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ABSTRACT

The choice of an efficient breeding procedure depends to a large extent on knowledge of
the genetic system controlling the character to be selected. The objective of this study was
to determine genetic parameters for yield and other traits including some of the yield
components under three planting densities, using analysis of generation means (P4, P, F1,
F,, BC, and BC,) derived from crosses of B73 with Mo017 and K74/1 inbred lines of corn.
Analysis of variance reinforced the hypothesis that interaction of plant density on genera-
tion means depends on evaluating genotypes and the kind of trait. Generation mean
analysis suggested that both additive and dominance effects were important for most of
the traits evaluated in this study, but dominance had a more pronounced effect. Epistasis
affected the expression of nine traits in both crosses at three planting densities. Expres-
sion of epistasis and genetic parameters differed in the two crosses and were influenced by
plant density. Plant densities interacted more strongly with epistasis gene action than with
additive or dominance gene action in both crosses.
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components.

INTRODUCTION

The choice of an efficient breeding pro-
gram depends to a large extent on knowl-
edge of the type of gene action involved in
the expression of the character. Whereas
dominance gene action would favor the pro-
duction of hybrids, additive gene action in-
dicates that standard selection procedures
would be effective in bringing about advan-
tageous changes in character (Edwards et
al., 1975). Information on genetic variances,
levels of dominance, and the importance of
genetic effects have contributed to a better
understanding of the gene action involved in
the expression of heterosis (Wolf and Hal-
lauer, 1997). Maize breeders have success-
fully exploited heterosis for grain yield by
crossing inbred lines to develop desirable

hybrids. However, the nature of gene action
involved in the expression of heterosis for
the grain yield of elite maize hybrids re-
mains unresolved.

The frequent occurrence of a nonalelic in-
teraction in quantitative traits reveals their
existence in the inheritance of quantitative
characters. Much of the information on epis-
tasis stems from studies in cross-pollinated
crops probably because of the major role of
heterosis in these crops and the possible re-
lationship between hybrid vigor and epista-
sis (Ketata et al., 1976). The importance of
epistasis for gene controlling grain yield in
the breeding population of maize is not well
understood. Most statistical models for esti-
mating gene effects assume epistasis to be of
limited importance. This assumption has
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been used in the estimation of heritability
and the number of genes affecting quantita-
tive traits. Theoreticd comparisons have
shown that estimates of genetic parameters
may be biased greatly if epistasis is present,
and expectations based on such parameters
may lead to erroneous expectations of re-
sponse to selection (Eta-Ndu and Openshaw,
1999; Templeton, 2000).

The importance of nonall€elic interaction on
the expression of several agronomic traits
has been reported in a number of instances.
Wolf and Hallauer (1977) reported that an
epistatic effect could contribute to the ex-
pression of heterosis for specific hybrids.
They showed that additive by additive ef-
fects were not significant for grain yield
whereas additive by dominance and domi-
nance by dominance effects were signifi-
cant. In the study of Darrah and Hallauer
(1972), the additive by additive and domi-
nance by dominance effects for yield com-
ponents (ear length, ear diameter and num-
ber of kernel per row) were greater than
plant height and ear height. Hallauer (1990)
reported that since inbreeding is conducted
simultaneously with hybrid evaluations, fa-
vorable epistatic gene combinations can ul-
timately be fixed in the inbred lines. Also,
since maize breeders use related inbreds or
at least inbreds from the same heterotic pat-
tern as the parents of source populations,
they would tend to maintain favorable
epistatic gene combinations, especially
linked epistatic combinations. Epistasis
could also explain why it has been difficult
to develop improved recoveries from some
maize inbreds (Melchinger et al., 1988;
Lamkey et al., 1995).

