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Yield and Water Requirement Using Crop Models
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ABSTRACT

Climate change can have significant impacts on crop growth, yield, water requirement
and, consequently, crop water productivity. In this study, the effect of climate change
under RCP2.6, RCP4.5, and RCP8.5 projection scenarios of the CanESM2 model on
soybean yield and water requirement was investigated in Kermanshah, west of Iran. Crop
growth was simulated using crop growth simulation models (DSSAT and AquaCrop)
based on historical (1985-2015) and projected (2025-2064) weather data. Using the
AquaCrop model in RCP2.6, RCP4.5, and RCP8.5 scenarios, the average increase in
seasonal crop evapotranspiration (ETc) was estimated to be 9.4, 11, and 14.9%,
respectively. The results of the DSSAT model showed 4.1, 8.5, and 12.1% increase in
seasonal ETc under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Based on
the AquaCrop and DSSAT models, soybean yield decreases by 5.3, 3.7, and 2% and by
5.7, 4.8, and 1.6% for the RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively. The
results also show a decrease in crop water productivity under climate change scenarios as
a result of increased ETc and reduced grain yield. According to AquaCrop and DSSAT
models, the maximum daily ETc that should be used for the design of irrigation systems
will increase by 11.5 and 10.2%, respectively.
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INTRODUCTION

Climate plays a crucial role in crop water
productivity in rainfed and irrigated areas.
Climate change is expected to affect
agriculture worldwide (Figueiredo Moura da
Silva et al., 2021) and especially in Iran,
where water is the major constraint of crop
production  (Sharafati et al., 2022).
Increasing  rainfall  intensity,  rising
temperatures, drought, and other types of
climatic hazards can affect the quantity and
quality of agricultural products. So far,
several models have been presented to
project weather data under climate change
scenarios. Most climate projections are
based on general climate change and

simulations of General Circulation Models
(GCM).

The output of GCM models should be
spatially downscaled for the study area.
Statistical downscaling has been more
widely applied in impact studies (Trzaska
and Schnarr, 2014) due to its simplicity in
design and implementation and
computational efficiency (Muluye, 2012). In
statistical downscaling models, based on
historical data, a relationship is established
between large-scale model output (predictor)
and local-scale variables (predictant), then,
this relationship will be implemented for
downscaling of large-scale data (Laflamme
et al., 2016; Muluye, 2012). Although there
are several statistical downscaling models in
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the literature (Tabari et al., 2021), SDSM
(Statistical DownScaling Model) (Wilby et
al., 2002) is one of the commonly used
models for this purpose (Baghanam et al.,
2020). SDSM has been used to downscale
various climate parameters (such as
maximum temperature, minimum
temperature, precipitation) in different parts
of the world (Muluye, 2012; Phuong et al.,
2020; Saymohammadi et al., 2017; Shahriar
et al., 2021; Souvignet et al., 2010; Stennett-
Brown et al., 2017).

There are different varieties of crop
modeling software such as the Decision
Support  System for  Agrotechnology
Transfer (DSSAT) that has specific models
to simulate the growth of various plants
(Jones et al., 2003). CROPGRO-Soybean
model (Boote et al., 2018) has been
developed by the DSSAT software makers
to simulate the growth of soybean. This
model uses experimental equations to
describe the developmental phenological
processes, canopy development, organ
formation, photosynthesis, allocation of
photosynthetic materials, and soil water
content (Jones et al., 2003). This model can
simulate the effects of climate on crop
growth and yield using daily weather data.

AquaCrop is a water-driven crop growth
simulation proposed by FAO (Food and
Agriculture Organization of the United
Nations) (Raes et al., 2009). The AquaCrop
simulates the effect of the environment and
management on crop production. The model
has two types of crop parameters: (i)
Conservative parameters, which do not need
to calibrate because these are valid for all
cultivars in all environments, and (ii)
Cultivar specific parameters, which are
affected by field management, planting
mode, soil profile conditions, and climate-
related parameters. The basic principles of
the model for simulating the crop growth
process are presented by Steduto er al.
(2009). This model is inferred from the
equation by Doorenbos and Kassam (1979).
The use of AquaCrop model due to the need
for low input parameters and adequate
simulation accuracy has made this model a
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valuable tool for crop growth simulation
under irrigation scenarios (Heng et al.,
2009).

