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ABSTRACT 

The forecasting of hydrological variables, such as streamflow, plays an important role 

in water resource planning and management. Recently, the development of stochastic 

models is regarded as a major step for this purpose. Streamflow forecasting using the 

ARIMA model can be conducted when unknown parameters are estimated correctly 

because parameter estimation is one of the crucial steps in modeling process. The main 

objective of this research is to explore the performance of parameter estimation methods 

in the ARIMA model. In this study, four parameter estimation methods have been used: 

(i) autocorrelation function based on model parameters; (ii) conditional likelihood; (iii) 

unconditional likelihood; and (iv) genetic algorithm. Streamflow data of Ouromieh River 

basin situated in Northwest Iran has been selected as a case study for this research. The 

results of these four parameter estimation methods have been compared using RMSE, 

RME, SE, MAE and minimizing the sum squares of error. This research indicates that 

the genetic algorithm and unconditional likelihood methods are, respectively, more 

appropriate in comparison with other methods but, due to the complexity of the model, 

genetic algorithm has high convergence to a global optimum.  

Keywords: ARIMA model, Conditional likelihood, Forecasting, Genetic algorithm, 

Parameter estimation. 
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INTRODUCTION 

Effective planning, management, and 
control of water resources systems require 
considerable data on numerous hydrological 
variables such as streamflow, rainfall and 
temperature. Invariably, the data sets are 
recorded in time and are referred to as time 
series. These series are analyzed using 
statistical methods to evaluate the parameter 
of interest so as to arrive at a suitable 
decision support system for management 
and control purposes [8]. Among several 
time series models, the ARIMA 
(Autoregressive Integrated Moving 
Average) model has been attractive to 
researchers for its power in streamflow 
forecasting. 

Generally, in the stochastic modeling 
process the objective is to develop a simple 
model with the parsimony rule of the 
stochastic model. In order to achieve this 
objective, the model parameter estimation 
that is one of the modeling processes plays 
the main role for best fitting with observed 
data. This is because incorrect parameter 
estimation methods lead to bias and 
unacceptable forecasting.  

Carlson et al. (1970) were the first 
researchers to analyses the time series of 
annual streamflow using ARIMA [1]. The 
basis and modeling procedure of classic 
ARIMA models are described by Box and 
Jenkins (1976), Davis and Brockwell (1978). 
Delleur et al. (1976) and Mcleod et al. 
(1977) have used PARIMA (Periodic 
Autoregressive Integrated Moving Average) 
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in the modeling of a streamflow 
management basin. An important extension 
of ARIMA models was introduced by 
Granger and Joyeux (1980), and by Hosking 
(1981) who proposed the FARIMA 
(Fractional Autoregressive Integrated 
Moving Average) model [3, 10]. Sharman 
and Breakenbridge (1994) reviewed the 
form of the likelihood function for ARMA 
signal models and then they described how a 
genetic algorithm may be employed to 
search the likelihood space with the aim of 
finding the maximum point. The use of 
parallel processing techniques to speed up 
the search procedures has been examined in 
this research [2]. Anderson et al. (1999) 
provided a parameter estimation technique 
that considers two types of periodic time 
series model, those with a finite fourth 
moment and models with finite variance but 
an infinite fourth moment. The results 
regarding the infinite fourth moment case 
are of particular interest [5]. Shin and Lee 
(1999) have established the consistency of 
the maximum likelihood estimators for the 
ARIMA model with time trends. General 
uniform approximations are established for 
the quadratic forms which appear in the 
Gaussian likelihood [7]. Lu and Chon (2000) 
introduced a new method for ARIMA 
parameter estimation. Theer algorithm was 
based on the GMDH (Group Method of Data 
Handling), first introduced by Ivakhnenko 
(1966 and 1971). Computer simulations 
show that in cases with noise contamination 
and incorrect model order assumptions, the 
GMDH usually performs better than either 
the FOS or the least-squares methods in 
providing only the parameters that are 
associated with the true model terms [6]. 
Valenzuela et al. (2003) have obtained an 
expert system based on paradigms of 
artificial intelligence, such as genetic 
algorithm, so that model can be identified 
automatically [12]. Wurtz et al. (2003) have 
used GARCH/APARCH errors for 
parameter estimation of ARIMA models and 
optimization (maximization) of the 
constrained log-likelihood function with the 
help of a SQP solver [13]. Chorng Shyong et 