A few studies have indicated that epistasis
was not a significant component of genetic
variability in the maize population (Silva
and Hallauer, 1975; Ketata et al., 1976;
Hinze and Lamkey, 2003). Other studies,
however, have shown that epistatic effects
are important for the specific combination of
inbred lines (Darrah and Hallauer, 1972
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Wolf and Hallauer, 1977; Moreno-Gonzalez
and Dudley, 1981; Lamkey et al., 1995;
Chen et al.,, 1996; Hinze and Lamkey,
2003). Hallauer and Miranda (1988) con-
cluded that epistasis variance is not an im-
portant contributor to the genetic variance
for yield in maize. It seems that epistasis for
complex traits, such as yield, must exist, but
realistic estimates of additive by additive
epistasis have not been obtainable. Hence,
either the genetic models used are inade-
quate or epistasis variance is small relative
to the total genetic variance of the maize
population (Hallauer and Miranda, 1988).
Biometric methods that use mean compari-
son rather than variance component estima-
tion (for example, generation mean analysis
and triple test cross) have regularly indicated
that epistatic effects are important for grain
yield in maize (Eta-Ndu and Openshow,
1999; Lamkey et al., 1995; Moll and Stuber,
1971; Wolf and Hallauer, 1977).

Genotype x environment interaction is a
major factor in the genetic study of quantita-
tive traits because it complicates the inter-
pretation of genetic experiments and makes
predictions difficult. The bias caused by
these interactions in the estimates of the
various genetic parameters is of unknown
magnitude and direction and may not be the
same for each parameter (Gamble, 19623, c).
Planting densities, which can be considered
as different environments, could affect inter-
relationships among agronomic traits meas-
ured on generations of the same or different
crosses, and bias the estimates of genetic
parameters (Adetimirin et al., 2001; Hal-
lauer and Miranda, 1988)

The objectives of this study were: (1) To
estimate and compare genetic parameters for
different traits using Py, P,, Fy, F;, BC; and
BC, generations of crosses between B73 and
Mol7, and between B73 and K74/1 inbred
lines, evaluated over three planting densities
(environments), and (2) to study the effect of
different environments (planting densities)
on the estimates of genetic parameters.
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MATERIALS AND METHODS

Genetic Materials and Experimental

Procedure

Generation means of two crosses, i.e
B73xMol17 and B73xK74/1 were analyzed
to estimate the genetic parameters for differ-
ent traits in three plant densities. Inbred B73
was a selection from lowa Stiff Stalk Syn-
thetic (BSSS) after five cycles of half-sib
recurrent selection for grain yield (Russel,
1972). Inbred Mol17 was derived by selec-
tion from the single cross of inbred lines
Cl187-2 and C103 (Zuber, 1973). Inbred
K74/1 is an Iranian Inbred line derived from
introduced germplasms from Yugoslavia
and is widely used as parent of single
crosses grown in Iran. The six generations
(Py, Py, F1, F», BC; and BC,) of each cross
were evauated in a separate randomized
complete block design with 3 replications at
3 plant densities (70000, 105000, 140000
plant ha') at the Experimental Field of Seed
and Plant Improvement Institute at Karg,
Iran, in 2001. The site is at 35°, 50' N lati-
tude; 50°, 58’ E longitude; and 1300 m ele-
vation, with maximum and minimum tem-
peratures of 38°C and 25°C during the
growing season. The experimental units con-
tained four rows for non-segregating genera-
tions (P, P, and F,), and six rows for F,
BC,; and BC, generations. Each row was4 m
long and 0.75 m wide. The planting date was
May, 11, 2001. Fertilizer treatments were
150 kg ha* of N applied prior to planting,
plus and additional of 100 kg ha* of N top-
dressing after ear emergence. In each repli-
cation, observations were recorded on 10
random plants of P;, P, and F; and on 50
plants of F,, BC;, and BC,. Nine traits in-
cluding anthesis (days from planting to an-
thesis), plant and ear heights (from soil sur-
face to the collar of the flag leaf and primary
ear node in cm, respectively), kernel rows,
kernel per row, kernel depth (difference be-
tween ear and cob diameters in mm), grain
yield per plant (14% moisture in g), 100-
seed weight(g), and cob dry weight(g), were
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measured.
Data Analysis