A study of the effects of climate change on
water requirement in Judalkavir River Basin,
Spain, showed that crop water requirement
in 2050 would increase by 15-20%
(Rodriguez Diaz et al., 2007). Woznicki et
al. (2015) projected soybean irrigation
demand under climate change scenarios in
the Kalamazoo River watershed, Michigan,
USA. Their results showed an 11% increase
in irrigation demand in 2020-2039 and a 9%
decrease in 2060-2079 compared to the base
period (1980-1999). Voloudakis et al.
(2015) provided climate change data using 8
climate simulation models, predicted cotton
yield using AquaCrop model and stated that,
considering the increasing temperature in the
future, the results of climate change models
and crop models would be useful for
irrigation management.

Soddu et al. (2013) studied the adaptation
of durum wheat to climate change using
AquaCrop model in southern Sardinia,
Greece. They stated that in the coming years
there would be an increase in precipitation,
temperature, and CO, concentration in their
study area. The projected weather data were
used as the input of AquaCrop model and
they found that potential crop yield and
productivity would be increased in their
study area. Yang et al. (2017) investigated
the response of maize yield to climate
change scenarios in Portugal. They used
ESM-RCA4 climate change model under
RCP4.5 and RCP85  scenarios —
(Representative  Concentration Pathway)
during 2021-2080. They used AquaCrop and
STICS models to project crop yield. Their
results showed a 17% reduction in crop
yield. Abd-Elmabod et al. (2020) studied the
effect of climate change on crop yield
reduction of sunflower and wheat in a
Mediterranean region using two agricultural-
environmental sub-models. The results
showed that the yield of sunflower
decreased more compared to wheat. Kothari
et al. (2022), while stating that the accurate
estimation of crop yield under climate
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change scenarios is necessary, found
considerable variability among models in
simulated soybean yield responses to climate
change (increasing temperature and
CO,). Figueiredo Moura da Silva (2021)
using the CROPGRO-Soybean model found
an increase in soybean yield and water
productivity in Brazil, under climate change
scenarios of RCP4.5 and RCP8.5
(2040-2069) compared to the base period
(1987-2017). They stated that the positive
effect of increasing CO,on crop water
productivity overcomes the negative effects
of temperature and water stress increases on
rainfed Brazilian soybeans.

The results of climate change studies using
the UKMO model in Iran showed that the
average temperature increase in all studied
stations in the spring season would be 3.1
and 3.9°C; 3.8 and 4.7 C in summer; 2.3 and
3°C in autumn, and 2 and 2.4°C in winter,
respectively, in 2025 and 2050 (Koocheki et
al., 2007). Saymohammadi ef al. (2017)
used the A2 scenario of the HadCM3 model
and predicted an increase of 1.99 and 2.58°C
in Kermanshah in the minimum and
maximum temperature in the period of
2040-2059 compared to the base period
(1990-1961).

The aim of this study was to predict the
impact of climate change on soybean yield
using a specific model of CROPGRO-
Soybean and a generic model of AquaCrop
under RCP2.6, RCP4.5, and RCPS8.5
scenarios of CanESM2 model (Canadian
Earth System Model) in Kermanshah, Iran.

MATERIALS AND METHODS

Two years (2013 and 2015) of field
experiment data were used to calibrate and
validate the crop growth simulation models.
The results of the study in 2013 (Esmaeili,
2014) were used for models calibration. The
results of the second study in 2015
(performed in this study) have been used to
validate the models. For validation, a field
experiment was conducted in the Research
Farm of Razi University, Kermanshah, Iran,
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with an altitude of 1,320 m above sea level,
the longitude of 47° 6' 12" E, and latitude of
34° 19" 33" N (Figure 1). The average
annual rainfall and temperature in the study
area are 456 mm and 14°C, respectively.
Monthly values of weather parameters
during the field experiment are presented in
Table 1.

