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ABSTRACT 

Over the last three decades, there has been a general tendency for changing research 

methods on soil resource management from conventional and mainly qualitative methods 

to quantitative ones based on spatial correlation models, which are called Digital Soil 

Mapping (DSM). The present study was carried out in Shabankareh Plain (15,000 ha) 

with different physiographic units, in Bushehr Province, southern Iran. The target sites 

(172 points) were selected for soil sampling at depths of 0-30 cm. Soil texture classes DSM 

was produced by two methods. The first method was Conventional DSM, in which data of 

soil particles was obtained from laboratory analysis for each sampling point along with 

their geographical location. Also, the study area boundary was added to ArcGIS software 

in UTM format and was analyzed by operating Kriging or IDW estimators. The map 

produced by this method was a low quality digital map containing extra and scattered 

texture classes with unrealistically sharp boundaries. The second method used CoKriging 

of L8 multispectral imagery data (OLI bands) and soil samples analysis was operated. 

Results showed that using B1 band (0.433-0.453 µm) of Landsat 8 satellite imageries of the 

study area in April 2020 produced high quality digital maps. In this method, soil textures 

were the same as the ones in the study area. Salt accumulation and water content of 

surface soil were possible reasons indicating why satellite imageries in the other periods of 

year were not suitable for DSM. The highest and the lowest ranges of influence among soil 

texture parameters were 684 meters and 388 meter for clay and sand particles, 

respectively.  

Keywords: CoKrigging, Geostatistical methods, Reflectance B1band, Soil particle zoning. 

INTRODUCTION 

Physical and climatic characteristics and 

unsustainable land management would result 

in land degradation, which is a significant 

global phenomenon, particularly in the arid, 

semi-arid, and semi-humid terrestrial 

ecosystem environments, and decreas es 

soil quality and functionality of soil capacity 

(Turan et al., 2019). Soil texture has a great 

impact on agricultural production and farm 

management, and is an important physical 

property that greatly affects other soil 

properties (Ahmed and Iqbal, 2014). 

Sufficient information on soil texture in 

large areas is a requirement for various 

professionals including soil science 

engineers, land use managers, cultivation 

pattern designers, land irritability assessment 

experts, watershed managers, and even 

ordinary farmers (Rossiter, 2005). The 

increasing need for soil properties 

information on small scales has made 

conventional laboratory methods seem 

inadequate. High cost of these methods have 

resulted in consideration of geostatistical 

models application, which have the ability of 

providing a large amount of information as 
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an alternative to laboratory soil analysis 

(Manchanda, 2002). Mostly, the high cost of 

soil studies would demand huge funds; thus, 

most institutions do not have enough 

funding to implement these projects. As a 

result, the tendency to prepare digital soil 

maps has increased (Robinson et al., 2019). 

In the previous decades, the world soil map 

was limited to only one map covering the 

whole world on a small scale, which was 

provided by the FAO and UNESCO from 

1960 to 1980 (Sanchez, 2009; FAO-

UNESCO, 1988). Preparation of soil digital 

maps with high accuracy does not have a 

long history. For instance, according to a 

case study in Australia, it dates back merely 

to the last two decades. For mapping the 

physical, chemical, and biological properties 

of different soils on a global scale, digital 

soil maps have been converted from a 

university-based research program to 

operational outputs (Kidd et al. 2020). In a 

study conducted in the Thatta Tehsil Region 

of Pakistan with the aim of using satellite 

imagery to calculate soil texture, 30 topsoil 

samples were collected and soil textures 

were determined by hydrometric method.  

Then, soil texture classes were categorized 

according to the USDA classification 

method. To evaluate the relationship 

between the reflectance values of Landsat8 

OLI images and soil variables, the Ordinary 

Least Squares (OLS) regression analyses 

were used. The results indicated a significant 

correlation (P< 0.01) between the amount of 

silt with B2 and B5 bands (R
2
= 0.52), and 

the amount of clay with B4 and B6 bands 

(R
2
= 0.40) (Khalil et al., 2016). In 

estimating spatial variations in soil 

properties, accuracy enhancement would be 

feasible by simultaneous use of a 

combination of fuzzy algorithms, 

geostatistical methods, and remote sensing 

systems. With the surge of agricultural 

users’ knowledge about changes in soil 

properties, especially soil texture produced 

through digital maps, we can manage the 

proper use of land according to 

Seyedmohammadi et al. (2019).  

Investigation of the relationship between 

reflective bands of satellite sensors and soil 

properties in the field has been reported by 

statistical functions (Hong et al., 2002). 