Data were subjected to combined analysis
of variance over planting densities for each
cross using a general linear model and gen-
eration and generation x plant density sum
of sguares were partitioned to different or-
thogonal contrasts (Tables 1 and 2). A quan-
titative generation mean analysis was per-
formed separately for each plant density.
The trait means for each generation, across
replication within each density, were ob-
tained and different 2, 3, 4, and 5 parameter
models were fitted by weighted least square
analysis or joint scaling test (Mather and
Jinks, 1982). Mather and Jinks (1982) model
describes the phenotype in terms of the mid-
parental values [m], additive effects [d],
dominance effects [h], and additive by addi-
tive [i], additive by dominance [j], and
dominance by dominance [I] epistatic inter-
action effects. (Mather and Jinks, 1982;
Shonnard and Gepts, 1994). The generation
means and their expectations were weighted
by using the reciprocal of the variance of
generation means (1 Vx) (Warnock et al.,
1998; Mansure et al., 1993; Mather and
Jinks, 1982; Shonnard and Gepts, 1994).
The goodness of fit was tested by a chi-
square with 4, 3, 2 and 1 degrees of free-
dom; i.e. the number of available genera-
tions minus the number of estimated pa
rameters (Cukadar-Olmedo and Miller,
1997). The significance of parameters was
tested with related standard errors at 1% and
5% probability levels.

Broad-sense (h,?) and narrow-sense (h.?)
heritabilities were estimated using the vari-
ance component method (Wright, 1968) and
variances of F, and back cross generations
(Warner, 1952), respectively, as:

hy ={Ve—[(Vr1 + Ve + 2Vr) /4]} Vi

h= [Ve2—(Vee1 + Veer) 12] I Vi

Response to selection was estimated with
5% selection intensity (i) (Selection differ-
ential, k=2.06) as:

R=i xhznx Vea
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Heterosis was calculated as F; mean devia-
tion from mid-parental performances. Vari-
ance components (additive, dominance and
environment) were estimated as described
by Mather and Jinks (1982) using the fol-
lowing equations;

D=4Vg—-2(Veci+ Vec)
H=4(Vei+ Ve2- V2~ Vi)
EW =0.25 (Vp1+ Vp2+ 2VF1)

In these formulag, V stands for variance
and the subscripts refer to generations. Ey,
D, and H are variances of environment, ad-
ditive and dominance effects, respectively.

RESULTS

The combined analysis of variance over
plant densities indicated highly significant
differences (P < 0.01) among plant densities
for anthesis, kernel per row, seed yield per
plant and cob weight in both crosses (Tables
1and 2). Also differences among plant den-
sities for plant height, kernel rows and 100-
seed weight were significant (P< 0.05) in
cross B73xMo17 but not significant in cross
B73xK74/1. Plant density differences for ear
height and kernel depth were non-significant
in both crosses. There were significant dif-
ferences among generations (P < 0.01) for
all traitsin both crosses.

Significant generation x plant density in-
teraction effects were found for anthesis,
plant height, kernel per row, seed yield per
plant, cob weight and ear height in cross
B73xMol17 (Table 1). None of the charac-
ters showed significant generation x plant
density interaction in cross B73xK74/1, ex-
cept anthesis (Table 2). Therefore, differ-
ences between parents (P; vs P,) that revea
additive effects were significant for all traits
except ear height and kernel depth in cross
B73xMol7 and anthesis and 100-seed
weight in cross B73xK74/1. The interaction
effects (P, vs P,) x plant density were non-
significant for all traits in both crosses, ex-
cept for anthesis in cross B73xK74/1 which
resulted in a non-significant P, vs P, mean
square for this trait. Heterosis was signifi-
cant for al traits in both crosses except 100-
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seed weight in cross B73xMol7 and kernel
row number in cross B73xK74/1. The inter-
action effects of heterosis x plant density
were non-significant for al traits in both
crosses, except kernel per row in cross
B73xMol7. In other words, ranking of the
estimates of heterosis was the same at dif-
ferent planting densities. Generally, most of
the interaction mean squares involving
planting density were significant. Therefore,
generation mean analysis was performed
separately for each plant density.