Hobbit cultivar of soybean, which is a
limited-growth type, was studied. Rows
were made by furrower at a distance of 50
cm. Soil's physical properties are shown in
Table 2. During the growing period, weeds
and pests were controlled. The amount of
fertilizer was determined based on the soil
test results and in consultation with
agricultural experts (150 kg ha™ of triple
superphosphate and 200 kg ha” of urea
fertilizer). This experiment was performed
in a Randomized Complete Block Design
(RCBD) with eight irrigation treatments and
three replications. The characteristics of
irrigation treatments are presented in Table
3.

The design consisted of 24 plots with
dimensions of 4x4 m, in which seven rows
were planted in each plot. The final harvest
was done on September 6, 2015, and the
yield and yield components were
determined. The water requirement of the
control treatment with full irrigation (T1)
was calculated using the daily weather data
recorded at an automatic weather station,
near the research field. The daily potential
evapotranspiration of the reference crop
(ETo) was calculated based on the FAO
Penman-Monteith equation (Allen et al.,
1998). Crop water requirement (ETc) was
calculated by multiplying ETo by crop
coefficient (Kc). Crop coefficient was
obtained from Iran's national document for
Kermanshah Plain. The water requirement
of other treatments was determined based on
the stated percentage of TI1 treatment.
Irrigation interval was determined to be
seven days according to the soil physical
properties (Table 2). The amount of
irrigation in each treatment is reported in
Table 3. The reason for selecting over-
irrigation treatment (T2: 120%) was
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inadequate uncertainty in the method of crop
water requirement of the control treatment,
which was also reported by Ahmadpour et
al. (2017) and Esmaeili er al. (2015).
Irrigation was performed by surface
irrigation (furrow irrigation). The amount of
water entering each furrow was measured
with an accuracy of 0.1 liters using a
volumetric flow meter connected to the hose
outlet. Green canopy cover, leaf area index,
dry weight of above ground biomass and
grain were measured every ten days.
CanESM2 large-scale model was used to
project weather parameters under climate
change scenarios and downscaled using the
SDSM model. Daily meteorological data
(maximum and minimum temperature,
precipitation, wind speed, sunny hours and
relative humidity) of Kermanshah weather
station in the periods of 1961-1985 and
1986-2004 obtained from the Iranian
Meteorological Organization were used for

Kermanshah Province

calibration and validation. The relationship
between observed (predicted) and large-
scale (predictor) weather data has varying
strengths and weaknesses. Therefore, the
best predictors should be selected with the
highest correlation with the projected data.
At the screening stage, the best predictor
was determined based on the statistical
indicators specified for each meteorological
parameter. The output of the CanESM?2
model was used under three projection
scenarios (RCP2.6, RCP4.5, and RCPS.5).
After calibration and validation of the
model, meteorological data were generated
under three scenarios.

For each crop growth simulation model, a
crop file was prepared. The crop growth was
simulated using AquaCrop and DSSAT
models based on weather data in the base
period as well as climate change scenarios.
Finally, crop yield, water requirement, and
water productivity were calculated based on

IRAN

Figure 1. Location of study area in Kermanshah Province, Iran.

Table 1. Monthly values of weather parameters during the field experiment.