al. (2004) have provided a genetic 

algorithms based model identification to 
overcome the problem of local optima which 
was suitable for any ARIMA model. The 
results show that the GA-based model 
identification method can present better 
solutions, and is suitable for any ARIMA 
models [14]. Jonsttir et al. (2006) used a 
parameter estimation method for stochastic 
rainfall-runoff model. The parameter 
estimation method was a maximum 
likelihood method where the maximum 
likelihood function is evaluated using the 
Kalman filter technique. The maximum 
likelihood method estimated the parameters 
in a prediction error setting; they also 
estimated the parameters by an output error 
method. The model performs well and 
parameter estimation methods are promising 
for future model development [16]. The 
point of maximum likelihood method in a 
failure domain yields the highest value of 
the probability density function in the failure 
domain. Obadage and Harnpornchai (2006) 
have proposed a genetic algorithm with an 
adoptive penalty scheme as a tool for the 
determination of the maximum likelihood 
point. The genetic algorithm can be used as 
a tool for increasing the computational 
efficiency in the element and system 
reliability analysis [17].  

The main objective of this research is the 
comparison of four parameter estimation 
methods of the ARIMA model. Basically, 
the maximum likelihood function methods 
are used in this regard. In this study, this 
classic parameter estimation method is 
compared with a new optimization method 
like the genetic algorithm (GA). The 
streamflow time series have been used 
because streamflow forecasting has always 
been a challenging task for water resource 
engineers and managers and a major 
component of water resource planning and 
management.  

 

MATERIALS AND METHODS 

ARIMA is the method first introduced by 

Box–Jenkins to analyze stationary time 
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series data, and has since been used in 

various fields [14]. The generalized form of 

ARIMA can be described as: 
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where 
tZ  is a discrete time observation 

process, 
tε  is random series with mean zero 

and variance 2

εσ , B denotes the backward 

shift operator, d and D denotes the non-

seasonal and seasonal order of differences 

taken respectively (ARIMA models can be 

fitted to stationary hydrological series. For 

the transformation of non stationary into 

stationary series, the nonstationarity was 

removed by alternative methods such as 

differencing of theoriginal series). Φ (B), θ 

(B), Φ (B) and Θ (B) are polynomials in B 

and B
s
 of finite order p and q, P and Q, 

respectively, and usually abbreviated as 

SARIMA (p, d, q)(P, D, Q)s. 

When there is no seasonal effect, a 

SARIMA (Seasonal Autoregressive 

Integrated Moving Average) model reduces 

to pure ARIMA (p, d, q), and when the time 

series data set is stationary a pure ARIMA 

reduces to ARMA (p, q) [14].  

The popularity of the ARIMA model is 

due to its flexibility, and the inclusion of 

both autoregressive and moving average 

terms. The ARIMA approach has several 

advantages over others such as a moving 

average, exponential smoothing and, in 

particular, its forecasting capability and its 

richer information on time related changes. 

It can also handle serial correlation among 

observations, which is found in most time 

series. It also provides systematic searching 

in each stage (of 3 stages) for an appropriate 

model. Other aspects of this model are 

complexity and requiring a great deal of 

experience [15].  

The different methods are for parameter 

estimation of the ARIMA model some of 

which are described briefly below, namely 

the autocorrelation function formula based 

on model parameters, conditional likelihood, 

unconditional likelihood and genetic 

algorithm (GA).  

Autocorrelation Function Formula 

Based on Model Parameters 

In this method using autocovariance and 

autocorrelation function (ACF) after the 

identification of the model, some equations 

can be achieved. Using these equations, the 

parameters of model can be found. For 

example, using Equation (7-9) shows the 

relationship between ACF (known) and the 

parameters (unknown) of the ARIMA (1,1) 

model and solving them, the parameters of 

the model are estimated [4]. 

Maximum Likelihood Estimation 

Method (MLE) 

Maximum likelihood estimation begins with 

writing a mathematical expression known as a 

likelihood function of the sample data. 

Loosely speaking, the likelihood of a set of 

data is the probability of obtaining the 

particular set of data the chosen probability 

distribution model (the likelihood principle 

expresses the notion that the whole 

information that data have about parameters 

has been hidden in the likelihood function). 