The generations performances for cross
B73 x Mol17 and cross B73 x K74/1 at dif-
ferent planting densities are presented in
Tables 3 and 4. Traits responded differen-
tially to planting densities. Also some of the
characteristics studied showed more varia-
tion among generations. For example, grain
yield per plant and the number of kernels per
row had relatively more variations. With a
few exceptions, the trend of decreased per-
formance with increased planting density
was consistent for all characteristics in all
generations of the two crosses. Mol7 had
more grain yield per plant, kernel per rows
and 100-seed weight, but B73 was superior
with respect to the other traits. K74/1 out-
performed B73 with respect to grain yield
per plant, kernel per row, kernel rows and
cob weight, but performed almost similar to
B73 for the other traits at all planting densi-
ties, except for plant height.

For cross B73 x M0o17 at al planting densi-
ties, F, and F, mean performances were
greater than the top parents for al traits ex-
cept kernel rows, 100-grain weight and an-
thesis. Both F; and F, means were close to
superior parents for kernel rows and to infe-
rior parents for 100-seed weight. For anthe-
sis, F; mean was lower than the earlier ma-
turing parent but F, mean was greater than
F.. All the generation means for 100-seed
weight were close to the inferior parent.
Both BC generation means were greater than
the superior parent for al the traits, except
the BC, grain yield per plant and kernel per
row means which were close to superior
parent.
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Generation Mean Analysis in Two Crosses of Corn Inbred Lines

For cross B73xK74/1, the F; means for all
the traits at al planting densities were
greater than the superior parent with the ex-
ception of kernel rows, cob weight and an-
thesis. For anthesis al the generation means
were lower than or close to the earlier ma
turing parent. For kernel rows, cob weight,
grain yield per plant, and plant height all the
generation means (except F; for two last
traits) were between parental means. For
kernel depth, all the generation means ex-
ceeded the superior parent means. For ear
height and kernel per row F,, BC; and BC,
means were close to the superior parent.

Different 3 to 6 parameter models showed
the best fits to generation means of different
traits, planting density, and cross combina-
tions (Tables 5 and 6). In cross B73xMo017,
additive effects were significant for all traits
in all plant densities, except ear height in all
plant densities, and kernel depth in low plant
density. Non-significancy in those cases
may be ascribed to large error variance (Ed-
wards et al., 1975). In cross B73xK74/1,
except for ear height in high plant density,
kernel depth in low and intermediate plant
densities, and 100-seed weight in low plant
density, the other additive effects were
significant. As is shown in Tables 3 and 4,
some of the additive effects were negative.
The negative or positive signs for additive
effects depend on which parent is chosen as
P; (Cukadar-Olmedo and Miller, 1997; Ed-
wards et al., 1975). The additive effects for
grain yield per plant were much greater in
cross B73xK74/1 than cross B73xMo017, but
for the other traits were amost of the same
magnitude.

Dominance effects were positive and sig-
nificant in cross B73xMo17 for al traits at
al planting densities, except for anthesis in
high planting density, plant height in low
and high planting densities, ear height and
100-seed weight at low planting density.
Also, in this cross, negative and significant
dominance effects were estimated for plant
height and kernel per row at an intermediate
planting density, grain yield per plant, 100-
seed weight in intermediate and high plant-
ing densities. In cross B73xK74/1, domi-
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nance effects were significant for all traits at
al planting densities, except ear height at
low and intermediate planting densities and
kernel depth at high planting density. Also
in this cross, dominance effects were signifi-
cant and negative for anthesis, plant height
and 100-seed weight at all planting densities,
grain yield per plant and cob weight at low
and high planting densities, and ear height at
high planting density.

