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Comparing Machine Learning Algorithms and Linear Model 
for Detecting Significant SNPs for Genomic Evaluation of 

Growth Traits in F2 Chickens 

H. Bani Saadat1, R. Vaez Torshizi1*, Gh. Manafiazar2, A. A. Masoudi1, A. Ehsani1, and 
S. Shahinfar3 

ABSTRACT  

High-density Single Nucleotide Polymorphisms (SNPs) panels are expensive, especially 
in developing countries. However, methods have been developed to detect critical SNPs 
from these panels and design low-density chips for genomic evaluation at lower cost. This 
study aimed to determine the efficiency of Random Forest (RF) and Gradient Boosting 
Machine (GBM) algorithms, and Linear Model (LM) in identification of SNPs subsets to 
predict Genomic Estimated Breeding Values (GEBVs) for Body Weights at 6 (BW6) and 9 
(BW9) weeks in broiler chickens and compare the predicted GEBVs with those obtained 
by the 60K SNP panel. The data were collected on 312 F2 chickens that genotyped with 
60K Illumina SNP BeadChip. After applying quality control, the remaining 45,512 SNPs 
were ranked based on p-values, mean square error percentage, and relative influence, 
obtained by LM, RF and GBM methods, respectively. Then, subsets of top 400, 1,000, 
3,000 and 5,000 SNPs, selected by each method, were employed to construct genomic 
relationship matrices for the prediction of GEBVs with genomic best linear unbiased 
prediction model. Results indicated that predicted accuracies by RF and GBM were 
generally higher than LM. A Subset of 1,000 SNPs selected by RF and GBM algorithms 
compared to the total SNPs increased accuracy from 0.38 to 0.64 and 0.66 for BW6, and 
from 0.42 to 0.60 and 0.66 for BW9, respectively. The findings of the present study 
provide that machine learning methods, especially GBM, can perform better than LM in 
selecting important SNPs and increasing the accuracy of genomic prediction in broiler 
chickens.  

Keywords: Broilers chickens, Chickens body weight, Genomic prediction, Single nucleotide 
polymorphisms. 

INTRODUCTION 

Single Nucleotide Polymorphisms (SNPs) 
have been widely utilized in biological 
research, cancer research, parentage testing, 
mapping of quantitative trait loci, and 
evaluation of genomic selection due to their 
effectiveness as genetic markers. High-
Density (HD) SNP panels are now 
accessible for many species due to 

advancements in high-throughput 
sequencing technology (Unterseer et al., 
2014). One of the important factors in using 
high-density SNPs is the cost, which is a big 
limiting factor in utilizing it, especially in 
developing countries (Mrode et al., 2018).  
High-density SNP panels used for genomic 
evaluations have a large number of SNPs 
that have little to no effect on the traits and 
could decrease prediction accuracy (Ye et 
al., 2019). Therefore, various strategies have 
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been performed to select SNPs with large 
effect from high-density SNP chips, such as 
selecting SNP evenly spaced across the 
genome (Habier et al ., 2009) and based on 
allelic frequency (Abdollahi et al., 2014).  

It has been reported that detected subset of 
SNPs through conventional Genome-Wide 
Association Study (GWAS) increased the 
accuracy of genomic selection (Liu et al., 
2020). On the contrary, Lu et al. (2020) 
indicated that pre-selecting SNPs based on 
estimates of variance contributed using 
weighted single-step Genomic Best Linear 
Unbiased Prediction (ssGBLUP) or p-values 
using single-SNP GWAS did not increase 
accuracy of genomic predictions 
substantially in Japanese flounders. In 
conventional GWAS, a univariate phenotype 
is regressed on each SNP independently, due 
to small number of observations and large 
number of SNPs and LD between SNPs is 
not considered. Since SNPs are often 
correlated via Linkage Disequilibrium (LD), 
the most significant individual SNPs 
selected by linear regression may not be an 
optimal set for creating low-density chips. 
The undesirable statistical properties of the 
least squares prediction method for selection 
of SNPs has also been proposed by Wray et 
al. (2013).  