Ahmed and Iqbal (2014), using reflective 

and thermal bands, used Landsat TM sensor 

imagery and remote sensing methods to map 

surface soil texture and carbon content. They 

used multi-linear regression statistical 

method for statistical calculations. Another 

study done by Mondejar and Tongco (2019) 

provided ArcGIS and QGIS software for 

digital mapping of soil texture class. 

Extracted GeoTiffs of sand and clay from 

ArcGIS were inputs to QGIS to draw soil 

texture classes of the area under study. 

Shahriari et al. (2019) used remote sensing 

data including Landsat 8 bands and clay 

index, GSI, and Brightness Index for 

prediction of soil components in a 

floodplain. They concluded that, in 

producing soil digital maps, using Landsat 8 

data, when combined with cokriging, 

regression kriging and Random Forest 

models, could provide more accurate results. 

This study was carried out in an 

agricultural plain in southern Iran with the 

objective to prepare digital soil texture maps 

using field sampling analysis and 

geostatistical methods. In addition, we 

aimed to evaluate Landsat 8 satellite OLI 

reflective bands and remote sensing methods 

for determining the degree of improvement 

in the produced maps and investigation soil 

texture classes and spatial variations. 

MATERIALS AND METHODS 

Study Area  

This research was carried out in the 

downstream lands of Rais Ali Delvari Dam 

in Shabankareh Dashtestan Region of semi-

arid Bushehr Province, southern Iran, (50° 

04´ 18´´ to 51° 51´ 02´ E and 29° 24´ 30´´ to 

29° 29´ 18´´ N (Figure 1), with an area of 

15,000 ha, which is mainly used for 

agriculture. In order to find target points 

easier, their UTM (Universal Transverse 
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Mercator) were added to an application 

called Area Calculator program in KML 

format and then soil samples were taken 

from the study location. 

Common crops of the study area include 

wheat, barley, vegetables, sesame, and 

canola, which are cultivated in calcareous 

soil. The region, with an annual mean 

temperature and precipitation of 24.6°C and 

217 mm, respectively (Hyperthermic 

Aridic), has a hot and dry climate in summer 

(maximum 54°C) and a moderate climate in 

winter (minimum 4°C). Agricultural 

activities mostly occur during the rainy 

seasons, usually autumn and winter, with 

moderate climate. The crops, owing to off-

season production, have high economic 

value. Irrigation canals include large 

reinforced concrete canals with large 

dimensions and water regulating valves, and 

are widespread throughout the terrain. Due 

to the vastness of the study area, there are 

many types of soils with different physical 

and chemical properties. 

 In the starting point, the boundary of the 

study area was identified on Google Earth 

satellite imagery. Soil sampling was carried 

out based on a relatively regular network, 

according to which more samples were 

taken in places with a higher density of 

farms or apparent differences based on close 

observations. Totally, 172 sampling points 

were selected (Figure 2).  

Five physiographic units were identified in 

the region owing to their elevations and soil 

properties consisting of mountains, plateaus, 

alluvial plains, flood plains and lowlands. 

As shown in Figure 2, eleven soil profiles 

were dug for soil survey of the study area. 

Soil Taxonomy and Classification  

The survey of eleven soil profiles under 

the latest revision of USDA soil taxonomy 

expressed by Galbraith et al. (2018) was 

carried out according to the morphological, 

chemical and physical properties of the 

profile layers (Figure 3).  

 

Figure 1. Location of the study area; Dashtestan, Bousher Province, Southern Iran. 
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Two main classes were observed: (a) 

Entisols; soils located in plateau and higher 

elevations that were undeveloped, and (b) 

Aridisols; different families recognized in 

the study area due to altitude, depositions, 

calcareous accumulation, water logging and 

other conditions. Distinct soil classes along 

with their surface appearances are shown in 

Figure 3.  

 

Figure 2.  Sampling points and soil profiles in the selected site along with physiographic units. 

    

P3: Loamy, mixed, active, 

calcareous, hyperthermic, 

Typic Torriorthents 

P1: Loamy, mixed, 

calcareous, 

hyperthermic, Typic 

Haplocambids. 

P2: Loamy, mixed, 

active, calcareous, 

hyperthermic, Typic 

Haplocalcids. 

P4: Loamy, carbonatic, 

hyperthermic, Typic 

Aquisalids. 

