First Nearly Complete Genome Sequence of Onion Yellow Dwarf Virus Infecting Garlic in Iran

A. Entezari¹, M. Mehrvar^{1*}, and M. Zakiaghl¹

ABSTRACT

For the first time, the nearly complete genome sequence of onion yellow dwarf virus (OYDV) was found in Iran from garlic (*Allium sativum* L.) by deep RNA sequencing. Complete coding sequence of the Iranian isolate of OYDV (MN528769) consists of 10,212 nucleotides (nt), encodes a polyprotein with 3,403 amino acids (aa). Pairwise sequence comparisons showed that IR-Kh2 shares 74.84-97.39% identity at the nt level and 75.67-98% identity at the amino acids level, respectively with other OYDV isolates deposited in the GenBank previously. According to the phylogenetic analysis, the OYDV isolates were divided into two main groups based on the coding sequence of genome and the Iranian OYDV isolate cluster together with the Australian (MS/SW1), Spanish (SG1), Chinese (G78 and G37-2), and Indian (RR1) isolates. Furthermore, a genetic recombination analysis was also performed, in which a putative recombination event was detected in the nuclear inclusion body b (NIb) gene.

Keywords: Allium sativum L., OYDV, Phylogenetic analysis, Recombination

INTRODUCTION

Garlic (Allium sativum L.) is one of the medicinal and economically important crop plants belonging to the Amaryllidacea family and well known for its worldwide applications. It is widely used as a spicy vegetable (Sevik et al., 2018). In Iran, despite agricultural potential, we are still facing of garlic shortage in the market (Baghalian et al., 2010), mainly due to the high prevalence of plant diseases. particularly viral infections (Shahraeen et al., 2008; Baghalian et al., 2010). Most garlic plants are infected by several viruses often in complex mixtures and belonging to different taxonomic groups known as "garlic viral complex", which includes mainly viruses from the genera Potyvirus, Carlavirus, and Allexivirus and have significantly reduced bulb weight and yield all around the world (Gawande et al., 2013; Da Silva et al., 2019). Common among these are members of the genus Potyvirus, namely, onion yellow dwarf virus (OYDV), leek yellow stripe virus (LYSV), and shallot vellow stripe virus (SYSV) (Abraham et al., 2019). Nonetheless, the most prevalent garlic viruses are OYDV and LYSV, which cause a noticeable foliar damage and reduce bulb quality and yield (Katis et al., 2012). It should be noted that OYDV acts as a major element of the garlic virus complex (Arya et al., 2006; Gawande et al., 2013; Manglli et al., 2014). This virus has a narrow host range [Onion (Allium cepa), garlic (A. sativum), shallot (A. ascalonicum) and a few ornamental Allium] and survives in bulbs and sets, so, can be transmitted during vegetative reproduction (Takaki et al., 2006; Mahmoud et al., 2008). The green peach aphid, Myzus persicae, as well as other aphids, spreads the virus from plant to plant in a non-persistent manner (Melhus et al.,

Downloaded from jast.modares.ac.ir on 2025-08-04

¹ Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.

^{*} Corresponding author: e-mail: mehrvar@um.ac.ir

1929; Bos, 1976; Manglli *et al.*, 2014; Verma *et al.*, 2015). For the first time in Iran, OYDV was reported via serological and molecular methods from garlic (Shahraeen *et al.*, 2008; Baghalian *et al.*, 2010).

However, due to the shortage of research on garlic pathogenic viruses, we conducted a study on OYDV, which is one of the most widely distributed and important viruses in garlic. In this study, we aimed to determine the first nearly complete genome sequence of Iranian OYDV isolate with *de novo* assembly and annotation of contigs to better understand the diversity, biology, and evolutionary history of the virus, which is vital for its management.

MATERIALS AND METHODS

This work was performed on a pooled sample of the garlic leaves (ten fresh leaf samples were combined) showing yellow striping, dwarfing, and mosaic symptoms on young leaves. Samples were collected from one of the major areas under the cultivation of garlic in Khorasan Razavi Province, Iran (Figure 1). Leaves were held together in a cluster and sliced with a scalpel blade so that 100 mg of leaf tissue, representing nearly equal amounts of tissue from each leaf, was removed. Total RNA was extracted using SV Total RNA Isolation Kit (Promega Madison, WI, USA). Quality, concentration and integrity of RNA were confirmed by using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Also, RNA quality was checked using agarose gel electrophoresis. Samples that had the entire 18S and 28S subunits on agarose gel, without genomic DNA contamination, were selected for library preparation and sequencing. Ribosomal RNA was depleted from the purified total RNA with the Plant Ribo-Zero rRNA depletion Kit (Epicentre, Madison, WI, USA). For cDNA library construction, Illumina TruSeq Stranded Total RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) was used. Sequencing was performed with the Illumina NovaSeq 6000 technology with paired-end read length at 151 bp provided by Macrogen Inc (Seoul, Republic of Korea). Low quality reads and adaptor sequences were removed from the raw reads. Then clean reads were mapped to reads from healthy-looking plants. Further unmapped reads were de novo assembled using CLC Genomics Workbench (version 12, QIAGEN, Venlo,

Figure 1. Most common virus-induced symptoms (see arrows and circle) found in garlic plants grown in Kadcan region of Razavi Khorasan Province, Iran: (A) mosaic, (B) stunting.