Weather Parameter Unit May June July August September
Maximum temperature °C 32 35 38 39.1 35
Minimum temperature °C 6.7 13 17 17.1 14.1

Sunshine hours h 8.3 9.7 10 9.9 10.3
Wind speed at 2 m ms’ 0.9 1.4 1.2 1.1 1.1
Relative humidity % 22.9 19.6 19 17.2 22.1
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Table 2. Soil physical characteristics of the research farm
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Volumetric soil moisture (%)

. Available . Bulk
Soil water (mm Soil Field P density (g
depth (cm) texture ; 1€ ermanent _
P per meter) Saturation capacity wilting point cm”)
0-30 160 Clay loam 48.4 34 20 1.3
30-60 140 Clay loam 48.7 37 23 1.31
60-90 130 Clay 47.9 39 25 1.25

Table 3. Specifications of the irrigation treatments

% Irrigation in

Treatment Periqd of deficit the reproductive % Irriggtion in the Totgl water
irrigation stage vegetative stage application (mm)
T1 --- 100 100 842
T2 --- 120 120 960
T3 Whole period 80 80 724
T4 Whole period 60 60 605
TS Vegetative phase 100 80 827
T6 Vegetative phase 100 60 797
T7 Reproductive phase 80 100 746
T8 Reproductive phase 60 100 650

historical and projected weather data. Crop
water productivity was calculated as the
ratio of grain yield (kg ha') to seasonal
evapotranspiration (m’ ha™).

The statistical indicators of Standard Error
(SE) and the coefficient of
determination (R?) were used to assess the
goodness-of-fit measures of the statistical
downscaling model (Emami and Koch,
2018). The normalized Root Mean Square
Error (nRMSE), and Efficiency Factor (EF)
were used for the evaluation of the
performance of crop models in the
calibration and validation stages (Equations
1 and 2).

nRMSE (1)
Jdzm, o -m2)

B Oave

EF =1 — ie1(0; — B)? @)

?:1(Oi - Oave)2
Where, O; is the Observed data, P; is the
simulated data, O,, is the average of the
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Observed data, and n is the number of
observed data.

RESULTS AND DISCUSSION

The SDSM model evaluation indicators in
the calibration and validation stages are
presented in Tables 4 and 5. The low
standard error and relatively high correlation
between simulated and observed data in
calibration and validation indicate the
model's effectiveness in downscaling
weather data. The correlations were higher
than the values of 0.29 for rainfall and 0.6
and 0.57 for maximum and minimum
temperature reported by Fiseha ef al. (2012).

Crop models were calibrated based on the
results of previous studies in the study area
(Esmaeili et al., 2015). The performance of
calibrated models was evaluated based on
the field experiments conducted in the
current study. Based on statistical indices of
nRMSE and EF, it can be said that DSSAT
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Table 4. Performance evaluation indicators of SDSM model in calibration and validation stages (Predictants:
Maximum temperature, minimum temperature, and wind speed).
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Maximum temperature Minimum temperature Wind speed
Month Calibration Validation Calibration Validation Calibration Validation
SE R’ SE R’ SE R’ SE R’ SE R’ SE R’
Jan 1.90 0.75 2.01 0.71 2.88 0.68 278 0.67 2.17  0.68 224 0.70
Feb 2.10 071 230 0.69 226 081 266 0.68 2.28 0.60 197 0.64
Mar 220 0.68 240 0.63 245 078 250 0.61 216 0.65 2.10 0.55
Apr 201 061 251 0.65 221 072 261 071 257 055 2.03 0.51
May 230 063 245 0.65 236 076 256 0.65 220 058 2.07 0.55
Jun 2.15 070 231 0.70 284 079 274 0.60 224 074 1.96 0.57
Jul 212 062 220 0.72 226 0.60 266 0.60 254 051 287 0.53
Aug 2.14  0.64 225 0.68 198 0.64 210 0.64 2.85 0.66 2.72 0.57
Sep 2.11 070 230 0.71 1.83  0.73 2.02 0.68 229 057 2.56 0.53
Oct 2.10 071 226 0.73 210 084 232 0.63 254 070 2.34 0.57
Nov 2.15 068 230 0.69 1.89  0.83 215 0.72 246  0.60 2.00 0.54
Dec 1.89 0.72 2.12 0.67 1.76  0.77 2.01 0.76 1.89  0.78 2.29 0.67

Table 5. Performance evaluation indicators of SDSM model in calibration and validation stages (Predictants:
Sunshine hours, relative humidity, and precipitation).