Machine Learning (ML) techniques have 
been used in GWASs (Mokry et al., 2013). 
In the context of genome-enabled prediction 
of phenotypes, ML classification procedure 
was used by Long et al. (2007) in selection 
of SNPs for prediction of mortality traits in 
poultry. Random Forest (RF) (Breiman, 
2001) has been applied to GWASs to 
identify SNP associated with phenotypes 
and to map QTL on the genomic regions 
(Minozzi et al., 2014). Gradient Boosting 
Machine (GBM) is another popular method 
of ML algorithm that has gained attention 
recently (Friedman, 2001). Piles et al. 
(2021) showed that, compared to parametric 
methods, the best prediction quality in terms 
of accuracy and stability was obtained with 
the GBM method for selecting SNPs in 
order to create low-density SNP chips. The 
RF and GBM algorithms are suitable 

alternative to other methods used for 
genomic evaluations at the expense of lower 
interpretability of results (González-Recio et 
al., 2010) and are the most appealing 
alternatives to analyze complex traits using 
dense genomic markers information 
(González-Recio and Forni, 2011). 

Several ML algorithms have been used to 
detect subsets of important SNPs from high-
density SNP chips in pig breeds (Schiavo et 
al., 2020), tropical Brahman cattle (Li et al., 
2018) and purebred and commercial Korean 
native chickens (Seo et al., 2021). Different 
results have been reported in these studies 
either in the size of subsets of SNPs or in the 
outcomes of the methods. To the best of our 
knowledge, this approach has not been 
demonstrated in broiler chickens yet and 
will serve poultry industry with better 
insight on utilization of ML techniques in 
pre-selection of SNPs to enhance the 
accuracy of genomic selection. Therefore, 
the present study aimed to evaluate the 
efficiency of two ML algorithms, namely, 
RF and GBM, in identifying a subset of 
SNPs affecting growth traits using a 
crossbreed chicken population for the 
genomic selection purpose. Also, we aimed 
to compare the accuracy of genomic 
breeding values predicted by subsets of 
SNPs selected by ML algorithms with 
conventional GWAS and all available SNP 
set.  

MATERIALS AND METHODS 

 Experimental Population, Phenotypic 
and Genotypic Data 

A population of F2 crosses between the 
fast-growing Arian line (AA) and the slow-
growing Urmia Iranian indigenous chickens 
(NN) was used in this study. The F1 birds 
were generated from the mating of AA 
♂×NN ♀ and NN ♂×AA ♀ birds and 
reared for 12 weeks in poultry research farm 
of Tarbiat Modares University, Tehran, Iran. 
Then, F1 males from each reciprocal cross 
were mated each to 4–8 females from other 
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families, and F2 chickens were produced and 
raised individually in cages equipped with 
water nipples and feeders for 12 weeks 
under the same environmental conditions 
and ration. Individual weekly weight was 
collected throughout the growing period. A 
total of 312 birds from six different hatches 
were available. For the present study, body 
weights recorded at 6 (BW6) and 9 (BW9) 
weeks were used. More information about 
these traits can be found in Emrani et al. 
(2017). Before implication of ML, a 
multiple linear regression of observations on 
sex and hatch was used to adjust the body 
weight data (Brown and Reverter, 2002). 

Genomic DNA was extracted from 312 
blood samples using salting out method and 
stored at -20°C. After extraction, 
spectrophotometry and agarose gel 
electrophoresis methods were used to 
determine the quantity and quality of DNA. 
These DNA samples were genotyped with 
the Illumina Chicken 60K SNP BeadChip, in 
cooperation with Cobb-Vantress Inc., and 
the Aarhus University, Denmark. Quality 
control steps were applied to the original 
data with PLINK 1.9 software (Purcell et al., 
2007). SNPs with call rate of < 95%, minor 
allele frequency of < 5%, a Hardy– 
Weinberg equilibrium test p-value < 1×10-6 

were deleted (Emrani et al., 2017). After 
quality control, 45,512 of SNPs for twenty-
eight autosome chromosomes and 300 birds 
remained for final analysis.  

Methods for Selecting Markers 

The linear model for conventional GWAS 
was as follows: 

y = 1μ + Zq + e 
Where, y= vector of corrected phenotypic 

values for BW6 and BW9, 1= an n-vector of 
ones, μ= population mean, q= effect of the 
marker in the model, which is treated as a 
fixed regression of observation on genotype, 
Z= a vector containing genotypes of the 
marker with 0, 1 and 2 for A1A1, A1A2 and 
A2A2, respectively, e= vector of random 

residual effects, assuming e~N(0, Iσୣ
ଶ), 

where σୣ
ଶ is the residual variance and I is the 

identity matrix. 
 The genetic association tests were 

conducted using the '--Linear’ command in 
PLINK v1.9 (Purcell et al., 2007). The SNPs 
were selected based on the p-values from 
GWAS results. 