Downloaded from jast.modares.ac.ir on 2025-08-04

The Netherlands) and Geneious Prime 2019 (Biomatters, Auckland, New Preliminary viral sequences Zealand). were identified using BLASTn and BLASTx (https://blast.ncbi.nlm.nih.gov) against non-redundant nucleotide database of the GenBank to identify sequences which shared identity to known garlic viruses available in the NCBI database. Moreover, putative open reading frames (ORFs) of OYDV was identified by ORF finder

(https://www.ncbi.nlm.nih.gov/orffinder). Finally, Consensus sequence for IR-Kh2 isolate was deposited in the GenBank. In order to confirm integrity of the consensus genome sequence of the virus, RT-PCR using specific primers of conserved region of RNA-dependent RNA polymerase gene and 3'- UTR regions (Arya et al., 2006) and potyvirus-degenerate primer pairs targeting the CI and NIb coding region (Ha et al., 2008; Zheng et al., 2010) was done followed by Sanger sequencing of amplicons (Table S1). The consensus obtained sequence of OYDV from previous step was subjected to sequence analyses. Multiple sequence alignments were conducted using Clustal Omega 2011). (Sievers et al., Evolutionary analysis of putative virus-derived sequence was inferred using the Neighborjoining method with 1000 replicate in bootstrap test as implemented within Mega software (Kumar *et al.*, 2018). X identify the possible Moreover, to recombination event, the IR-Kh2 genome and 55 other OYDV isolates retrieved from the GenBank (Table S2) were subjected to recombination analysis using RDP4 (Recombination detection the program) (Martin et al. 2015), with various recombination detection methods including RDP, GENECONV, Chimaera, MaxChi, BOOTSCAN, and SISCAN. settings and a Bonferroni-Default corrected P-value cut off of 0.05 were used throughout the analysis.

RESULTS

OYDV Genome Analysis

In the current study, consensus sequence of Iranian OYDV isolate has been deposited in the GenBank under accession number MN528769 and designated as OYDV isolate IR-Kh2. The complete coding sequence of IR-Kh2 contained 10,212 nts in length, encoding 3,403 amino acids, with an estimated molecular mass of 385.1 kDa. It has typical genomic organization and structural characteristic of potyviruses. The first initiator for translation of single large ORF is AUG codon at nucleotides 94-96 and the UAA termination codon located at nt position of 10303 - 10305. The genome flanked to an untranslated region (UTR) with 214 nt length at 3'end. In the partial sequence of 5' UTR, there are a large number of CAA recurring sequences which involved in enhancing genomic are translation as described by previous studies (Gallie and Walbot, 1992). Moreover, the putative P3N-PIPO ORF (3864-4088 nt) which encodes a protein of 74 AA residues, starting within the highly conserved G1A6 motif (Adams et al., 2005; Chung et al., 2008; Yaghmaiean, 2015), was found embedded within the P3 cistron of IR-Kh2. Comparison of the polyprotein of Iranian isolate with other OYDV isolates showed that nine putative protease cleavage sites were exist based on diagnosis motifs for the viral proteases (Chen et al., 2003; Adams et al., 2005; Celli et al., 2013; Manglli et al., 2014) (Table 1), so, the polyprotein was also cleaved into ten functional proteins (P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP) (Figure S1) with the assistance of P1, HC-Pro, and NIa-Pro which are three viral-encoded proteases (Chen et al., 2003; Adams et al., 2005; Celli et al., 2013; Manglli et al., 2014). Several potyvirusconserved motifs were identified in the polyprotein sequence of IR-Kh2 isolate. For example: the serine-type protease domain at the 3'-end of P1 is H₃₆₆ (X)₃₉ G₄₀₆XSG₄₀₉

Untranslated regions functional regions polyprotein	and of Start- position (nt)	End Size in nt/aa	Predicted cleavage sites (C-terminus)
Partial 5'UTR	1-93	93	
P1	94-1467	1374-458	IEHY/S
HC-Pro	1468-2847	1380-460	YNVG/G
P3	2848-4437	1590-530	VIYQ/A
6kl	4438-4593	156-52	VHYQ/A
PIPO	3864-4088	225-74	PIPO
CI	4594-6504	1911-637	VNYQ/S
6K2	6505-6663	159-53	VKYQ/A
NIa-VPg	6664-7251	588-196	VSFE/A
NIa-Pro	7252-7977	726-242	VTFQ/S
NIb	7978-9531	1554-518	VRYQ/A
CP	9532-10302	771-257	
3´UTR	10306-10519	214	

 Table 1. Genomic structure of IR-Kh2 isolate and putative cleavage sites.