The idea behind maximum parameter 

estimation is to determine the parameters 

(unknown) that maximize the probability 

(likelihood) of sample data. From a stated 

(8 
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point of view, the method of maximum 

parameter estimation is considered to be more 

robust and to yield estimates with good strand 

properties.  

If the number of random samples from a 

society is taken into account, the value of 

multiplying the probability density function 

for random quantities 
Nxxx ...,, 21

 is introduced 

as the likelihood function for these quantities.  

Where α is unknown parameters, L is the 

likelihood function and f(x,α) the 

distribution density function. The normal 

distribution is the standard distribution in 

this regard. This method is based on 

maximizing the likelihood function based on 

the selective parameters. For ease of 

calculation, maximization is conducted on a 

function logarithm, because the maximizing 

function logarithm is equal to the 

maximizing likelihood function. This 

method can be used from the error frequency 

function which follows the normal 

distribution with mean zero and variance 
2

εσ . The errors probability density function 

is obtained from Equation (11) and, after 

applying the likelihood function [Equation 

(12)] and then logarithm operation, it will 

result in relationship 13. 

The first term of Equation (13) is constant 

and so maximization of log-likelihood led to 

the reduction of the sum squares of error. 

For minimizing the sum squares of error, the 

three methods conditional likelihood, 

unconditional likelihood and genetic 

algorithm were introduced in the next 

section.  

Conditional Likelihood 

In this method for calculating the sum 

squares of error, ε can be derived from the 

ARIMA model like Equation (14) (after 

transformation of nonstationary series into 

stationary ones).  

Using equation 14 in the explicit form it is 

hard to calculate ε. One of the solutions is the 

determination p number of W and q number of 

ε. In this regard, the calculation of 
nεεε ,...,, 21
 

conditional on initial values subsequently is 

necessary. For each parameter group that 

minimized the sum squares of errors, those 

parameter groups are chosen as selective 

parameters. In computing initial values, 

unconditional exception of W and ε can be 

used. Unconditional exception of errors is 

zero; where the unconditional exception of W 

is zero, then the initial values of W are equal to 

zero, otherwise the mean of series are used 

instead of each of the components W. 

Unconditional Likelihood or 

Calculating of Non Conditional Sum 

Squares 

This method used precise initial values of 

W and error. In this regard, two backward 

[Equation (15)] and forward [Equation (16)] 

equations have been used, respectively. 
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For calculation of the previous time series, 

the backward equation has been used and for 

the stationary characteristics of the AR 

model, Wt estimations for limit values of W 

in t= -Q (Q is the time which W is about 

zero) is zero. Then, the forward equation is 

used for ε estimations on the basis of precise 

time series. For each parameter group that 

has lower sum squares, that parameters 

group is selected. It should be noted that 

using backward and forward equations is 

possible in respect to their expectations. For 

the reversion calculation, Equations (17 and 

18) have been used [1]: 

[ ] 0,, =− Wj θφε  j = 0, 1, 2,…  (17  

[ ] 0,, =− We j φθ  j>q-1,…  (18  

Genetic Algorithm (GA) 

The most popular technique in 

evolutionary computation research has been 

the genetic algorithm that was introduced by 

Hollend (1975). Evolutionary computation 

techniques abstract these evolutionary 

principles into algorithms that may be used 

to search for the optimal solution to a 

problem.  

In a typical evolutionary algorithm, a 

genetic representation scheme is chosen by 

the researcher to define the set of solution 

that forms the search space for the 

algorithm. Any individual solution in the 

space has a specific representation. A 

number of individual solutions are created to 

form an initial population. The following 

steps are then repeated iteratively until a 

solution has been found which satisfies a 

pre-determined termination criterion 

(achieving a stopping criterion such as the 

time limit, the number of generation). Each 

individual is evaluated using a fitness 

function that is specified to the problem 

being solved. Based upon their fitness 

values, a number of individuals are chosen 

to be parents (selection). New individuals or 

offspring are produced from those parents 

using crossover operators. The crossover 

operators act upon the information available 

in the representations of the parents to 

product new individual consistent with the 

representation scheme. These new 

individuals may be radically different from, 

slightly different from, or even the same as 

their parents. A crossover operation is 

conducted probably and with regard to 

crossover probability. The fitness values of 

the offspring are determined. To prevent 

optimized results converging with local 

optimums, a mutation operator has been 

used. Some of the chromosome (individual) 

genes after the crossover process have been 

randomly altered; mutation applies to genes, 

which form the chromosomes. In binary 

genetic algorithms, the gene which is 

selected for mutation is changed from 1 to 0 

and vice versa. The function of the two last 

operators which imitate biological processes 

start producing the second generation. 