As it is shown in Tables 5 and 6, different
types of epistasis interaction effects were
found for different trait, cross and planting
density combinations. With the exception of
anthesis for B73xMol7 at high planting
density, all the other signs of [h] and [I] type
of epistasis were opposite, indicating dupli-
cate non-allelic gene interactions. For plant
height at all planting densities of cross
B73xMo0l17 and anthesis a high planting
densities of both crosses, a six parameter
model had the best fit to the data. This find-
ing suggested that more generations are
needed for a more exact estimate of genetic
parameters for plant height.

The estimates of additive, dominance, and
environment components of variance, broad-
sense and narrow-sense heritabilities, ge-
netic gain from selection and heterosis for
different traits in different planting densities
are presented in Table 7. By increase plant-
ing density, in cross B73xMo17, for grain
yield per plant, 100-seed weight and ear
height, and in cross B73xK74/1 for 100-seed
weight, the additive variance was decreased
but the dominance variance was increased
for grain yield per plant, 100-seed weight,
and ear height, causing lower broad and nar-
row sense heritability estimates and also re-
sponse to selection. Likewise the average
degree of dominance was decreased by the
increase of plant density. In cross B73x
Mo17 the additive variances for anthesis and
kernel rows were increased in higher plant-
ing densities, but the dominance variances
were decreased. The same results were ob-
served for anthesis, ear height and kernel
depth in cross B73xK74/1. In cross B73x
K74/1 both additive and dominance
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Generation Mean Analysis in Two Crosses of Corn Inbred Lines

variances for kernel per row and cob weight
were decreased with increase of planting
densities. For the other traits very small
changes were detected in genetic variances
with an increase in planting densities.

Broad sense heritability estimates ranged
from 0.24 (100-seed weight at high planting
density) to 0.97 (anthesis at low planting
density) in cross B73xMo17, and from 0.20
(cob weight at a high planting density) to
0.97 (anthesis at all plant densities) in cross
B73xK74/1.

Narrow-sense heritabilities ranged from
0.02 (kernel per row at low planting density)
to 0.72 (ear height at low planting density)
in cross B73xMo017, and from 0.04 (100-
seed weight at high planting densities) to
0.68 (kernel depth at high planting density)
in cross B73xK74/1. For grain yield per
plant, kernel rows, and ear height, greater
estimates of narrow-sense heritability and
consequently greater gain from selection
were found in cross B73xMo17. In contrast,
these estimates were greater in cross
B73xK74/1 for anthesis and kernel per row.
Genetic advance ranged from 0.27 (anthesis
at low planting density) to 36.70 (grain yield
per plant at low planting density) in cross
B73xMol7, and from 1.41 (plant height at
high planting densities) to 36.30 (kernel
depth at high planting density) in cross
B73xK74/1.

Based on variations in additive and domi-
nance variance, broad sense heritability de-
creased at higher planting densities for both
crosses, except for kernel depth and cob
weight in cross B73xMol7 and anthesis,
kernel depth and kernel row number in cross
B73xK74/1.

Narrow sense heritability and also genetic
advance decreased at higher planting densi-
ties in cross B73xMol17 except for anthesis
and kernel per row but it increased in cross
B73xK74/1 except for plant height, 100-
seed weight and cob weight.

Absolute estimates of heterosis ranged
from 0.02 (anthesis at high planting density)
to 0.69 (grain yield per plant at low planting
density) in cross B73xMo17, and from 0.00
(kernel rows at low planting density) to 0.78
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(grain yield per plant at low planting den-
sity) in cross B73 x K74/1.