 $(X)_{22}$ V₄₃₂RG $(X)_5$ I₄₄₀ $(X)_{17}$ Y₄₅₈, while $G_{406}XSG_{409}$ motif is seems to be the active site of a serine protease which cleaves the protein downstream of the final Y (or F) residue (Chen et al., 2003; Valli et al., 2007, 2015). Besides the proteolytic motif, M₄₃₀VVRGR₄₃₅ was found in P1 (Valli *et al.*, 2007, 2015). In the N-terminal region of HC-Pro, the highly conserved motif $K_{512}ITC_{515}$ which is located in cysteine (Cys)-rich region, and associated with binding of virions to aphid stylet was found (Llave et al., 2002; Takaki et al., 2006). Two conserved motifs associated with aphid transmission, C752CCVT and P770TK was located near the C-terminal region of HC-Pro (Takaki et al., 2006). A cysteine proteinase motif, GYCY, was located at position 802-805 in the polyprotein of IR-Kh2 isolate. In the central region of HC-Pro, there was another conserved motif, F₆₄₁RNK₆₄₄, which is associated with aphid transmission, symptom expression and suppression of RNA silencing (Shiboleth et al., 2007). Furthermore, near the PTK motif there is another conserved motif, I₇₇₇GN₇₇₉, which is thought to be essential in genome amplification (Urcuqui-Inchima et al., 2001; Plisson et al., 2003). CI is an RNA helicase protein with various motifs (Urcuqui-Inchima et al., 2001). In OYDV CI protein, the characteristic RNA helicase L₁₇₅₄VYV₁₇₅₇, domains, $D_{1495}ECH_{1498}$, V₁₈₀₅ATNIIENGVTL₁₈₁₆, and

G₁₈₄₉ERIQRLGRVGR₁₈₆₀ were found (Riechmann et al., 1992; Kadare and Haenni, 1997). The NIb gene sequences of OYDV isolates included all the conserved motifs C₂₈₃₁VDDFN₂₈₃₆, G2935NNSGQ2940, G₂₉₃₉QPSTVVD₂₉₄₆, F₂₈₁₇TAAPIE₂₈₂₃ and D₂₈₇₆GSRFDS₂₈₈₂ (Manglli et al., 2014). In addition, in NIb protein the putative active site of **RNA-dependent** RNA polymerase, $SG(X)_{3}T(X)_{3}NT(X)_{30}GDD$ (Urcuqui-Inchima et al. 2001; Manglli et al., 2014), was conserved at the amino acid position 2938-2981. Previous studies showed that NIb-CP interaction is sensitive to changes of the highly conserved motif GDD in NIb (Urcuqui-Inchima et al., 2001). N-terminal region of OYDV CP gene which is exposed on the virion surface contains a highly conserved DAG motif (López-Moya et al., 1999; Arya et al., 2006). Previous studies showed that the DAG motif is essential for aphid transmission, and a particular communication between CP and HC-Pro with the involvement of the DAG and KITC motifs in each component, respectively, was important in the virus transmission by aphids (López-Moya et al., 1999; Llave et al., 2002). Conversely the DAG motif was replaced by D3172TG motif in IR-Kh2 Another conserved isolate. motif. M₃₂₅₃VWCIENGTSP₃₂₆₃, A₃₃₃₆FDF₃₃₃₉, and Q₃₃₅₆MKAAA₃₃₆₁, which identified in the CP of most potyviruses (Dujovny et al., 2000), were found in IR-Kh2 as well.

[Downloaded from jast.modares.ac.ir on 2025-08-04]

Figure 2. Neighbor-joining phylogenetic tree based on the nucleotide sequence of polyprotein of OYDV isolates was generated with a 1000 replicate of bootstrap test. Nodes with bootstrap values below 50% were collapsed. *Leek yellow stripe virus* (NC-004011) selected as an outgroup.

Sequence Comparisons of Iranian OYDV

Pairwise polyprotein comparison between IR-Kh2 and 55 other isolates of OYDV from different geographical locations of the world retrieved from the GenBank, revealed that it shared 74.84-97.39% and 75.67-98% similarities at the nt and aa sequence level, respectively. Iranian isolate of OYDV shared the highest similarity with Australian isolate, MS/SW1 at the nt (97.39%) and aa (98%)sequence level, respectively. Moreover, amino acids sequence comparison of each mature protein between IR-Kh2 and 55 other OYDV isolates was performed. The result showed that P1 and P3 protein sequences were pointedly more variable than other mature protein which maybe somehow due to mutation in these regions. The similarities of P1 and P3 are as low as 45.56-93.01% and 61.69-98.68%, respectively.