Finally, survivors are selected from the old 

population and the new offspring to form the 

new population of the next generation. The 

mechanisms determining which and how 

many parents to select, how many offspring 

to create, and which individuals will move 

into the next generation together represent a 

selection method. The key aspect 

distinguishing an evolutionary from a 

traditional search algorithm is that it is 

population-based. Rather than moving from 

one point in the search space to another 

during each phase of the search, as is done 

in iterative improvement algorithm, a 

population-based search moves from one set 

of points to another set of points. At any 

given time, the points in the set may be 

sampled from different areas of the search 

space. The operation process of GA has 

been represented in Figure 1 [12,14]. 

Genetic algorithms are particularly 

efficient in optimization problems, 

especially when the respective objective 

functions exhibit many local optima or 

discontinuous derivatives. In this research  
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Figure 1. Representation of genetic algorithm (GA) 

 A process [11] 
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Figure 2.  Element of each chromosome. 
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Ouromieh Lake 

Iran 

Tabriz city 

 
Figure 3. Situation of watershed and stations. 

decision variables are the parameter of 

ARIMA model (φ, θ) and objective function 

is the basis of minimizing the sum squares 

of error. The criteria for getting optimum 

results are the number of generations. 

Study Watershed 

Ouromieh Lake watershed is one of the 

sixth major basins in Iran. It is located in the 

North West of Iran and covers an area of 

51,866 Km
2
. The coordinates of basin are 

between 35, 39 and 38, 30 N 44, 33 and 47, 

53 E. The annual mean precipitation is 

variable from 203 to 688 mm and annual 

evaporation is 1,499 mm. The annual mean 

temperature of Ouromieh station (with 1,313 

m height) is 10.83.  

In recent years according to a decrease in 

precipitation, drought threatens the 

Ouromieh Lake watershed. The most 

important problem of this watershed is 

related to the lack of observed streamflow 

data. River water is mostly used for 

irrigation in addition to drinking and fishing. 

Existence of important dams such as Shahid 

Madani on Ajichai River with 7,700 km
2
 and 

Nahand on Nahandchai River, and 

environmental conditions like increasing the 

level of salinity and pollution by decreasing 

the flow of the rivers are the reasons for 

selection of this basin for this study. Stations 

chosen to be used in this research are 

Vanyar station on Ajichai River with 21 

years’ streamflow data from 1980 till 2000 

and Nahand dam entrance station on 

Nahandchai River with 16 years’ data from 

1981 till 1996. In Figure 3, the 

hydrometrical station and Ouromieh Lake 

basin have been illustrated on a scale of 

1:100,000. 

RESULTS AND DISCUSION 

When any type of stochastic model is 

being developed to model a given time 

series it is recommended to follow the 

identification, estimation and diagnostic 

check stages of model construction. Figure 4 

shows this iterative process to create the 

ARIMA model, and this algorithm will be 

continued until validation of model is 

determined. 

Using this modeling process, the first step 

is to check the normality of the time series. 

For checking the normality of the Vanyar 

and Nahant time series, a probability plot of 

streamflow was used. A  probability plot 
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Is  model  
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Checking the normality 
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non stationarity of time series 

Parameter estimation 

 

Goodness of fit 

 

Independence of  residuals Normality of  residuals 

 
Figure 4. Iterative process of auto-regressive integrated moving average (ARIMA) modelling. 

 

displays the percentiles (95% confidence). 

Using the probability plot it is possible to 

assess whether a particular distribution fits 

the time series. In general, the closer the 

points fall to the fitted line, the better the fit. 

Figures 5-7 indicated that the Vanyar and 

Nahand time series follow normal and log-

normal distribution.  

For an ARIMA (p, d, q) model, it is 

necessary to obtain the order of the model. 

The next step is to identify the order of  

differencing (d) needed to make the series 

stationary. In this regard two methods can be 

used. (1) From a plot of the normalized 

series we can observe whether there is any 

non stationary element in the level or both in 

the level and slope. The first case may 

indicate the need for first differencing, the 

second for differencing twice.  

(2) Based upon the information given by 

the coefficients of Autocorrelation Function 

(ACF) and Partial Autocorrelation Function 

(PACF), the following steps can be defined 

to determine the stationarity of the time 
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Figure 5. Probability plot of Nahand streamflow. 