DISCUSSION

In both crosses, the dominance effects were
greater than the additive effects for all char-
acters at al planting densities, except kernel
rows at high planting density of cross
B73xMol7 and low planting density of
cross B73xK74/1. Some studies have indi-
cated the importance of the dominance ef-
fect for yield in corn (Guei and Wassom,
1992; Malvar et al., 1996). Gamble (1962a
and b) reached the same conclusion in
evaluating some ear characteristics in differ-
ent crosses. The contribution of the parents
to dominance effects varied according to
trait and planting density. The sign for domi-
nance effect is a function of the F; mean
value in relation to the mid-parental value
and indicates which parent is contributing to
the dominance effect (Cukadar-Olmedo and
Miller, 1997).

The possihility that epitasis accounts for a
significant proportion of the genetic variance
of quantitative traits has been investigated
extensively. Our results showed that, besides
the additive and dominance genetic effects,
epistatic components have also contributed
to genetic variations for most of the charac-
ters studied. However, their relative magni-
tudes vary for different traits and under dif-
ferent plant densities. In such a situation, the
appropriate breeding method is the one that
can effectively exploit the three types of
gene effects simultaneously. Lamkey et al.
(1995) found that unlinked additive by addi-
tive epistasis accounted for at least 21% of
the variation among test cross generation
means derived from elite maize inbred lines.
Under highly productive environmental
conditions, dominance effects have ac-
counted for most of the variability in yield,
with epistasis having a small and significant
influence on the final performance of differ-
ent generations.

Specific combining ability is more impor-
tant for selected lines than for unselected
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lines, indicating the importance of domi-
nance and epistatic effects in elite germ-
plasm (Hallauer and Miranda, 1988). Spe-
cific crosses with epistatic effects probably
have unique combinations of genes contrib-
uting to heterosis. These unique combina-
tions are restricted to the specific cross and
may be of small importance in any maize
population (Halauer and Miranda, 1988).
The hybrid B73xMo17 was a widely grown
hybrid in the late 1970s and early 1980s and
it is possible that favorable epistasis effects
contributed to the exceptional performance
of this hybrid (Lamkey et al., 1995). The
evidence indicates that there are net positive
epistasis effects fixed in B73. This may ex-
plain why B73 has been such a widely used
and successful inbred in maize breeding
programs (Lamkey et al., 1995; Ceballos et
al., 1998). Kearsey and Jinks (1968) sug-
gested that the two parental inbreds (B73
and Mol7) have equal opportunity to con-
tribute to the expression of additive by addi-
tive effects when averaged across all possi-
ble F, genotypes.

Confounding epistatic effects in the models
suggested that inheritance of these traits is
complex and polygenic (Warnock et al.,
1998; Upadhyaya and Nigam, 1998). Be-
cause one or more kinds of epistatic effects
were detected for all the traits, estimates of
the additive and dominance components for
these traits would have been biased because
of nonorthogonality if they had been esti-
mated using procedures that assume no epis-
tasis (Upadhyaya and Nigam, 1998). For this
reason estimates of epistasis obtained are
likely to be minimum value. The assumption
of no epistasis is one of the most common
made in quantitative genetic models (Weir
and Cockerham, 1977). The amount and
type of epistasis present in crop species can
have magjor consequences on both the reli-
ability of prediction and the design of breed-
ing programs.

The presence of epistasis has important
implications for any plant breeding program.
The [i] type interaction can be fixed in in-
bred lines. A recurrent selection scheme, in
which large populations are carried forward
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to later generations to allow favorable gene
combinations to be in a homozygous state
before practising final selection, would be
the most appropriate. The other digenic in-
teractions can be effectively exploited
through the selection of lines that exhibit
high levels of the trait in crosses with other
inbred lines.