Phylogenetic Analysis

The coding sequence of IR-Kh2 and other OYDV 55 isolates from different geographical areas were used for phylogenetic analysis. The neighbor-joining phylogenetic tree divided the OYDV isolates into two main groups: A and B (Figure 2). The first group included 47 isolates from China, Japan, Iran, Australia, Spain, India, and Argentina. These isolates were further divided into five subgroups (I, II, III, IV and V); subgroup I was composed of 16 isolates from China, 2 from Japan, and 1 from India, while subgroup II comprised 7 isolates from China and 1 from Argentina. Subgroup III was created by an OYDV isolate from Iran along with the isolates from China (G78 and G32-7), Australia (MS/SW1), Spain (SG1), and India (RR1). Subgroup IV consisted of 11 isolates from China and 1 isolate from India whereas subgroup V was composed of only two isolates from China. However, group B was further divided into two subgroups (I and II) comprising 7 garlic infecting isolates from China (G122, G121-1, G110, G34, G15-2 and G64) and India (2/R1/863/India), followed by 2 onion infecting isolates from Germany (OYDV-AT) and Argentina (OYDV-Se). It should be noted that all the isolates in the first group were isolated from garlic, except for RR1 from India, which was isolated from onion (Figure 2).

Recombination Analysis

To estimate the number and location of recombination breakpoints in IR-Kh2 isolate, the recombination detection analysis with seven algorithms in RDP4.0 was done for the 56 aligned sequences. Only a strong recombination signal detected by six method (RDP: 7.01E-32, GENECONV: 4.14E-28, Bootscan: 4.67E-35, Maxchi: 2.83E-4, Chimaera: 3.75E-14, SiSscan: 2.98E-33, Se: 4.58E-6) in IR-Kh2 isolate, was localized from 8994 to 9204 in NIb gene (Table 2). The recognized major and minor parents of the recombination were the Australian isolate, MS/SW1 (HQ258894) and Chinese isolate, G44 (MN059581), respectively. In addition to IR-Kh2 isolate, recombination signals were detected in 11 other isolates of OYDV in NIb gene or flanking genes (Table 2).

DISCUSSION

Nearly complete genome sequence of Iranian isolate of OYDV (MN528769) consists of 10,519 nt length. It consists of 10212 nt of coding region which flanked to partial sequences of 5' (93 nt) and 3' (214 nt) of untranslated regions (UTRs). Other viral species belonging to the potyviruses, carlaviruses, and allexiviruses identified from the sample were also (unpublished data), in addition to OYDV. Hence, the observed disease symptoms could not be completely associated with a single virus in a mixed nature of the infection. Phylogenetic tree constructed based on the entire genomic nucleotide sequences demonstrated that Iranian isolate was located in group A, subgroup III,

alongside isolates from Australia, Spain, China, and India. According to the pairwise sequence comparisons based on the nucleotides and amino acid sequence, IR-Kh2 shared the highest similarity with Australian MS/SW1 isolate. IRpolyprotein includes the previously Kh2 identified and extremely conserved motifs described in potyviruses (Chen et al., 2003; Valli et al., 2007, 2015; Takaki et al., 2006). However, some of these motifs were not conserved in IR-Kh2. The CP of potyviruses is the most extensively characterized gene product playing important roles in virus life cycle and virusvector interaction (Urcuqui-Inchima et al., 2001). DAG, a critical motif near the N terminus of the CP gene, is found in some OYDV isolates as well as numerous other potyviruses (López-Moya et al., 1999; Dombrovsky et al., 2005; Manglli et al., 2014). Though, it is not completely conserved in all potyviruses and it can occasionally be substituted. Analysis of OYDV isolates retrieved from the GenBank along with IR-Kh2, revealed that the aphid transmissibility aspartic acid alanine-glycine (DAG) motif found in the putative CP protein of all OYDV isolates from onion in Argentina (JX433019), Germany (JX433020) or India (KJ451436) or from garlic in Argentina (KF632714), India (MT731495, MT731494) and China (MN059559, MN059581, MN059566, MN059568. MN059575. MN059563. MN059562. MN059599. MN059596. MN059594. MN059590. MN059602, MN059622, MN059634, MN059623, MN059613, MN059609, MN059608, MN059606, MN059561). Interestingly, alanine (Hydrophobic and nonpolar) in second position of the DAG motif was replaced by threonine (Hydrophilic and polar) in OYDV isolates from Australia (HQ258894), Spain (JX429964), Japan (AB219834, AB219833), Iran (MN528769), India (MT731493) and some Chinese isolates from garlic. Reports of naturally occurring DTG motifs were also found in some other potyviruses such as the Wild potato mosaic virus (WPMV) (Hasan, 2004). However, several previous indicate reports the lower aphidtransmissibility of potyviruses holding motifs other than DAG (DAS, DAA, or DAL). This may be the case for DTG holding OYDV isolates with potential low aphid transmissibility power (López-Moya et al.,