    

Figure 3. Distinct soil classes observed in the study area with surface appearance. 
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Measurement of Soil Texture 

Components 

The hydrometer method was used to 

determine soil texture; a hydrometer is a 

device by which the concentration of 

particles in liquids might be determined. The 

USDA soil texture triangle was used to 

determine the texture classes of soils in the 

area under study, then, the texture classes 

were drawn by Dplot software.  

Digital Elevation Map (DEM) 

DEM is a very important map that shows 

the overall height of the area. Distinctive 

soil characteristics such as precipitation, 

types of erosion, leaching of soil particles, 

type of vegetation, the density of them and 

lithology are related to the topographic 

situation (Arabameri et al., 2020; Abdollahi 

et al., 2019). The study area was a 

toposequence from upstream mountains and 

plateaus with a height of 60 meters toward 

flood plains and lowlands at sea level. DEM 

of the study area was prepared from US 

Geological Survey (USGS Earth Explorer) 

up to the level of 10 m spatial precision. 

Then, the map of altitude or hypsometric 

classes of the study area was generated by 

Categorize command run by ArcGIS 10.5 

software Figure 4.  

Statistical Analysis and DSM Mapping 

GS
+
 software was used to summarize the 

descriptive statistics of the analyzed soil 

samples including central statistics and data 

distribution, skewness, and kurtosis of the 

data. Logarithmic functions were used to 

normalize the abnormal data (Ersahin, 

2003). This software is based on complex 

mathematical relationships already obtained 

from the fitted model over the experimental 

variogram of a specific variable data 

(Design, 2004). Data of each sampling point 

was completely entered in Excel, then, the 

study of spatial changes of soil texture 

components was processed by GS
+
. For this 

purpose, the variogram layout of each 

property was determined initially (Equation 

1), then, the anisotropy in the spatial 

coherence of the data was investigated by 

determining variogram at different 

directions. 

  ( )  
 

 ( )
∑    (  )   (    ) 

 ( )

   

2 
 (1) 

Where, 2γ(h) is variogram in distance h, 

N(h) is the Number of paired samples used 

 

Figure 4.  Bushehr Province DEM (right), Elevation classes of study area (left). 

 [
 D

O
I:

 1
0.

52
54

7/
ja

st
.2

5.
2.

48
5 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ja
st

.m
od

ar
es

.a
c.

ir
 o

n 
20

25
-0

2-
18

 ]
 

                             5 / 18

http://dx.doi.org/10.52547/jast.25.2.485
https://jast.modares.ac.ir/article-23-58557-en.html


  ________________________________________________________________ Pouzesh Shirazi et al. 

490 

to calculate γ(h) at distance h, z(xi) is 

variable value in xi sampling position, and 

z(xi + h) is variable value in the xi+h 

sampling position  

The best experimental model for each 

character would include the two following 

properties: (a) The lowest Residual Sum of 

Square (RSS), which provides a precision 

measurement of how well the model fits the 

variogram data, the lower the RSS, the better 

the model fits data, and (b) The highest R
2
, 

which is an indication of how well the 

model fits the variogram data. The results 

achieved from GS
+
 were used by ArcGIS 

10.5 software to produce DSM outputs. The 

lowest Root Means Square Error (RMSE) is 

an important factor for choosing the best 

estimating method (Kriging or IDW).  

Geographical coordinates must be clearly 

marked in the margins of digital maps, so 

that it would be possible to find the positions 

in natural environment easily (Bui, 2020). 

This capability is available in ArcGIS10.5 

software for both UTM or latitude and 

longitude.  

Landsat 8 Satellite imagery 

The Landsat 8 satellite was launched in 

February 2013. Two main sensors of L8 

contain Operational Land Imager (OLI) with 

nine shortwave multispectral bands (0.433 to 

1.360 µm) and have two thermal infra-red 

sensors (10.6 to 12.5 µm). Imagery coverage 

is 185 km swath and 30 m spatial resolution 

for all bands except for OLI (panchromatic) 

and thermal bands with 15 and 100 m 

resolution, respectively (Li and Chen 2014). 

In order to find out the best imagery 

period for improving texture DSM, L8 

imagery path 164, and row 040 were 

downloaded for all midseason (January, 

April, July and October) from 2020. In this 

case, the effects of land coverage by plants 

and soil moisture or salt accumulation could 

be eliminated. Pre-processing was applied to 

download OLI imageries by geometric, 

atmospheric and radiometric corrections 

done by ENVI software. The best 

Atmospheric Correction Method (ACM) 

was chosen by comparing the Pearson 

correlations, achieved from SPSS analysis, 

between soil particles data and two ACM 

methods. 