 

Figure 6. Probability plot of Vanyar streamflow. 

 

 

 
Figure 7. Probability plot of Nahand streamflow 

(log-normal). 
 

 
Table 1. Variation of auto-correlation function (ACF) with difference (d) of 1, 2 and 3. 

Station ρ1(d= 1) Ρ1(d= 2) ρ1(d= 3) 

Nahand (Differenced series) -0.431 -0.751 -0.77 

Vanyar (Differenced series) -0.182 -0.675 -0.761 

 

series. (2-1) If the time series has many high 

positive autocorrelation coefficients, then it 

probably needs a higher order of 

differentiation. (2-2) Starting from an 

original time series with positive 

autocorrelation, if after differentiating the 

first autocorrelation coefficient is close to 

zero or negative, then the series does not 

need a higher order of differentiation. (2-3) 

The optimum order of differentiation is 

frequently the one in which the standard 

deviation of the series is smaller [18].  

From the plotting of two normalized time 

series it is obvious that first differencing is 

adequate for a stationary series. The results 

of the second method verified this matter 

and Tables 1 and 2 show the results of 

method 2.  

 After this step the Correlogram method, the 

sample PACF and the sample ACF are used 

in appropriate differenced series for 

identifying the orders p and q of the ARIMA 

(p, q) model. However this is complicated 

and not easily conducted (when the time 

series data sets have a mixed ARIMA effect, 

the plot cannot provide clear lags to identify. 

In addition, the lags of a mixed ARIMA 

model usually involve subjective judgment 

which makes the results unstable). Various 

minimizing AIC, SBC. Since SBC had been 

proved to be strongly consistent, it 

determines the true model asymptotically, 

and is preferred to AIC for comparing 

different models [14].  

In the case of Vaniar station data, this test 

for the ARIMA (1, 1, 1) model has had the 
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Table 4. The results of parameter estimation using different methods. 

The  methods of parameter  estimation  Vanyar station Nahand station 

 Φ, θ Φ, θ 

Autocorrelation function formula based on model parameters -0.33, 0.58 -0.199, 0.962 

Conditional likelihood -0.4, 0.6 - 0.3, 0.6 

Unconditional likelihood -0.3, 0.8 -0.23, 0.8 

Genetic algorithm - 0.216, 0.8178 -0.166, 0.907 

 

Table 2. Variation of standard deviation with difference (d) of 1, 2 and 3. 

Station  d= 1 d= 2 d= 3 

Nahand  0.3 0.56 1.08 

Vanyar 58.87 172.2  392.14 

 

Table 3. Optimal values of genetic algorithm 

(GA) parameters. 

Parameter value 

Probability of mutation .001 

Probability of crossover .8 

Initial population 20 

Number of generations 500 

 

lowest quantity among models with various 

orders ( AIC= 214.46, SBC= 242.7 ) and in 

the case of the Nahand dam entrance station 

series, this test has also had the lowest 

quantity for the ARIMA(1, 1, 1) model 

(AIC= 111.4, SBC= 121.48 ). 

After primary analysis of time series and 

identification, the next step is parameter 

estimation. For the model parameter 

estimation a computer program in 

Mathematical Laboratory (MATLAB 7) was 

written with the objective of minimizing the 

sum squares of error using the maximization 

likelihood and genetic algorithm methods. 

Genetic algorithm has tournament for 

selection function, uniform for mutation 

function and single point for crossover 

function. The optimized paramters of the 

genetic algorithm with regard to 

mimimization of the objective function has  

been gotten after several runs. These results 

are given in Table 3. The results of 

parameter estimation for the model using 

four methods are given in Table 4.  

For the comparison among the mentioned 

methods of parameter estimation, two 

approaches have been used.  

(1) Forecasting time series using estimated 

parameters and comparison of these series 

with some criteria. 

(2) Determination of the parameters set 

which has the lowest the sum squares of 

error )(
1

2∑
=

n

t

tε  

For evaluating the performance of 

forecasted values, it is common to use 25% 

of data for this purpose. In this research 

forecasting of time series using etimated 

parameters with several parameter 

estimation methods was conducted by ITSM 

software. Forecasted values in the Vanyar 

station series are related to the years from 

2001 up to 2004 and, in the case of the 

Nahand dam entrance station series, are 

related to the years from 1997 up to 1999. 