Downloaded from jast.modares.ac.ir on 2025-08-04

_
-+
, ∖
-
Ċ,
m.
Sí.
_
\sim
Ö
$\overline{\mathbf{O}}$
1.1
\mathfrak{m}
<u> </u>
\circ
$^{\circ}$
∞
9
-
•
_
\simeq
\leq
17
0
0
~
5
\circ
Ô

Event	Recombinant isolate	recombination site	Recombinant length	Parental sublineage ^a	Recombination	P -value c
			o	¢	detected by ²	
1	MN528769/IR-Kh2	8994-9204	210	HQ258894*MN059581	R.G.B.M.C.S.Se	4.67E-35
2	MN059609/G84	5931-9045	3114	MN059602*KJ451436	R.G.B.M.C.S.Se	2.025E-32
3	MN059617/G92-3	8167-10211	2044	AB219833*NC-005029	R.G.B.M.C.S.Se	4.677E-35
4	MN059581/G44	7058-9958	2900	MN059596*NC_005029	R.G.B.M.C.S.Se	1.649E-24
5	MN059559/G3	7097-9955	2858	MN059596*NC_005029	R.G.B.M.C.S.Se	1.649E-24
9	MN059602/G77	7097-9955	2858	MN059596*NC_005029	R.G.B.M.C.S.Se	1.649E-24
7	MN059590/G56	7097-9598	2501	MN059596*NC_005029	R.G.B.M.C.S.Se	1.649E-24
8	MN059581/G44	8630-9789	1159	AB219834* MN059594	R.G.B.M.C.S.Se	1.140E-10
6	MN059559/G3	8630-9783	1153	AB219834* MN059594	R.G.B.M.C.S.Se	1.140E-10
10	MN059602/G77	8642-9783	1141	AB219834* MN059594	R.G.B.M.C.S.Se	1.140E-10
11	MN059562/G11-2	8786-9921	1135	AB219834* MN059594	R.G.B.M.C.S.Se	1.140E-10
12	MN059590/G56	8579-9634	1055	AB219834* MN059594	R.G.B.M.C.S.Se	1.140E-10
^{<i>a</i>} Parental G:GENEC	sublineage estimated by ONV, B: Bootscan, M: M	RDP Program; ^b R laxchi, C: Chimaera,	ecombination-detecting S: SiSscan, Se: 3Seq. 5 ⁶	programs representing signif The greatest <i>P</i> -value calculat	icant signal showed in ed by the program for th	bold; R : RDP, he recombination

Genome Sequence of Onion Yellow Dwarf Virus

Table 2. Characteristics of recombination events detected in some isolates of Onion yellow dwarf virus.

event.

1999; Dombrovsky et al., 2005; Manglli et al., 2014). The variety in this motif (DAG to DTG) may be resultant from the natural vegetative propagation of the garlic or adaptation of the virus to its host plant. Recombination is an important driving force in evolution and divergence of viruses, such as potyviruses (Nagy, 2008). It has been recently proposed as a key factor associated with increasing host range to adapting to new hosts (Kehoe et al., 2014). This study provide evidence for a strong potential recombination event in an Iranian isolate of OYDV. Analysis demonstrated a strong unique recombination event in IR-Kh2 isolate in NIb gene. This gene plays an important role in life cycle and genetic diversity of potyviruses, concurrently, it can be

a major evolutionary way to adapt to the new hosts and new environmental conditions (Lian et al., 2013; Verma et al. 2016). Finally, the accurate identification of viruses present in garlic plants will help to use the appropriate strategies to reduce viral incidence in garlicgrowing areas. To the best of our knowledge, this is the first report of the nearly complete genome sequence of garlic infecting OYDV isolate in Iran. OYDV is the major element of the garlic virus complex which could be a limiting factor for successful allium production along with other viruses of this complex (Lot et al., 1998; Bagi et al., 2012). Thus, further investigation is necessary to prevent the spread of these pathogens to new locations and hosts.

Figure S1. Schematic representation of the genomic structure of *onion yellow dwarf virus* and the predicted proteolytic cleavage sites of the OYDV polyprotein. The cleavage sites are shown inside the rectangle. P1, the first protein; HC-Pro, helper component-proteinase; P3, the third protein; 6K1 and 6K2, 6 kDa protein 1 and 2; CI, cytoplasmic inclusion protein; VPg, viral genome-linked protein; NIa-Pro, 49 kDa proteinase; NIb, nuclear inclusion protein b; CP, coat protein. PIPO (nucleotides 3864 to 4088) derived from RNA polymerase slippage on the P3 cistron.