Sunshine Relative humidity Precipitation

Month Calibration Validation Calibration Validation Calibration Validation
SE R’ SE R’ SE R’ SE R’ SE R’ SE R’

Jan 2.890 061 245 077 2.05 079 249 0.70 2.19 0.79 290 045
Feb 294 062 202 0.80 295 074 270 0.58 2.71 0.76 237 057
Mar 2.53 0.64 2.08 0.66 240 073 215 0.65 1.46 0.47 126 045
Apr 2.59 075 285 0.65 206 0.78 274 0.51 1.48 0.42 2.05 049
May 272  0.78 2.53 0.60 2.02 0.69 258 0.5 1.69 0.63 242 0.60
Jun 2.80 0.65 253 0.79 2772 0.69 230 0.76 1.63 0.80 1.88 0.67
Jul 292 064 197 0.71 2.82 070 230 0.64 1.64 0.55 1.12 043
Aug 221 077 233 0.65 246 072 247 0.60 1.56 0.72 1.19 0.6
Sep 2.15 079 2.86 0.62 2772 0.67 293 0.74 1.45 0.68 1.10 0.61
Oct 265 076 186 0.63 2.88 0.65 228 0.67 2.13 0.78 1.12 0.62
Nov 211 072 277 067 224 071 191 0.55 1.66 0.76 236 0.68
Dec 1.86 0.78 286 0.62 2.12 076 240 0.50 1.45 0.42 094 0.58

simulated soybean better than AquaCrop
in the studied area (Table 6).

CanEsm2 was downscaled using the
SDSM model and based on the weather
parameters of the Kermanshah station under
RCP2.6, RCP4.5, and RCP8.5 emission
scenarios. The results indicate that the air
temperature during the future (2025-2064) is
increasing. The maximum temperature under
RCP2.6, RCP4.5, and RCP8.5 emission
scenarios will increase, on average, by 0.3,
0.6, and 1.1°C compared to the current
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climate weather data in Kermanshah station.
This increase will be 0.3, 0.6, and 0.8°C for
the minimum temperature, respectively. The
increase in  minimum and maximum
temperature is less than 1.99 and 2.58°C
reported by Saymohammadi et al. (2017) in
2050 based on the HadCM3 model.

Relative humidity is one of the parameters
that affect crop Evapotranspiration (ETc).
Relative humidity will increase in winter
(December, January, and February) and
decrease in other seasons. The highest
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Table 6. Performance evaluation of AquaCrop and DSSAT models in the validation stage.

Statistical index Treatment

Biomass

Grain Leaf area index Crop canopy

DSSAT AquaCrop DSSAT AquaCrop DSSAT AquaCrop
T1 17.18 10.67 15.02 34.36 14.88 17.1
T2 21.05 24.79 8.52 26.23 11.87 17.45
T3 21.71 13.83 24.66 27.89 15.98 23
T4 25.26 62.27 28.28 45.86 14.44 18.36
nRMSE (%) T5 22.16 35.58 11.72 41.9 13.56 32.65
T6 17.37 24.25 8.43 31.52 7.72 29.59
T7 23.41 26.44 7.47 28.14 17.35 15.66
T8 19.71 38.56 23.82 35.59 17.22 22.46
Average 20.98 29.55 15.99 33.94 14.13 22.03
T1 0.95 0.97 0.97 0.48 0.94 0.75
T2 0.92 0.86 0.98 0.72 0.96 0.76
T3 0.92 0.94 0.96 0.54 0.94 0.59
T4 0.88 0.39 0.96 0.45 0.94 0.69
EF TS 0.92 0.73 0.98 0.68 0.95 0.55
T6 0.95 0.88 0.98 0.6 0.99 0.41
T7 0.91 0.79 0.98 0.44 0.92 0.79
T8 0.93 0.4 0.97 0.41 0.92 0.46
Average 0.92 0.75 0.97 0.54 0.95 0.63

increase in relative humidity will be 2.8% in
February under the RCP8.5 scenario. This
increase will be 0.2 and 1.4% for RCP4.5
and RCP2.6 scenarios, respectively. The
highest reduction in relative humidity under
the RCP8.5 scenario would be 3.9% in May,
which would be 3.2 and 2.8% for the same
month under RCP4.5 and RCP2.6 scenarios,
respectively (Figure 2).