Results have been shown graphically in 

Figures 8 and 9. 

By observing the plots it can be 

understood that with a noticeable decreasing 

or increasing (trend) in the forecasted years, 

differences between observed and simulated 

flows will be increased. Because these 

models use pervious data for parameter 

estimation and such trends have not been 

noted in observed data like the flow of 1997 

and 1998 at the Nahand station that has a 

noticeable increase in observed flows in 

forecasted years than in the pervious time 

series (Mean= 15.58). 

Model Performance Indicators 
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Figure 8. Forecasted and observed values 

of discharge (Ajichai River, Vaniar station) 
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Figure 9. Forecasted and observed values 

of discharge (Ajichai River, Nahand station) 
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 Figure 10. Comparison between statistics 

descriptions, mean, (m3 s-1). 
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To evaluate the adequacy of the model with 

the proposed parameter estimation methods, 

the performance of the models should be 

analytically measured. Such criteria for the 

goodness of fit are obtained as: 

Where 
iQ̂  is the forecasted streamflow (in 

this case forecasting using the mentioned 

methods of parameter estimation in 

modeling process), 
iQ the observed 

streamflow, Q  the mean observed 

streamflow and N the number of observed 

data items. The smallest RMSE (Root Mean 

Square Error) determines the method having 

the most accurate local or small-scale 

estimates. The smallest MAE (Mean 

Absolute Error) is indicative of the most 

accurate global estimates [9]. An RME 

(Relative Mean Error) value near zero 

implies that the model is providing a good 

estimate of observed values. 

The minimum and maximum of these 

criteria are related to the genetic algorithm 

and conditional likelihood methods. The 

results in Table 5 illustrated that these 

criteria decreased from method one to four 

except in the second method, and it is an 

indication of the accuracy of parameter 

estimation methods from the first method to 

the fourth. 

In the second approach, the sum squares of 

error were calculated for each group of 

parameters using the above mentioned 

methods. The minimum of the sum squares 

of error for example in Vanyar station 

according to Table 6 was related to the 

genetic algorithm method.  

Another comparison is between statistical 

properties (mean and standard deviation) 

between observed and simulated series. 

Figure 10 shows that statistical properties 

like the mean with an indication that genetic 

algorithm has a lower difference between 

observed and forecasted streamflow using 
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Table 5.  Performance of parameter estimation methods. 
Vanyar station Nahand station  

Method RMSE RME SE MAE RMSE RME SE MAE 
Autocorrelation function(1) 59.73 0.27 0.36 36.93 10.32 0.31 0.45 8.35 

Conditional likelihood(2) 62.25 0.271 0.37 36.84 11.25 0.34 0.49 9.14 

Unconditional Likelihood (3) 58.17 0.27 0.35 35.62 10.19 0.3 0.44 8.26 

Genetic algorithm(4) 54.45 0.26 0.32 32.33 10.18 0.3 0.44 8.26 

 

Table 6. Sum squares of error (Vaniar station). 
 

Method 

Minimum sum squares 

of  error 

Conditional likelihood 

Unconditional likelihood 

Genetic algorithm 

79938.75 

76931.64 

76875.27 

the GA parameter estimation method 

because of the precisely estimated 

parameter.  

Maximum likelihood estimation is a 

reasonably well-principled way to work out 

what computation is needed for learning 

some kinds of model from the data. Some 

advantages of the maximum likelihood 

method over other methods are: it has a 

lower variance than other methods; the 

method is statistically well founded; and it 

uses all the sequences information. In this 

research using the maximum likelihood 

estimation method for parameter estimation 

of the ARIMA model led to the least squares 

in which, for minimizing the sum squares of 

error, the three methods of condition 

likelihood, unconditional likelihood and 

genetic algorithm have been used.  

The main advantages of back box models 

in hydrology are that they are not as data 

demanding as physical models. In principles, 

the parameters in a physically based model 

can be estimated by field measurements, but 

such an ideal situation requires 

comprehensive field data which cover all the 

parameters. Because of the large number of 

parameters in a physically based model, 

parameter estimation cannot be done by free 

optimization for all parameters. 

This research indicates that genetic 

algorithm and unconditional likelihood 

methods are respectively more appropriate 

in comparison with other methods. These 

results are given using some criteria such as 

RMSE, SE and minimizing the sum squares 

of error. Also the comparison between 

statistical properties indicated the increasing 

accuracy of the first parameter estimation 

method until the fourth except the second 

method.  