Fable S1. PCR primers used for the OY.	DV detection by RT-PCR.
---	-------------------------

Primer Code	Primer Sequence (5' to 3')	Size of amplified fragment (bp)	Reference
OYDV-F/ R	F- ATAGCAGAAACAGCTCTTA R-GTCTCYGTAATTCACGC	1111 bp	Arya <i>et al.</i> 2006
NIB2-F/ NIB3-R	F- GTITGYGTIGAYGAYTTYAAYAA R- TCIACIACIGTIGAIGGYTGNCC	350 bp	Zheng <i>et al.</i> 2010
CIFor/ CIRev	F-GGIVVIGTIGGIWSIGGIAARTCIAC R-ACICCRTTYTCDATDATRTTIGTIGC	700 bp	Ha <i>et al</i> . 2008

Isolate	Country	Collection-Date	GenBank accession no.
RR1	India	2013	KJ451436
Yuhang	China	Unknown	NC-005029
OYDV-AT	Germany	1994	JX433020
OYDV-Se	Argentina	2004	JX433019
G5h	Japan	Unknown	AB219834
G79	Japan	Unknown	AB219833
2/R1/863	India	Unknown	MT731495
11159/OYDV/Meerut	India	Unknown	MT731493
2/R1/3910	India	Unknown	MT731494
MS/SW1	Australia	2010	HQ258894
SG1	Spain	2011	JX429964
SW9	Argentina	2012	KF632714
G74	China	2017	MN059599
G122	China	2017	MN059637
G118-2	China	2017	MN059631
G117-6	China	2017	MN059629
G117-2	China	2017	MN059625
G110	China	2017	MN059623
G108	China	2017	MN059622
G100	China	2017	MN059620
G92-3	China	2017	MN059617
G92-1	China	2017	MN059615
G11-2	China	2017	MN059574
G32	China	2017	MN059573
G87	China	2017	MN059612
G50-1	China	2017	MN059586
G23-2	China	2017	MN059571
G35	China	2017	MN059576
G80	China	2017	MN059604
G20	China	2017	MN059569
G13	China	2017	MN059563
G68	China	2017	MN059597
G18	China	2017	MN059568
G15-2	China	2017	MN059566
G58	China	2017	MN059592
G78	China	2017	MN059603
G119	China	2017	MN059632
G127	China	2017	MN059638
G81-2	China	2017	MN059606
G120	China	2017	MN059633
G9	China	2017	MN059560
G62	China	2017	MN059594
G42	China	2017	MN059580
G37-2	China	2017	MN059578
G11-1	China	2017	MN059561
G3	China	2017	MN059559
G83	China	2017	MN059608
G44	China	2017	MN059581
G77	China	2017	MN059602
G56	China	2017	MN059590
G84	China	2017	MN059609
G121-1	China	2017	MN059634
G89	China	2017	MN059613
G34	China	2017	MN059575
G64	China	2017	MN059596

Table S2. Isolates of onion yellow dwarf virus (OYDV) used in this study.

REFERENCES

- Abraham, A. D., Kidanemariam, D. B. and Holton, T. A. 2019. Molecular Identification, Incidence and Phylogenetic Analysis of Seven Viruses Infecting Garlic in Ethiopia. *Eur. J. Plant Pathol.*, **155**(1): 181-191.
- Adams, M. J., Antoniw, J. F. and Beaudoin, F. 2005. Overview and Analysis of the Polyprotein Cleavage Sites in the Family *Potyviridae. Mol. Plant Pathol.*, 6(4): 471-487.
- 3. Arya, M., Baranwal, V. K., Ahlawat, Y. S. and Singh, L. 2006. RT-PCR Detection and Molecular Characterization of Onion Yellow Dwarf Virus Associated with Garlic and Onion. *Curr. Sci.*, **91**(9): 1230-1234.
- Baghalian, K., Kim, O. K. and Natsuaki, K. T. 2010. Molecular Variability and Genetic Structure of the Population of Onion Yellow Dwarf Virus Infecting Garlic in Iran. *Virus Genes.*, 41(2): 282-291.
- Bagi, F., Stojšin, V., Budakov, D., El Swaeh, S. M. A. and Gvozdanović-Varga, J. 2012. Effect of Onion yellow dwarf virus (OYDV) on yield components of fall garlic (*Allium sativum* L.) in Serbia. *Afr. J. Agric. Res.*, 7(15): 2386-2390.
- Bos, L. 1976. Onion Yellow Dwarf Virus. CMI/AAB Descriptions of Plant Viruses., 158.
- Celli, M. G., Torrico, A. K., Kiehr, M. and Conci, V. C. 2013. Striking Differences in the Biological and Molecular Properties of Onion and Garlic Isolates of Onion Yellow Dwarf Virus. *Arch. Virol.*, **158**(6): 1377-1382.
- Chen, J., Adams, M. J., Zheng, H. Y. and Chen, J. P. 2003. Sequence Analysis Demonstrates that Onion Yellow Dwarf Virus Isolates from China Contain a P3 Region much Larger than other Potyviruses. *Arch. Virol.*, **148**(6): 1165-1173.
- Chung, B. Y. W., Miller, W. A., Atkins, J. F. and Firth, A. E. 2008. An Overlapping Essential Gene in the Potyviridae. *Proc. Natl. Acad. Sci. USA.*, **105**(15): 5897-5902.
- Da Silva, L. A., Oliveira, A. S., Melo, F. L., Ardisson-Araœjo, D. M. P., Resende, F. V., Resende, R. O. and Ribeiro, B. M. 2019. A New Virus Found in Garlic Virus