In the RF algorithm, which contains 
several decision trees, a bootstrap sample of 
original training data is used to grow each 
tree. The RF algorithm predicts the outcome 
by averaging the outputs obtained from all 
the trees in the forest (Breiman, 2001). 
When making bootstrap samples to grow 
each tree, approximately 34 percent of 
records will not be selected, which is called 
Out Of Bag (OOB) records. To calculate the 
importance of each SNP, OOB error was 
calculated by predicting the outcome of 
OOB samples via the corresponding tree. 
Then, the values of each predictor were 
permuted (shuffled) and prediction error of 
OOB samples were calculated again. The 
Mean Square Error Percentage (MSEP) 
difference between permuted and non-
permuted samples (averaged over all the 
trees in the forest) indicated the importance 
or predictive ability of that particular 
predictor. The ‘randomForest’ package was 
used to perform this analysis in R software 
(Breiman, 2013). 

In the GBM algorithm, the basic functions 
are weak learners such as a decision trees. The 
purpose of the boosting algorithm is to 
enhance ensemble of weak learners into a 
strong learner. In this method, a basic learner 
such as a decision trees are added sequentially 
to the residuals of the previous tree. Thus, it is 
expected that, by focusing on the incorrectly 
predicted data in the previous tree, error rate in 
the next tree will be lessened and as long as 
the error rate is decreasing, the boosting 
algorithm will continue (Friedman, 2001). In 
the present study, important markers in the 
GBM method are identified by Relative 
Influence (RI), which is the average of 
reduction in MSEP over all the trees when that 
particular SNP to be split in the data 
(Friedman, 2001). The ‘GBM’ package was 
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used to perform this algorithm in R software 
(Greenwell et al., 2019). For GBM and RF 
methods, hyper-parameters tuning performed 
via nested grid search within a 3-fold cross-
validation on the 75 percent randomly selected 
subset of the data. 

Genome-Wide Screening for Top 
Ranking SNPs 

All SNPs were ranked from the most to 
the least important SNP by criteria values of 
RF (increase in MSEP), GBM (RI), and LM 
(P-value) using ‘dplyr’ package 
implemented in R (Wickham et al., 2023). 
For the 5,000 number of important SNPs, 
obtained from LM, RF and GBM, venn 
diagrams were drawn by the ‘VennDiagram’ 
package (Chen and Boutros, 2011). Top 400, 
1,000, 3,000, and 5,000 SNPs with the 
above-mentioned criteria were used to create 
genomic relationship matrices. 

Genomic Estimated Breeding Value  

Genomic Estimated Breeding Values 
(GEBV) were derived using Genomic Best 
Linear Unbiased Prediction (GBLUP) 
model. The statistical model of GBLUP is 
written as follows (Gianola et al., 2006): 

y = μ + g + e 
where y is corrected phenotypes, μ is the 

population mean, g is a vector of random 
additive genomic values with g~N(0, Gσ

ଶ, 
where G is the additive genomic relationship 
matrix between genotyped individuals and σ

ଶ 
is the additive genomic variance, and e is the 
vector of random residual effects with 
e~N(0, 𝐈σୣ

ଶ),, where σୣ
ଶ is the residual 

variance, and 𝐈 is the identity matrix. The 
additive genomic relationship matrix (G) is 

constructed as 
՛

୫
, where Z is the matrix of 

centered and standardized genotypes for all 
individuals and m is the number of markers. 
Kernel Hilbert space regression method was 
used to implement the GBLUP approach and 

the genomic heritability in the selected subsets, 
and all markers were estimated using the 
Bayesian Generalized Linear Regression 
(BGLR) package (Pérez-Rodríguez and de Los 
Campos, 2022) in R software. The Gibbs 
sampler was run for 50,000 iterations, with a 
10,000 burn-in period and a thinning interval 
of 5 iterations, i.e., 10,000 samples were used 
for inference. 

Cross-Validation for the Accuracy of 
Genomic Breeding Values 

Accuracy of genomic prediction was 
calculated on 5-fold cross-validation base as 
follows (Li et al., 2018):  

Accuracy = 
୰ృుా,౦

√୦మ
  

Where, rୋ,୮୦ୣ୬ is correlation coefficient 
between the predicted GEBVs of the birds in 
the test fold and the corrected phenotypes 
(phen) and hଶ is estimated heritability of the 
trait. 