Conventional and Improved Methods 

for Digital Mapping of Soil Texture 

Classes 

Methodology framework of the study is 

shown in Figure 5. In conventional DSM 

method, data of soil components, obtained 

from laboratory analysis, along with their 

geographical location and study area 

boundary were added to ArcGIS software in 

UTM format (Zone; 39 R, Datum; WGS84).  

GS
+
 outputs contain summary statistics, 

determine isometry of variables, and 

calculate the range effects of each soil 

particle, which are valuable data for 

studying spatial distributions; whereas, 

produced maps by GS
+
 cannot be used as 

inputs to QGIS software for generating soil 

textural triangle.  

Therefore, ArcGIS software was used to 

export data to shapefile for operating 

geostatistical wizard and producing digital 

maps of soil particles through Kriging or 

IDW. In the last step, extracted GeoTiffs of 

soil particles were added to QGIS software 

for producing soil textural triangle.  

In the improved DSM method, soil sampling 

results were correlated to the reflectance 

values of Digital Numbers (DN) obtained 

from Landsat 8 OLI images. The summary 

of the improved method was as follows: In 

the improved DSM method, soil sampling 

results were correlated to the reflectance 

values of Digital Numbers (DN) obtained 

from Landsat 8 OLI images. The summary 

of methodology for improved method was as 

follows;  

A) Imagery treatments: Downloading 

L8 multispectral imagery data (OLI) from 

USGS, Pre-processing Dark Subtraction to 

achieve the best imagine, Resizing 7 Bands 

to make the boundary of the study area in 

the center of the image, and eliminating 
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extra areas, saving as ˷.dat outputs for 

exporting data to ArcMap environment. 

B) ArcGIS operations: Adding X, Y 

data and making shapefile of the data and 

study area boundary, ArcMap Inputs from 

extracted multi values to Excel to collect all 

the bands in a single file, attributing table 

sand, silt, clay with 7 bands DN for 

geostatistical operations. 

C) Geostatistical workouts: CoKriging 

of B1 band and soil particles to estimate 

values for places with no data of soil 

particles and decreasing estimation errors, 

extracted GeoTiffs of soil particles as inputs 

for QGIS software, producing soil textural 

triangle by QGIS software, and calculating 

the area of each soil texture in ArcGIS. 

 The overall methodology which was 

adopted in this study for operating digital 

mapping of soil particles is shown in Fig 5. 

  

RESULUTS AND DISCUSSION 

Descriptive Statistics of Data 

Soil texture classes determined by Dplot 

software are shown in Figure 6. Six textural 

classes were obtained from USDA texture 

triangle containing Sandy Loam (SL), Loam 

 
Figure 5. Methodology framework of the study. 
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(L), Clay Loam (CL), Silt Loam (SiL), Silty 

Clay Loam (SiCL), and Loamy Sand (LS) 

(Figure 6). This indicated that in most parts 

of the study area, soil texture was medium 

(loam), which is considered as a desirable 

texture in agriculture in terms of suitable 

aeration, supplying plant nutrients, and 

water holding capacity of the soil. 

Therefore, due to the existence of a reliable 

source of water upstream of Rais Ali Delvari 

Dam, the value of proper land management 

of Shabankareh Plain is comprehensible.  

The summary of descriptive statistics of 

soil particles data is presented in Table 1. 

When the textural fractions of soils 

dominated by the medium texture group 

were examined, it was revealed that the 

highest variation coefficient was for Clay 

(C). Although all soil components showed 

normal distribution, Silt (Si) and Clay (C) 

showed the lowest (0.27) and highest (0.47) 

coefficient of variation among the primary 

components of soil texture. This difference 

was in consequence of clay formation 

changes in soil evolution in the 

toposequence of the study area. Higher 

variation coefficient for Clay (C) was 

reported by Alaboz et al. (2020) in Isparta 

Atabey Plain.  

Even though CV alone is not enough to 

determine the space variability of soil 

components, compared to other parameters 

such as SD, mean, and median, it was the 

most distinctive factor in describing the 

diversity of soil properties (Xing-Yi et al. 

2007).  

However, the geostatistical analysis would 

be necessary to determine the spatial 

      

Figure 6.  Texture classes of studied soil samples based on USDA texture triangle. 

 

Table 1.  Descriptive statistics of data for soil components. 