Precipitation is another weather parameter
that was projected under climate change
scenarios. Although the mean precipitation
decreases under climate change, in some
months (October and  November)
precipitation is predicted to increase (Figure
2). The greatest reduction of rainfall in
March for RCP8.5, RCP4.5, and RCP2.6
scenarios will be 44, 44, and 40 mm,
respectively. Solar radiation under all
emission scenarios shows an increasing
trend in the future. The highest increase will
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be under the RCP8.5 scenario, followed by
RCP4.5 and RCP2.6. The highest increase in
solar radiation under all scenarios would
occur in April. The mean increase under
RCP8.5, RCP4.5, and RCP2.6 scenarios
would be 0.9, 0.7, and 0.6 MJ m™ per day
(Figure 2).

The results also indicate an increase in
wind speed in the future. The highest wind
speed increase will occur in July under
RCP8.5 scenarios at 0.6 m s”. In the same
month, under RCP4.5 and RCP2.6 scenarios,
this increase will be 0.4 and 0.3 m s,
respectively (Figure 2).

ETo increases with increasing air
temperature, wind speed, radiation, and
decreasing relative humidity. Due to the
increase in air temperature, wind speed,
solar radiation and decrease in relative
humidity (except in winter) in the climate
change conditions, ETo will increase. The
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Table 7. Calculated ETo in the base and future periods (mm).

Month Base RCP2.6 RCP4.5 RCP8.5
Jan 39.1 422 45.6 46.8
Feb 48.2 50.7 52.9 54
Mar 87.7 88.7 89.6 91.8
Apr 119.7 125.4 128.1 129.6
May 167.1 176.1 179.2 185.7
Jun 229.5 241.2 243.6 251.4
Jul 259.8 275 279.6 290.5
Aug 249.2 261 267.2 279
Sep 192.6 201 204.3 212.7
Oct 130.5 126.8 130.8 135.2
Nov 68.4 71.4 71.7 73.8
Dec 443 46.8 47.7 49
Sum 1636.1 1706.2 1740.4 1799.4

highest increase in ETo will occur in July
under RCP8.5 scenario. The mean annual
increase in the ETo under RCP2.6, RCP4.5,
and RCP8.5 scenarios was estimated to be
70, 104, and 163 mm, respectively, which
indicates an increase of 4.3, 6.2, and 10%,
respectively, compared to the base period
(Table 7). Almost the same results (68 and
111 mm ETo increase under RCP4.5 and
RCPS8.5 scenarios) were calculated for ETo
increase in Ilam province, which is close to
the study area (Ahmadi and Azizzadeh,
2020).

The crop models were run based on the
climate files of the base and future periods.
The average monthly soybean
evapotranspiration estimated based on the
models is shown in Figure 3. The results
indicated that, under all three emission
scenarios, the ETc will increase compared to
the base period. The maximum and
minimum increase will occur in the RCP8.5
(18 and 19% for AquaCrop and DSSAT,
respectively) and RCP2.6 (6 and 10% for
AquaCrop and DSSAT, respectively)
scenarios.