The autocorrelation function formula 

method based on model parameters gave 

acceptable results but, by increasing the 

orders of model, deriving equations of 

parameters and solving of them is 

complicated. In the condition likelihood 

method, calculation and writing the program 

is simple but for accurate estimation of the 

sum squares of error, this method dose not 

use precise previous time series. The 

unconditional likelihood method using two 

forward and backward equations can 

overcome this difficulty. In addition, 

maximum likelihood is very CPU intensive 

and thus extremely slow.  

Genetic algorithm does not work with 

parameters but it works with the coding of 

parameters set. In this regard, search space 

exponentially increased and has high 

confidence for achieving the global 

optimum. Genetic algorithm by speeding up 

the search producer and getting the global 

optimum can conquer the difficulties of 

other parameter estimation methods 

especially when the orders and the number 

parameters of the model are increased.  

It must be mentioned that these methods 

for parameter estimation have used observed 

data and the persistence of trend (noticeable 

decrease or increase) in the observed data of 

forecasted years can be effected the 

forecasted data. 

One of the modeling steps is checking the 

normality of time series. Then, using 

appropriate transformation for this regard is 

necessary. One of the reasons of high 

difference between observed and forecasted 
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flows in Nahand may be the need for other 

normal transformation. 

CONCLUSIONS 

Parameter estimation is one of the main 

steps of time series modeling. This research 

investigates using a stochastic model by 

different parameter estimation methods for 

forecasting annual streamflow. Four 

parameter estimation methods -

autocorrelation function based on model 

parameters, conditional likelihood, 

unconditional likelihood and a genetic 

algorithm- have been used. Some criteria 

such as RMSE, MRE, SE, MAE and the 

minimum sum squares of error have been 

used for comparison of the performance of 

parameter estimation methods. This research 

indicates that genetic algorithm and 

unconditional likelihood methods are 

respectively more appropriate in comparison 

with other methods but, due to the 

complexity of the model, genetic algorithm 

(GA) has a high convergence speed to global 

optimum.  

It must be mentioned that, for getting 

precise forecasted values, appropriate 

normal transformation using parameters 

estimation method has an important affect. 

Therefore, we can propose this method for 

ARIMA streamflow modeling.  
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  سه بين كارايي روش هاي تخمين پارامترها در پيش بيني جريان رودخانهمقاي

  هورفر. خلقي و ا. پرويز، م. ل

  چكيده

پيش بيني متغيرهاي هيدرولوژيكي مانند جريان رودخانه نقش مهمي در برنامه ريزي و مـديريت منـابع آب     

پيش بينـي   . واج بسياري يافته اند   در سال هاي اخير استفاده از مدل هاي استوكستيكي جهت اين امر ر            . دارد

  از طريق تخمين پارامترهاي مجهول امكان پذير مي باشد زيـرا تخمـين پـارامتر بـه      ARIMAتوسط مدل

هدف اصلي اين تحقيق بررسي عملكرد روش هـاي         . عنوان يكي از اساسي ترين مراحل مدلسازي مي باشد        

اسـتفاده از   . 1: چهار روش تخمين پارامتر شـامل     در اين مطاله    .  مي باشد  ARIMA تخمين پارامتر در مدل   

درسـتنمايي غيـر    . 3درسـتنمايي شـرطي     . 2فرمول هاي ضرايب خود همبستگي بر حسب پارامترهـاي مـدل            

آمار آبدهي حوضه آبريـز درياچـه اروميـه در شـمال     . الگوريتم ژنتيك مورد استفاده قرار گرفتند . 4شرطي  

نتـايج ايـن چهـار روش توسـط معيارهـاي           . اتي در نظـر گرفتـه شـد       غرب ايران به عنوان منطقه مورد مطالع ـ      

RMSE, RME, SE, MAE نتـايج مبـين كـارايي روش    .  و مينيمم مجموع مربعات خطا مقايسه شـدند

هاي الگوريتم ژنتيك و درستنمايي غير شرطي نسبت به ساير روش هاي تخمين پارامترها مي باشند ولي بـا                   

  .يتم ژنتيك سرعت همگرايي بالايي براي رسيدن به بهينه مطلق را داردافزايش پيچيدگي، مدل الگور
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