Kol-Smi test
c
 Kurt

b
 Skew

b
 CV

a
 Std dev Mean Max Min Soil particle 

0.20 -0.13 0.33 0.35 15.11 42.21 86.74 8.51 Sand 

0.20 0.44 -0.08 0.27 10.89 40.92 72.72 8.75 Silt 

0.12 0.52 0.84 0.47 7.99 16.97 45.33 3.34 Clay 

a 
Coefficient of Variation values: < 0.1, 0.1-0.2 , 0.2-0.3, > 0.3 (Very low, low , medium  and  high 

difference, respectively) . 
b
  Skewness and Kurtosis: -2<  Normal < 2, 

c
 Kolmograph-Smirnov test: Normal,  

Sig> 0.05. 
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dependency of soil particles in addition to 

the statistical analysis (Seyedmohammadi et 

al., 2019). Thus, Kolmograph-Smirnov test 

was used to check the normal distribution of 

the studied soil attributes by SPSS, which 

proved to be normal like skewness and 

kurtosis results (Vrbik, 2020). In case of 

abnormal data, logarithmic transformation 

can be used to normalize data (Robinson and 

Metternicht, 2006).  

Spatial Variations of Soil Texture 

Components 

A summary of geostatistical analysis of the 

studied attributes and also the best theoretical 

models fitted to their experimental variograms 

are shown in Table 2. By considering the 

maximum coefficient of determination (R
2
) and 

minimum Residual Sums of Squares (RSS), the 

best experimental models were selected. A 

higher R
2
 of more than 0.5 indicates a strong 

spatial correlation. Silt had the highest R
2
 and 

lowest RSS, while clay particles had the lowest 

R
2
 and highest RSS. The strengths of the spatial 

structure of the variables are displayed with the 

spatial isotropic ratio or (C0/C0+C). When this 

ratio is less than 0.25, the spatial structure is 

strong, and in case the ratio is between 0.25-0.75 

and more than 0.75, it shows the medium to 

weak structure, respectively (Design, 2004).  

The strong and medium spatial structure is 

related to the inherent factors of the soil as to 

origin and genesis of soil influenced by parent 

material; whereas weaker spatial structure 

indicates the significant effects of external 

factors such as erosion, sedimentation, or 

plowing. The strongest spatial structure was 

related to clay (nugget to sill ratio of 0.63) 

followed by that of sand (0.68) and silt (0.73) 

(Cambardella et al., 1994). Besides, the highest 

range of influence was 684 m for clay particles. 

Maps generated by GS+ software are shown in 

Figure 7. 

GS
+ 

geostatistical results were used in ArcGIS 

software for drawing maps (Figure 8). Lower 

RMSE was the reason for choosing Kriging or 

IDW estimators in ArcGIS. RMSE values were 

7.42, 12.52, and 8.70 for clay, sand, and silt 

particles all by Kriging model, respectively.  

Digital maps drawn by ArcGIS software are 

more valuable than the maps generated by other 

software for two reasons. First, the boundary of 

the study area, as well as geographical 

coordinates, are clearly visible in the ArcGIS-

produced maps; therefore, it is possible to locate 

the study area in satellite images and field 

conditions easily, which is considered a very 

important point in terms of land management. 

Second, ArcGIS maps might provide more 

comprehensive and thorough visual information 

for the researcher and operator; thus, the 

possibility of using the produced maps by other 

remote sensing software for supplementary study 

is available. 

Spatial Variation of Soil Texture 

Classes 

According to digital maps drawn by ArcGIS 

in conventional method, the amount of clay in 

the western and middle parts of the 

Shabankareh Plain was more than that in other 

parts of the study area; whereas higher lands 

located in the north and west contained more 

sand particles (Figure 9). Lowlands, as well as 

sedimentary plains in the southern part of the 

study area, contained large amounts of silt. 

These maps can reveal important soil 

properties such as porosity degree, 

permeability rate, water holding capacity, 

fertility, and soil erosion prediction through 

modeling (Ostovari et al., 2021). 

 

Table 2.   Summary of geostatistical analysis of the studied properties and theoretical model. 

 

RSS R
2
 C0/ C0+C Range 

(m) 

Sill 

(C+C0) 

Nugget 

effect (C0) 

Model   Isotropy/ 

Anisotropy 

Soil  

particle 

2401 0.92 0.68 388 464.2 147.0 Spherical Isotropic Sand 

955 0.93 0.73 411 299.5 60.1 Spherical Isotropic Silt 

5581 0.57 0.63 684 160.1 58.6 Exponential Anisotropic Clay 
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In addition, for determining the pattern of 

plant cultivation, more detailed studies 

might be performed from DSM maps. For 

instance, plants that need better drainage 

conditions can be cultivated in lands with 

higher sand percentages specified in the 

map. Also, in areas with large amounts of 

clay particles, the possibility of floods and 

transfer of suspended solids can happen 

more than the other places. In such 

conditions, the transfer of pollutants and 

sediments to downstream water sources and 

land flooding would happen seriously as 

infiltration rate decreases (Tashayo et al. 

