based on experimental and survey data and should give sufficient details. Tables, figures and other illustrations in the result section should provide a clear understanding of representative data obtained from the experiments.

Discussion section should interpret data presented in the results section, giving particular attention to the problem-presented in the introduction. Acknowledgement(s) should precede the references.

In reference section the author(s) is (are) encouraged to cite only published, significant and upto-date references. Either of two methods of giving references in the text are acceptable: the name-year system e.g. (Smith, 1996) and the reference number method e.g. (3). For two authors name both: Ahmad and Mohsen (1997). With three or more authors, use *et al*: Ahmad *et al*. (1997) or Ahmad *et al*. (9). For two or more articles by the same authors(s) in the same year, designate them as follows: Salem (1997a,b) or Smith *et al*. (1997a,b). The references should be listed alphabetically by the surnames of authors and chronologically for papers by the same author(s).

Journal articles:

Shotwell, O.L. and Goulden, M.L. 1998. Spikelet Primordia Initiation in Salt-Stressed Wheat. *J. Agr. Sci. Tech.*, **2**:122-129.

book articles:

Razavi, A.M. 1998. Soil pH and Lime Requirements. In: "Soil Sciences". (Eds): Baker, A.L., and Walter, B.G., John Wiley, London, PP. 140-177.

The manuscripts should also include a condensed running title (not exceeding 50 characters including spaces), a list of three to five keywords and a Farsi abstract. For non-Iranian authors the abstract will be converted to Farsi by the journal's editor.

UNITS OF MEASUREMENT

The SI system is adopted as standard. As for abbreviations if any non-standards are to be used they should be defined in the text.

TABLES

Tables should be submitted by a separate file with an appropriate legend at the top. First mention of tables in text must be in sequential order; indicate first mention of each table in margin of manuscript.

ILLUSTRATIONS

Figures are of two kinds: line drawings and photographs. Line drawings must be drawn using intense black on white: photographs must be of good contrast and in sharp focus throughout. In addition to the usual line-drawn graphs, treat complicated formulas, flow diagrams, metabolic schemes and large or complex tables as figures. First mention of figures in text must be in sequent ional order; indicate first mention of each figure in margin of text. Use [] to indicate the number of formulas.

Figures are photographically reproduced, nearly always at a reduced size from the material provided by the authors. Plan for maximum reduction wherever possible, figures will be reduced to fit one journal column (69 mm). All letters, numbers and symbols thus must be large enough in original to be at least 1.5 mm high after reduction. Use standard symbols starting with: \bullet , \bigcirc , \blacksquare , \square , \triangle , \triangle

PREPARATION FOR PUBLICATION

Page author proofs will be sent to authors for checking before publication. Alterations other than correction of printer's error will be allowed only at the editor's discretion. Manuscripts after being corrected must be returned to the editorial office within 15 days, otherwise the editor reserves the right to correct the proofs himself and to send the material for publication.

Complete instructions have been published in: "Author's Guide for Manuscript Preparation", copies of which are obtainable from the editorial office.