The signs associated with estimates of [i],
[i] and [I] types of epistasis indicate the di-
rection in which the gene effect influence
the mean of the population. For [i] and [j],
the sign also provides information on the
association or dispersion of genesin the par-
ents (Mather and Jinks, 1982). With two ex-
ceptions, al the other signs of [i] and [j]
type of detected epistasis were negative.
Also, a negative sign for any of the two pa-
rameters suggests an interaction between
increasing and decreasing alleles, thus pro-
viding evidence for some level of dispersion
in the inbred parents. A negative sign for
each of these two parameters suggests that it
should be possible further to improve the
level of the corresponding traits. With one
exception (anthesis at low planting density
in cross B73xMol7) al the other signs of
the estimates of [I] were opposite to that of
[h] in both crosses, indicating duplicate epis-
tasis. Thiskind of epistasis generally hinders
the improvement through selection and,
hence, a higher magnitude of dominance and
[1] type of interaction effects would not be
expected. It also indicated that selection
should be delayed after several generations
of selection (single seed descent) until a high
level of gene fixation is attained. Subsequent
intermatings between promising lines may
be important in accumulating favorable
genes. Since none of the signs of the [h]
were similar to the [I] type of epistasis, it
was concluded that no complementary type
of interaction was present in the genetic con-
trol of the studied traits.

Similarity in estimates for three planting
densities was observed for additive effectsin
B73xK74/1 cross for most of the traits. This
was true to some extent for the B73xMol7
cross. On the other hand, the estimates of
dominance effects showed considerable
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variations in magnitude and sign depending
on cross, trait and planting density. Non-
consistency in estimates was more pro-
nounced for epistasis effects for most of the
traits at different cross-planting densities
combinations. Martine and Hallauer (1976)
reported that interaction between epistatic
effects and environment in maize is very
important. | nteractions between environment
and genetic parameters depends on the num-
ber of genes involved in the inheritance of
the trait and, as the number increases the
influence, of the environment becomes
greater (Gamble, 1969c ; Upadhyaya and
Nigam, 1998). This could be one of the pos-
sible reasons for the epistasis x planting
density interaction in this study. Therefore,
widespread and unpredictable epistasis
caused by environmenta interaction rein-
forces the need for wide and repeated testing
of maize hybrids.

By considering the three digenic epistatic
effects, it was evident that epistasis was a
major factor in generation x planting density
interactions especially for cross B73xMol7.
This interaction was more evident for [i]
type epistasis since, when generation mean
analysis was conducted across planting den-
sities, the averaging of gene effect estimates
resulted in adequacy of the models without
incorporating [i] type epistasis (data is not
shown). Similar results that epistatic effects
interact more strongly with the environment
than additive and dominance gene effects
have been reported for maize (Adetimirin et
al., 2001; Eta-Ndu and Openshaw, 1999;
Gonzalez-Moreno and Dudley, 1981).

Narrow-sense heritability estimates were
generally lower than broad-sense heritabili-
ties indicating the presence of non-additive
gene action. The departure from the addi-
tive-dominance model indicates that multi-
ple genes interact to affect most of the stud-
ied traits. The low h,’ estimates for most
traits suggested that the inheritance is com-
plex. Although the results of this experiment
may be applicable only to the germplasm
used herein, the identification of dominance
and epistatic effects suggest that additional
research is necessary.
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One advantage of generation mean analy-
sis, compared with other mating designs
such as diallel, is an increased level of sensi-
tivity through a decreased error rate (Hal-
lauer and Miranda, 1988). However, envi-
ronmental differences may cause averages to
cancel out effects for opposing directions.
This may explain why the results of our ex-
periment support the importance of nonaddi-
tive effects such as dominance.

The results of this study demonstrated that
gene effects obtained by generation mean
analysis differed with the different genetic
backgrounds of the inbred crosses, and were
aso influenced by environmental conditions
(planting densities). Also our results re-
veded the involvement of epistasis in ge-
netic control of some of the studied planting
density-traits combinations. The involve-
ment of gene interactions for quantitative
characteristics in maize has been reported
previously (Darrah and Hallauer, 1972; Eta-
ndu and Openshaw, 1999, Lamkey et. al,
1995; Morenzo-Gonzalez and Dudley, 1981;
Stuber and Moll, 1971; Wolf and Hallauer,
1997).
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