2020).  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Zoning maps of the Kriged soil particles percent maps using GS
+
. 
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For digital mapping of soil texture class, 

use of extracted GeoTiffs of sand and clay in 

QGIS software was reported by other 

researchers. Mondejar and Tongco (2019) 

used the same software to produce digital 

maps for the surface texture of the 

Philippines soils.  

 

 

 

 

 

 

 

 

 

Figure 8. Zoning and digital maps of soil particles produced by ArcGIS. 
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Although conventional method is very 

common, the digital maps produced by this 

simple method had a poor quality and 

resulted in the following three drawbacks:  

1). There were six textural classes 

according to USDA soil texture triangle as 

shown in Figure 6, while there were seven 

classes in the map produced by this method. 

The new extra class was Sandy Clay Loam, 

which did not exist in the study area.  

2). Margin of soil texture classes indicate 

boundaries with unrealistically sharp edges, 

a phenomenon that does not normally 

happen in nature.  

 3). Soil classes with small areas were 

scattered throughout the study area, which 

did not seem logical according to the 

homogeneity of these soils. 

 All of the three above drawbacks were 

due to the inaccuracy of the estimation by 

the modeling estimators (Kriging and IDW). 

If the number of soil samples were not 

adequate, the unwanted drawbacks would 

occur more often.  

To solve the abovementioned problems 

and improve the quality of digital maps for 

soil texture class, the use of Landsat 8 (L8) 

satellite imageries was recommend.  

Due to the vastness of the study area, soil 

survey and sampling lasted for about two 

months from January to February 2020. 

Owing to the fact that soil texture was a 

constant parameter in soil properties, to find 

out the best time of satellite images for soil 

particles measurement, L8 imageries were 

uploaded from USGS Earth Explorer for all 

2020 midseasons.  

A large amount of data was downloaded. 

Atmospheric correction was done by Dark 

subtraction method, DNs of Pre-processing 

OLI imageries were extracted to the attribute 

table in ArcGIS. In the next step, Pearson 

coefficients between satellite bands (B1 to 

B7) and soil particles were calculated by 

SPSS for all midseasons as shown in Table 

3. The highest correlations between clay and 

sand (as QGIS inputs for DSM texture 

classes) and OLI bands were -0.234 and 

0.323 with B6 and B7 in January, and -0.305 

and 0.211 with just B1 in April, 

respectively. 

The following two methods have been 

recommended for improving DSM by 

satellite imageries in different studies: 

 1) The first and common method is 

calculating Ordinary Least Squares (OLS)  

 
Figure 9. Digital soil texture class map produced by conventional method. 
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regression between the selected bands and 

particles. The regression relationships 

obtained are shown in Table 4.  

R
2 

values obtained by (OLS) regression 

were too small (Table 4). Therefore, 

practically it was impossible to use these 

relationships, so, the first method was 

eliminated. 

2) In the second recommended method, 

Co-Kriging was used between the 

atmospherically corrected reflectance bands 

of L8 and soil particles by ArcGIS 

geostatistical wizard. The results proved that 

map of soil texture classes produced by B1 

band of April 2020, in comparison to maps 

of B6 and B7 bands, had a higher quality 

through January 2020. This was mainly due 

to the less scattered classes, smoother 

margin boundaries, and no unreal (extra) 

classes (Figure 10).  

The texture classes areas in hectares are 

shown in Figure 11. No extra texture class 

was produced in DSM by this method. 

In OLI reflectance sensors, B1 band was 

considered as a coastal aerosol band (0.43-

.45 µm) and the soil texture map produced 

by this band was very similar to the nature 

of the study area. As a result, it seems that in 

the regions that are near the sea, as the study 

area, B1 band of Landsat 8 being extracted 

in April might be used for producing high 

quality digital maps of soil particles with no 

attention to the time of soil sampling (soil 

sampling was done 3 months before). This 

shows that using suitable satellite imageries 

band can help eliminate the estimation errors 

of geostatistical estimators and produces 

high quality DSMs.  

In the study area, the growth stages started 

in October and finished in March, i.e. the 

cultivation season. In April, the topsoil is 

almost bare, with low moisture and less  

Table 3. Pearson correlation coefficient matrix for soil properties and L8 OLI bands. 