Unbiasedness of genomic prediction was 
calculated on 5-fold cross-validation base as 
follows: 
b ୋ,୮୦ୣ୬ = rୋ,୮୦ୣ୬(S୮୦ୣ୬/Sୋ) 

Where, bGEBV, Phen  is regression 
coefficient of corrected phenotypes on GEBV 
that show unbiasedness of the GEBV, 
rୋ,୮୦ୣ୬ is correlation coefficient between 
the predicted GEBVs of the birds in the test 
fold and the corrected phenotypes, S୮୦ୣ୬ is 
the standard deviation of corrected 
phenotypes, and Sୋ is the standard 
deviation of predicted GEBVs. Finally, the 
Tukey HSD (Honestly Significant Difference) 
test was used to compare the significant 
differences between the best subsets of SNPs, 
which had the highest increase in genomic 
prediction accuracy with each other and the all 
SNPs.  

RESULTS AND DISCUSSION 

The rank of SNPs from the most to the 
least important for BW6 and BW9 are 
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shown in Figure 1. Based on LM method, 
the 5,000 pre-selected SNPs had a p-values 
range from 1.01 × 10ିହ to 7.60 × 10ିଶ 
and 7.57 × 10ି to 8.09 × 10ିଶ for BW6 and 
BW9, respectively. For RF method, the 
importance of SNPs changes from positive 
to negative values. The highest positive 

value in RF indicates an increase in the 
MSEP when the SNP is randomly permuted 
compared to the prediction error before SNP 
permutation. In this model, 47, 7, and 46% 
of SNPs for BW6 and 47, 9 and 44% of 
SNPs for BW9 had positive, zero, and 
negative effects, respectively. About 5% of 

 
Figure 1. The distribution of ranked SNP for BW6 and BW9 from LM, RF and GBM methods. 
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Figure 2. Venn diagram showing the 5,000 number of important SNPs from RF, GBM, and LM 
methods. Circle represents the number of identified SNPs and the intersection areas represent the number 
of overlapping SNPs. 
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data provide more information for genomic 
evaluation compared to medium-density 
SNP data, but they do not confer any 
advantage for heritability estimation. 
Literature studies reported that the estimates 
of genomic heritability were very sensitive 
to differences in LD between SNPs, 
suggesting that genomic heritability is 
overestimated in region with high LD and 
underestimated in region with low LD 
(Speed et al., 2012). The stronger LD of the 
remaining SNPs and the removal of the 
imperfect LD between the causal mutations 
may improve the genomic relationships 
between individuals and increase the 
heritability of the trait (Abdollahi et al., 
2014; Ye et al., 2019). Abdollahi et al. 

(2014) estimated genomic heritability for 
body weight at 6 weeks in broilers chickens 
using the genomic relationship matrix 
consisting of all SNPs and a subset of 
selected SNPs and reported that the genomic 
heritability with the selected SNP (0.59) is 
expected to be overestimated in comparison 
to all SNPs (0.30). However, the subsets of 
SNPs could increase the GEBV accuracy. 
The increase in the accuracy of GEBV has 
been reported by Luo et al, (2021) who 
proposed a strategy for genomic selection in 
aquaculture using a subset of markers 
selected by the p-value of GWAS and 
indicated that the prediction accuracy of a 
subset of top SNPs was higher than using 
total SNPs. Li et al. (2018) reported that ML 

 
Figure 3. Genomic heritability of all SNPs for BW6 and BW9 from LM, RF and GBM methods. 
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Figure 4. Accuracy of genomic prediction of all SNPs and different subsets of using a 5-fold cross-

validation approach for BW6 and BW9 from LM, RF and GBM methods. 
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BW6, and 1.06 (±0.01), 1.03 (±0.02), 1.05 
(±0.04) and 1.06 (±0.05) for BW9, 
respectively. The best average accuracy of 
genomic breeding value and regression 
coefficient provided by 1,000 SNP subset 
was 0.61 (±0.04) and 0.97 (±0.04) for BW6 
and 0.61 (±0.02) and 1.03 (±0.02) for BW9, 
respectively. In the study of Liu et al. 
(2020), the highest accuracy of genomic 
breeding value by a subset of 817 SNPs 
selected from high-density SNP panels was 
0.60 for body weight at the age of 12 weeks, 
and by a subset of 354 SNPs, it was 0.45 for 
feed conversion ratio in broilers. 
Furthermore, several studies indicated a 
direct relationship between effective 
population size and the accuracy of GEBVs. 
The significant impact of smaller effective 
population size on the prediction accuracy of 
GBLUP was revealed by Daetwyler et al. 
(2010), which is a reflection of strong 
linkage disequilibrium between variants due 
to close genetic relatedness between 
individuals (Jang et al., 2023; Calus et al., 
2008).  