Complex Is a Member of Possible Novel Genus of the Family *Betaflexiviridae* (order Tymovirales). *PeerJ* 7:e6285. http://doi.org/10.7717/peerj.6285

- Dombrovsky, A., Huet, H., Chejanovsky, N. and Raccah, B. 2005. Aphid Transmission of a Potyvirus Depends on Suitability of the Helper Component and the N Terminus of the Coat Protein. *Arch. Virol.*, **150**(2): 287-298.
- Dujovny, G., Sasaya, T., Koganezawa, H., Usugi, T., Shohara, K. and Lenardon, S. L. 2000. Molecular characterization of a new Potyvirus infecting sunflower. *Arch. Virol.*, 145(11): 2249-2258.
- Gallie, D. R. and Walbot, V. 1992. Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. *Nucl. Acid Res.*, 20(17): 4631-4638.
- Gawande, S. J., Chimote, K. P., Gurav, V. S. and Gopal, J. 2013. Distribution and natural incidence of onion yellow dwarf virus (OYDV) on garlic and its related Allium species in India. *Indian J. Hortic.*, **70**(4): 544-548.
- Ha, C., Coombs, S., Revill, P. A., Harding, R. M., Vu, M. and Dale, J. L. 2008. Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. *Arch. Virol.*, **153**(1): 25-36.
- Hasan, H. A. 2004. Generation of an infectious Beet Mosaic Virus (BtMV) Fulllength Clone Based on the complete Nucleotide Sequence of a German Isolate. Hannover University., 171.
- Huson, D. H. and Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. *Mol. Biol. Evol.*, 23(2): 254-267.
- Kadare, G. and Haenni, A. L. 1997. Virusencoded RNA helicases. *J. Virol.*,**71**(4): 2583-2590.
- Katis, N. I., Maliogka, V. I. and Dovas, C.I. 2012. Viruses of the genus Allium in the Mediterranean region. *Adv. Virus Res.*, 84: 163–208.
- Kehoe, M. A., Coutts, B. A., Buirchell, B. J. and Jones, R. A. C. 2014. *Hardenbergia mosaic virus*: Crossing the barrier between native and introduced plant species. *Virus Res.*, 184: 87–92.
- 21. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular

evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.*, **35**(6): 1547-1549.

- Lian, S., Lee, J. S., Cho, W. K., Yu, J., Kim, M. K., Choi, H. S. and Kim, K. H. 2013 Phylogenetic and recombination analysis of tomato spotted wilt virus. *PLoS ONE.*, **8**(5): e63380. doi: 10.1371/journal.pone.0063380
- Llave, C., Mart'inez, B., D'iaz-Ru'iz, J. R. and Opez-Abella, D. L. 2002. Amino acid substitutions within the Cys-rich domain of the tobacco etch potyvirus HC-Pro result in loss of transmissibility by aphids. *Arch. Virol.*, 147(12): 2365-2375.
- López-Moya, J. J., Wang, R.Y. and Pirone, T. P. 1999. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. *J. Gen. Virol.*, 80(12): 3281-3288.
- 25. Lot, H., Chovelon, V., Souche, S. and Delecolle, B. 1998. Effects of Onion Yellow Dwarf and Leek Yellow Stripe Viruses on Symptomatology and Yield Loss of Three French Garlic Cultivars. *Plant Dis.*, **82**(12):1381-1385.
- Mahmoud, S. Y. M., Abo-El Maaty, S. A., El-Borollosy, A. M. and Abdel-Ghaffar, M. H. 2008. Identification of onion yellow dwarf potyvirus as one of the major Viruses infecting garlic in Egypt. *Int. J. Virol.*, 4(1): 1-13.
- Manglli, A., Mohammed, H. S., EL Hussein, A. A., Agosteo, G. E, Albanese, G. and Tomassoli, L. 2014. Molecular analysis of the 3' terminal region of onion yellow dwarf virus from onion in southern Italy. *Phytopathol. Mediterr.*, 53(3): 438-450.
- Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. *Virus Evol.*, 1(1): vev003.
- 29. Melhus, I. E., Reddy, C. S., Henderson, W. J. and Vestal, E. F. 1929. A new virus disease epidemic on onions. *Phytopathology.*, **19**(1): 73-77.
- Nagy, P. D. 2008. Recombination in plant RNA viruses. In Plant Virus Evolution; Roossinck, M. J. Ed., Springer: Berlin/Heidelberg, Germany, pp. 133–156. ISBN 978-3-540-75762-7.
- 31. Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas,

D. and Bron, P. 2003. Structural characterization of HC-Pro, a plant virus multifunctional protein. *J. Biol. Chem.*, **278**(26): 23753-23761.