(W
in

te
r)

 J
an

 2
0
2

0
 

Particle Clay Silt Sand B1 B2 B3 B4 B5 B6 B7 

(S
p

ri
n
g

) 
A

p
ri

l 
2

0
2

0
 

Clay 1.000 0.271 -0.717 -0.305** -0.242 -0.213 -0.181 -0.024 -0.161 -0.150 

Silt 0.271 1.000 -0.863 -0.094 -0.089 -0.060 -0.015 -0.105 -0.147 -0.162** 

Sand -0.717 -0.863 1.000 0.211** 0.191 0.154 0.103 0.095 0.188 0.192 

B1 -0.133 -0.102 0.150 1.000 0.987 0.971 0.901 0.403 0.861 0.764 

B2 -0.145 -0.127 0.175 0.994 1.000 0.980 0.945 0.332 0.912 0.832 

B3 -0.202 -0.151 0.222 0.952 0.972 1.000 0.948 0.417 0.918 0.811 

B4 -0.193 -0.122 0.197 0.944 0.967 0.986 1.000 0.136 0.949 0.903 

B5 0.083 -0.029 -0.024 -0.478 -0.487 -0.453 -0.544 1.000 0.217 -0.018 

B6 -0.234** -0.262 0.318 0.730 0.786 0.876 0.873 -0.319 1.000 0.958 

B7 -0.215 -0.282** 0.323** 0.775 0.826 0.890 0.898 -0.414 0.979 1.000  
(S

u
m

m
er

) 
Ju

ly
 2

0
2

0
 

Clay 1.000 0.271 -0.717 -0.138 -0.117 -0.119 -0.084 -0.066 -0.096 -0.121 

(A
u

tu
m

n
) 

O
ct

 2
0
2

0
 Silt 0.271 1.000 -0.863 0.215** 0.191 0.146 0.106 -0.061 -0.015 0.120 

Sand -0.717 -0.863 1.000 -0.082 -0.076 -0.044 -0.034 0.074 0.057 -0.024 

B1 -0.167** 0.334** -0.154 1.000 0.975 0.904 0.765 0.355 0.593 0.845 

B2 -0.138 0.327 -0.164 0.971 1.000 0.961 0.870 0.520 0.726 0.884 

B3 -0.111 0.294 -0.155 0.908 0.973 1.000 0.957 0.672 0.837 0.907 

B4 -0.084 0.266 -0.150 0.818 0.918 0.979 1.000 0.803 0.929 0.857 

B5 -0.080 0.128 -0.055 0.536 0.690 0.792 0.853 1.000 0.870 0.516 

B6 -0.091 0.129 -0.049 0.644 0.780 0.866 0.925 0.888 1.000 0.809 

B7 -0.114 0.237 -0.112 0.863 0.879 0.879 0.844 0.564 0.785 1.000 

* Correlation is significant at the 0.05 probability level, ** Correlation is significant at the 0.01 probability 

level. 
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Table 4.  Regression between soil particles and OLI bands. 

January (2021)   R
2
 April (2021)    R

2
 

Clay= 34.334 – 0.001 × B6 0.055 Clay= 80.327 – 0.005 × B1 0.073 

Sand= 7.98 + 0.003 × B7 0.104 Sand=-51.173 + 0.008 × B1 0.044 

 

 

Figure 10. Improved digital map of soil texture classes using B1 band of Landsat 8. 

 

 

Figure 11. The area of texture classes in the study plain (ha). 
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plant coverage. In this condition, the best 

reflectance would be obtained; whereas, 

high surface soil moisture through winter 

and also salt accumulation under capillary 

action during summer are the possible 

reasons for satellite imageries being 

unsuitable for DSM of soil texture.  

CONCLUSIONS 

Application of digital soil maps based on 

remote sensing is rapidly expanding in in the 

whole world including Iran. These maps are 

not only used in precision targeted cultivation 

but also are useful in extensive global and 

transnational studies such as world 

environmental protection and challenging 

pollutants such as extra-regional dust 

pollution. The results showed that the 

strongest spatial textural class was related to 

soil clay particles (nugget to sill ratio of 

0.63) and the weakest one was observed in 

silt (0.73). Furthermore, among soil texture 

components, the highest and lowest ranges 

of influence were 684 m and 388 m for clay 

and sand, respectively.  