Significant differences between genomic 
prediction accuracy of the best subsets of 
SNPs (which had the highest increase in 
genomic prediction accuracy) with each 
other and all SNPs are presented in Table 1. 
The results showed that, in the present study, 
1,000 SNPs selected by ML algorithms was 
the best pre-selected SNPs for estimating 
genomic breeding value in broiler chickens 
for body weight traits. In BW6, there was no 
significant difference between RF and GBM 
algorithms in the best subsets (1,000 SNPs) 
of the selected SNPs, and they were superior 
to linear model with the best subset (3,000 
SNPs). However, in BW9, GBM was 
superior to the other methods. These 
findings are consistent with the results of 
Kriaridou et al. (2020), who used different 
subsets of SNPs in four aquaculture datasets, 
ranging from 100 to 9,000 SNPs, and 
observed that SNP densities between 1,000 
and 2000 SNPs had a very similar accuracy 
of genomic evaluation to high-density 
genotyping. Ye et al. (2019) used selected 
markers from whole-genome sequencing 

data based on the p-value obtained from 
GWAS, and showed that the use of pre-
selected markers for most traits did not 
increase the genomic prediction accuracy in 
broilers and even increased the bias. One of 
the possible reasons is the difficulty of 
discovering causative variants using GWAS 
due to the large number of variants (600k) 
and high LD between variants. On the 
contrary, Li et al. (2018) indicated an 
increase in the accuracy of genomic 
prediction by selecting a subset of 
significant SNPs from high-density SNP 
panel (651,253) using RF method. One of 
the advantages of ML method is its ability to 
analyze data with a high dimension, 
however, factors such as linkage 
disequilibrium and minor allele frequency 
can affect the performance of ML 
algorithms for selecting important markers 
(Zhou and Troyanskaya, 2015). Decision 
trees are known to have low bias and high 
variance in prediction, but RF overcomes 
this issue by forming many trees on each 
bootstrap sample, to minimize prediction 
errors by lowering the variance of 
prediction. In the GBM, both bias and 
variance are expected to be reduced due to 
the boosting process which is the assembling 
multiple weak learners sequentially and 
using the weighted average of each tree for 
prediction (Li et al., 2018). Hence ML can 
be superior to linear models for selecting 
SNPs from high-density SNP panels.  

Literature results on improving accurate 
prediction of breeding values using high-
density SNP genotype, even with 
implementation of a specific model, are 
inconsistent. Several studies indicated that 
selecting markers from high-density 
genomic data can result in a small 
improvement in genomic accuracy (Lopez et 
al., 2020). Our strategy for screening SNPs 
in two growth traits improved estimation of 
genomic breeding value accuracies. A subset 
of 1,000 SNPs selected by the RF and GBM 
methods compared to the total SNPs 
increased the accuracy of genomic 
prediction from 0.38 to 0.64 and 0.66 for 
BW6 and from 0.42 to 0.60 and 0.66 for  

 [
 D

O
I:

 1
0.

22
03

4/
JA

ST
.2

6.
6.

12
61

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
7-

28
 ]

 

                             9 / 14

http://dx.doi.org/10.22034/JAST.26.6.1261
https://jast.modares.ac.ir/article-23-69370-en.html


 
Figure 5. Unbiasedness of genomic prediction of all SNPs, and deferent subsets of using a 5-fold 

cross-validation approach for BW6 and BW9 from LM, RF and GBM methods. 
 
Table 1. The Tukey HSD test for accuracy of genomic prediction for body weights using pre-selected  markers 

with the best subsets of SNPs. 

 Method  BW6  BW9 

All SNP 0.38a  0.42a 
LM1,000 0.53b  0.59b 
LM3,000 0.57c  0.58bc 

RF400 0.58c  0.56c 
RF1,000 0.64d  0.60b 
GBM400 0.59c  0.62d 

GBM1,000 0.66d  0.66e 

BW6= 6 weeks Body Weight; BW9= 9 weeks Body Weight; LM= Linear Model; RF = Random Forests; GBM= 
Gradient Boosting Machine. 
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BW9, respectively. Liu et al. (2020) 
improved genomic prediction accuracy for 
body weight traits in broiler chickens by 
selecting a subsets of SNPs based on p-
values obtained from GWAS, revealing that 
high prediction accuracy for growth traits 
may be achieved even with a small number 
of markers. SNPs that are not close to causal 
mutations may have a negative impact on 
genomic prediction. Also, many SNPs may 
not tag any causative mutations when the 
number of markers is too large. Therefore, if 
only effective SNPs that tag any causative 
mutations are included in the model, the 
ability of the model to predict genomic 
breeding value may be increased and the 
model error is decreased by removing the 
unrelated markers. Druet et al. (2014) 
showed that the accuracy of genomic 
prediction depends largely on the coverage 
of key genes affecting the target traits by 
genotyping platforms. 