- Riechmann, J. L., Lain, S. and Garcia, J. A. 1992. Highlights and prospects of potyvirus molecular biology. *J. Gen. Virol.*, **73**(1):1-16.
- Sevik, M. A. 2018. Survey of viruses infecting garlic in Samsun, Turkey. J. Cent. Eur. Agric., 19(3): 587-592.
- Shahraeen, D., Lesemann, E. and Ghotbi, T. 2008. Survey for viruses infecting onion, garlic and leek crops in Iran. *EPPO Bull.*, 38(1): 131-135.
- 35. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V. and Gal-On, A. 2007. The conserved FRNK Box in HC-Pro, a Plant Viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. *J. Virol.*, 81(23): 13135-13148.
- 36. Takaki, F., Sano1, T. and Yamashita, K. 2006. The complete nucleotide sequence of attenuated onion yellow dwarf virus: a natural potyvirus deletion mutant lacking the N-terminal 92 amino acids of HC-Pro. *Arch. Virol.*, **151**(7): 1439-1445.
- Urcuqui-Inchima, S., Haenni, A. L. and Bernardi, F. 2001. Potyvirus proteins: a wealth of functions. *Virus Res.*, 74(1-2): 157-175.
- Valli, A., López-Moya, J. J. and García, J. A. 2007. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J. Gen. Virol., 88(3): 1016-1028.
- Valli, A., García, J. A. and López-Moya, J. J. 2015. *Potyviridae*. In: Encyclopedia of Life Sciences (eLS). Chichester: Wiley. DOI:

10.1002/9780470015902.a0000755.pub3.

- Verma, R. K., Mishra, R., Petrov, N. M., Stoyanova, M., Stoev, A., Bakardjieva, N. V. and Gaur, R. K. 2015. Molecular characterization and recombination analysis of an Indian isolate of onion yellow dwarf virus. *Eur. J. Plant Pathol.*, **143**(3): 437-445.
- Verma, R. K., Mishra, R. and Gaur, R. K. 2016. Genetic Variability of the replicase (NIb) gene of *Papaya ringspot virus* in northern India indicates common ancestry

1365

with isolates from China and Taiwan. J. Plant Pathol., **98**(1): 105-110.

42. Yaghmaiean, H. 2015. Functional characterization of P3N-PIPO protein in the potyviral Life Cycle. Electronic Tesis and

Dissertation Repository 2930. Available from https://ir.lib.uwo.ca/etd/2930.

 Zheng, L., Rodoni, B. C., Gibbs, M. J. and Gibbs, A. J. 2010. A novel pair of universal primers for the detection of potyviruses. *Plant Pathol.*, **59**(2): 211-220.

Onion) تعیین اولین ترادف نزدیک به کامل ژنوم ویروس کوتولگی زرد پیاز (Onion) تعیین اولین ترادف نزدیک به کامل ژنوم ویروس کوتولگی زرد پیاز (yellow dwarf virus

آ. انتظاری، م. مهرور، و م. زکیعقل

چکیدہ

در این مطالعه توالی ژنومی نزدیک به کامل ویروس کوتولگی زرد پیاز (Onion yellow dwarf) برای اولین بار از ایران با استفاده از (virus-OYDV) جدا شده از سیر (Allium sativum L.) برای اولین بار از ایران با استفاده از تکنولوژی توالی یابی نسل جدید (Next Generation Sequencing-NGS) تعیین شده است. طول کامل توالی کدکننده این جدایه ایرانی ویروس کوتولگی زرد پیاز (IR-Kh2/ MN528769)) (IR-Kh2/ ie کلئوتید بود که پلی پروتئینی با ۳۴۰۳ آمینواسید را رمزگذاری می کند. مقایسه توالی جدایه ایرانی با سایر جدایههای OYDV ثبت شده در بانک ژن نشاندهنده شباهت 97/39– 74/84 و 98– ایرانی با سایر جدایههای OYDV ثبت شده در بانک ژن نشاندهنده شباهت 75/69– 74/84 و 98– کدکننده ژنومی، جدایههای OYDV ثبت شده در بانک ژن نشاندهنده شباهت 73/90 و 100 / 75/67 ایرانی با سایر جدایههای OYDV ثبت شده در بانک ژن نشاندهنده شباهت 73/90 و 100 / 75/67 محکننده ژنومی، جدایههای OYDV ثبت شده در بانک ژن نشاندهنده بنایج آنالیز فیلوژنی بر اساس توالی از استرالیا (HQ258895)، اسپانیا (JX429964)، چین (MN059603 and MN059578)) و هند (KJ451436) در گروه A و در زیر گروه III قرار گرفت. بعلاوه وقوع یک نوتر کیبی احتمالی در ژنوم جدایه ایرانی در ناحیه ژنی اینکلوژنبادی هستهای (III محمایه) (Nuclear inclusion body-NIB) در ژوم جدایه ایرانی در ناحیه ژنی اینکلوژن باد. در ژنوم جدایه ایرانی در ناحیه ژنی اینکلوژنبادی هستهای (III محمای)