Although conventional method is very 

common in DSM, the soil texture digital 

maps produced via this simple method were 

poor in terms of quality, and thus resulted in 

many scattered areas with both real and 

unreal (extra) soil classes throughout the 

study area. Therefore, in areas with specific 

soil characteristics such as the study area, 

which is adjacent to the sea, the use of B1 

band of L8 satellite imageries is suggested, 

since it can produce high quality digital 

maps for primary soil particles. For proper 

land management, using quality digital maps 

produced in this research is suggested. For 

instance, sandy soils with better aeration are 

located in the north and east parts of the 

area, and they can be better used for 

cultivating plants that need proper drainage; 

while more tolerant plants can be planted in 

the west and south having heavier soils with 

more clay. In areas with different land 

managements, digital maps are useful on 

both national and global scale. 
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های رقومی بافت خاک با استفاده از تصاویر ماهواره لندست  افسایش کیفیت نقشه
 آهکی جنوب ایرانهای  در خاک 8

 نویدی .ن. مو  موسوی، .ا. ع .ش باقر نژاد، .م ابطحی، .ع .ش پوزش شیرازی، .م

 چکیده

خاک و يقؾه  دس طی عه دهه اخیش، تمایل ػمىهی به تغییش سوػ دس تحقیقات پیشاهىو هذیشیت هًابغ
يی های همبغتگی هکا های کمّی بش اعاط هذل یفی به سوػهای هشعىم و ػمذتاً ک بشداسی اساضی اص سوػ

ؽىد. پژوهؼ حاضش دس  يقؾه بشداسی سقىهی خاک گفته هی ها اصطلاحاً  بىجىد آهذه اعت که به ایى سوػ
هکتاس با واحذهای فیضیىگشافی هختلف که داسای کاسبشی  04111دؽت ؽبايکاسه اعتاو بىؽهش به هغاحت 
 1-21-¬بشداسی خاک دس ػمق هحل هذف بشای يمىيه  061ػمذتاً صساػی بىديذ ايجام ؽذ. تؼذاد 

های ظاهشی هؾاهذه ؽذه دس هًطقه هطالؼاتی دس ¬ای و همچًیى تفاوت يتیمتشی بش اعاط تصاویش هاهىاسهعا
سوػ هشعىم و هتذاول دس تهیه  (a :يظش گشفته ؽذ. يقؾه سقىهی بافت خاک به دو سوػ صیش تىلیذ گشدیذ

های خاک دس آصهایؾگاه سا ¬يمىيه¬ ص تجضیهدعت آهذه ا سقىهی خاک. دس ایى سوػ، يتایج بهيقؾه 
واسد  ArcGIS ای¬همشاه هختصات جغشافیایی هش يقطه و هشص هًطقه هىسد هطالؼه به هحیط بشياهه سایايه¬به

، يقؾه (IDW) و یا ػکظ هجزوس فاصله (Kriging) گشهای کشیجیًگ¬يمىده و با اعتفاده اص تخمیى
ها  ای که دس آو گىيه اییًی هغتًذ بهه به ایى سوػ داسای کیفیت پهای تىلیذ ؽذ¬ؽىد. يقؾه هشبىطه تهیه هی
های اضافی و پشاکًذه با هشصهای تیض ¬های هىجىد دس خاک عطحی هًطقه هطالؼاتی، بافت¬ػلاوه بش بافت

بايذهای  (CoKriging) سوػ پیؾشفته که اص کىکشیجیًگ (b .گشديذ¬و غیش واقؼی يیض هؾاهذه هی
های خاک بشای تشعین يقؾه بافت  با يتایج آصهایؾگاهی يمىيه 7ذعت هىاسه لًها OLI ايؼکاعی عًجذه

هیکشوهتش( تصاویش  342/1تا  433/0) B1 کاسگیشی بايذ گشدد. يتایج يؾاو داد که به ه هیخاک اعتفاد
تىايغت بالاتشیى کیفیت دس تشعین يقؾه سقىهی بافت خاک هًطقه  1111هشبىط به آوسیل  7هاهىاسه لًذعت 

د هطالؼه سا بىجىد آوسد. يقؾه بافت خاک تىلیذ ؽذه دس ایى سوػ با بافت خاک عطحی دس طبیؼت هىس 
 هاهىاسهکاهلًا هطابقت داؽت. تجمغ يمک و هیضاو سطىبت خاک اص ػىاهل ههمی بىديذ که بش تاسیخ تصىیش 
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رسات بافت خاک ای داؽتًذ. همچًیى، بیؾتشیى و کمتشیى ؽؼاع تأثیش دس بیى  ای ايتخاب ؽذه، يقؼ ػمذه
 .هتش بىد 277و  573به تشتیب هشبىط به رسات سط و ؽى به هیضاو 
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