CONCLUSIONS 

The genomic selection has become one of 
the main techniques for animal breeding 
programs. High costs of genotyping has 
limited the use of genomic selection in 
poultry due to the large number of selection 
candidate, especially in developing 
countries. Therefore, selecting effective 
SNPs is useful in designing low-density 
panels that could provide broad potential 
and applicability in genomic evaluation. In 
the present study, the accuracy of GEBV for 
BW6 and BW9 obtained from a subset of 
pre-selected 1,000 SNPs by RF and GBM 
performed better than the subset selected by 
LM, indicating that ML algorithms can be 
used as a selection tools to find significant 
markers for designing and developing low-
density SNP marker panels. However, due 
to the small population size of the current 
study, further studies with more data, 
different methods, and a wide range of 
different SNP subsets are needed to find 
optimum and reliable set of subsets. 
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های تاثیرگذار برای ارزیابی  SNPهای یادگیری ماشین در شناسایی الگوریتم مقایسه

 F2ژنومی صفات رشد در جوجه های 

احسانی، و ص.  .مسعودی، ع .ا .آذر، عمنافی .واعظ ترشیزی، ق .سعادت، ربانی .ح
  فرشاهین

  چکیده

خصوص در کشورهای درحال بهبا چگالی بالا  (SNP)نوکلئوتیدی های تکهای چندشکلیاستفاد از تراشه
های ها و طراحی تراشههای تاثیرگذار از این تراشهSNPهایی برای شناسایی اما روشبر هستند،  توسعه بسیار هزینه

هدف از مطالعه حاضر، تعیین کارآیی با چگالی کم برای ارزیابی ژنومی با هزینه کمتر توسعه یافته است. 
در شناسایی  (LM) و مدل خطی (GBM) )، گرادیان بوستینگRFهای جنگل تصادفی ( الگوریتم

 وزن بدن )GEBVs( و ژنومی های اصلاحیبینی ارزشبرای پیش K۶۰ از یک تراشه هاSNP های زیرمجموعه
پیش بینی شده از زیر  GEBVsهای گوشتی و مقایسه ) هفتگی جوجهBW9( ۹) و BW6( ۶در سن 
ایلومینا  60Kآوری شده با تراشه  جمع F2 جوجه ٣١٢های  دادهاست.  K۶۰های تراشه SNPها با کل مجموعه

)، p)p-values براساس مقادیرباقیمانده های SNP ٤٥٥١٢ژنوتیپ شدند. پس از اعمال کنترل کیفیت، تعیین 
 relative) و تأثیر نسبی (increase in mean square error percentageافزایش درصد خطای میانگین (

influence (های  آمده به ترتیب از روش دست بهLM ،RF  وGBM هایی  مجموعهبندی شدند. سپس زیر رتبه
های روابط ژنومی برای  برای ایجاد ماتریس برتر به دست آمده از هر روش SNP ۵۰۰۰و  ۳۰۰۰، ۱۰۰۰، ۴۰۰از 

استفاده شدند. نتایج نشان داد که دقت  بینی نااریب خطی ژنومی پیش بهترینبا روش  GEBVsبینی  پیش
GEBVبینی شده توسط های پیشRF  وGBM ۱۰۰۰ای از به طور کلی بیشتر از مدل خطی بود. زیر مجموعه 

SNP های خاب شده توسط الگوریتمانتRF  وGBM  در مقایسه با کلSNP ها، دقتGEBV ها را به ترتیب
های مطالعه  افزایش داد. یافته BW9برای  ۶۶/۰و  ۶۰/۰به  ۴۲/۰و از  BW6برای  ۶۶/۰و  ۶۴/۰به  ۳۸/۰از 

معمولی در انتخاب  توانند بهتر از روش خطی ، میGBMویژه  های یادگیری ماشین، به حاضر نشان داد که روش
SNPهای گوشتی افزایش دهند. بینی ژنومی را در جوجه های مهم عمل کنند و دقت پیش  
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