Given that in these models the crop growth
period is defined in terms of degree-days/
photothermal days, the reduction of the crop
growth period due to the increase in
temperature was also considered. The results
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showed an increase in seasonal ETc and a
reduction in crop yield (biomass and grain)
in the future. The RCP8.5 scenario had the
largest increase in ETc. The results show
that, under all the three emission scenarios,
the seasonal ETc estimated by AquaCrop
and DSSAT models increases compared to
the base period (Table 8). The average
seasonal ETc increase wunder RCPS.5,
RCP4.5, and RCP2.5 scenarios was
estimated as 149, 11, and 9.4% for
AquaCrop and 12.1, 8.5, and 4.1% for
DSSAT, respectively. An increase in crop
water requirements under climate change
scenarios has been reported in several
studies (Farhadi Bansouleh er al., 2017,
Rodriguez Diaz et al., 2007; Woznicki et al.,
2015), while there are reports of a decrease
in crop water requirements due to a
shortened growing season (Karimi et al.,
2018).

According to the analysis, the grain and
biomass yield in soybean will reduce under
climate change scenarios. In the AquaCrop
model, this reduction will be 3.2-6.9% for
biomass and 2-5.3% for grain. The estimated
reduction in grain and biological yield by the
DSSAT model will be 1.6- 5.7 and 2.2-
5.2%, respectively. Crop yield under climate
change conditions is influenced by two main
parameters, i.e. the amount of CO; and the
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Figure 3. Average of monthly evapotranspiration (mm d™).

Table 8. The seasonal Evapotranspiration (ETc), biological yield, and grain yield estimated by AquaCrop

and DSSAT.
- Future period (2025-2064)
Parameter Unit Model Bla958e Spggfg
(1985-2015)  Rep26  RCPAS — RCPSS
AquaCrop 672 735 746 772
Seasonal evapotranspiration mm
DSSAT 705 734 765 790
AquaCrop 9180 8890 8750 8540
Biological yield Kgha'
DSSAT 11130 10890 10780 10560
AquaCrop 2460 2410 2370 2330
Grain yield Kgha'
DSSAT 3160 3110 3010 2980
AquaCrop 366 328 318 302
Crop water productivity gm’
DSSAT 448 424 393 377

length of the growth period, which has the
opposite effect. According to which of these
parameters has the most influence in the
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studied areas, the increase or decrease in
crop yield has been reported. Ghorbani and
Soltani (2014) concluded that the yield of
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soybean for irrigated cultivation will
decrease slightly under climate change
scenarios in Gorgan, Iran, while Rostami
Ajirloo et al. (2021) reported an increase in
the yield of this crop in the Parsabad Plain of
Moghan, Iran. As a result of increasing the
seasonal crop water requirement and
decreasing crop yield, crop water
productivity decreases (Table 8).

CONCLUSIONS

According to the results, based on
downscaling of the CanEsm2 climate change
model, the air temperature in the study area
will increase under climate change
scenarios. This increase in RCP2.6, RCP4.5,
and RCP8.5 was estimated to be 0.3, 0.6,
and 0.95°C, respectively. This increase will
reduce the crop growth period in this area.
The length of soybean growth period in the
future will decrease between 3 and 5 days in
different emission scenarios. An increase in
air temperature, wind speed, and solar
radiation and a decrease in relative humidity
in climate change conditions cause
evapotranspiration and crop yield to change
as well. RCP8.5 and RCP2.6 scenarios had
higher and lower changes in weather
parameters, ETo, seasonal crop water
requirement, and crop yield, respectively.
The RCP4.5 scenario was intermediate
between the two mentioned scenarios. ETo
will increase between 5.8 and 11.8 % under
the studied climate change scenarios.
Seasonal crop evapotranspiration increases
by 9.4-15% in the AquaCrop model and 4.1-
12% in the DSSAT model. The estimated
reduction in soybean yield based on the
AquaCrop and DSSAT models will be 2-5.3
and 1.6-5.7%, respectively. In the future, the
maximum evapotranspiration, which is the
basis of the design of irrigation systems, will
increase by an average of 11.8 and 8.2%
based on AquaCrop and DSSAT models. If
this issue is not included in the designs of
irrigation networks, in the future, we will
have to apply less irrigation or reduce the
area under cultivation. The results of this
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type of studies can be used in water resource
development programs by agricultural water
planners.
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