Impact of Elevated Atmospheric CO₂ Concentration on the Growth, and Yield in Two Potato Cultivars

A. Aien¹*, M. Pal², S. Khetarpal², and S. Kumar Pandey²

ABSTRACT

Concentration of CO_2 in the atmosphere is likely to increase up to 550 µmol mol⁻¹ by the middle of 21st century. Such an increase in the atmospheric CO₂ would affect plant growth, and as well the productivity of crop plants. A field experiment was conducted with two potato cultivars namely Kufri Surya and Kufri Chipsona-3 grown inside Open Top Chambers (OTCs) at ambient (385±30 µmol mol⁻¹) vs. elevated CO₂ (570±50 µmol mol⁻¹) levels during *rabi* (winter) season of the year 2009-2010. The photosynthetic rate significantly increased in both cultivars when under high CO₂ concentration, with the enhancement being more in Kufri Chipsona-3 than in Kufri Surya. There were significantly increased accumulations of reducing, non-reducing and total sugars observed in the leaves of both cultivars as due to CO₂ enrichment. Crop Growth Rate (CGR) and Tuber Growth Rate (TGR), in both cultivars, were recorded higher in plants grown under elevated CO₂ as compared with the ambient CO₂ content. High CO₂ increased the partitioning of dry matter towards the tubers at all the harvesting stages. Potato plants grown under elevated CO₂ exhibited increased tuber yield due to the enhanced number of tubers per plant. At the final harvest, total tuber fresh weight was by 36% higher, under high CO₂ treatments, as compared with that in the ambient. The response of K. Chipsona-3 was more pronounced, to elevated CO₂ concentration, as compared with K. Surya. It is concluded that rising atmospheric CO_2 in the future climatic change scenario may be beneficial to such tuber crops like potato to enhance growth as well as tuber number and finally yield.

Keywords: Dry matter partitioning, Elevated CO2, Photosynthesis, Potato, Sugars, Yield.

INTRODUCTION

Rising atmospheric CO_2 is one of the important global issues under climate change scenario. Inter-Governmental Panel on Climate Change (2007) has projected that concentration of CO_2 in the atmosphere is likely to increase up to 550 µmol mol⁻¹ by the middle of 21st century. Such an increase in the atmospheric CO_2 would affect plant growth and productivity, because CO_2 has nutritional effect in C_3 crops promoting their growth through enhanced photosynthesis and improving transpiration efficiency (Drake *et al.*, 1997; Ghildiyal and SharmaNatu, 2000; Long *et al.*, 2004). Potato possesses the C₃ photosynthetic pathway benefiting from a large carbohydrate sink in the form of tubers and exhibiting apoplastic phloem loading of sucrose. Various studies conducted abroad have reported positive response of potato plant grown under high CO_2 in terms of increase in growth, photosynthesis as well as yield (Farrar and Williams, 1991; Miglietta *et al.*, 1998; Schapendonk *et al.*, 2000; Craigon *et al.*, 2002; Conn and Cochran, 2006). However, there are no reports available concerning the response of Indian potato cultivars to rising atmospheric CO_2 .

¹Agricultural Research Center of Jiroft and Kahnooj, P. O. Box: 78615-115, Jiroft, Islamic Republic of Iran.

^{*} Corresponding author; e-mail: aeen2019@gmail.com

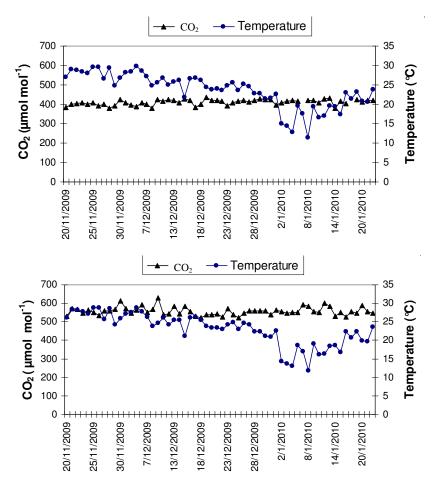
² Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi-110012, India.

Increase in either plant growth or tuber yields under elevated CO₂ has been demonstrated to occur due to an increase in photosynthesis rather than to increased leaf area (Conn and Cochran, 2006). Katny et al. (2005) have reported up to 40% increase in photosynthesis in potato plants grown under long-term exposure to elevated CO₂. Apart from photosynthetic response, elevated CO₂ photosynthetic improved water use efficiency, through either a reduction in the rate of transpiration or stomatal conductance in the above study (Conn and Cochran, 2006; Katny et al., 2005).

In India, potato (*Solanum tuberosum* L.) is the one of the most important crops, about 34.4 million tons being produced from 1.83 million hectares under its cultivation (FAO, 2009). Various high yielding potato cultivars have been developed by Central Potato Research Institute (CPRI) Shimla, including recently released high temperature tolerant cultivar K. Surya developed for the plain region of northern India. But, no information is available on their physiological responses to rising atmospheric CO₂. Therefore, this study was carried out to analyze the effect of elevated CO₂ on photosynthesis, growth and productivity in two potato cultivars.

MATERIALS AND METHODS

Two potato cultivars namely K. Surya (temperature tolerant) and K. Chipsona-3 (temperature sensitive) were grown inside Open Top Chambers (OTCs) maintained with ambient CO₂ (385±30 μ mol mol⁻¹) vs. elevated CO₂ (570±50 µmol mol⁻¹), during rabi (winter) season of the year 2009-2010 at the Division of Plant Physiology, Indian Agricultural Research Institute (IARI), New Delhi. The experiment was planned in the framework of a Randomized Complete (RCBD) Block Design with three replications. Seeds were obtained from Central Potato Research Station. Modipuram, Meerut. The soil inside OTC, at the experimental site, was non-calcareous, slightly alkaline, sandy loam in texture with an average bulk density of 1.56 Mg m^{-3} ; pH of 7.3; EC 0.49 dS m⁻¹; organic C, 0.3 g kg^{-1} ; total N 0.031%. The available P and K stood at 6.9 and 279.0 ppm; respectively. A number of 12 uniform sprouted potato seeds were planted in each of the OTCs. Rows and plants' spacings were maintained at 60 and 20 cm, respectively. Prior to planting, potato seeds were treated with 2% Bavistin fungicide solution. Five g m⁻² nitrogen, 10 g m⁻² phosphorus, 15 g m⁻² potassium and 1 kg m⁻² FYM were mixed with the soil at planting time, while 10 g m⁻² of nitrogen applied at 30 and 60 days past planting as side dressing. The OTCs were so irrigated as to have adequate moisture maintained in the soil. Weed control and earthing up were done manually at early vegetative growth and at bulking stages, respectively.


The circular structure of OTCs was fabricated using aluminum frame as described by Pal et al. (2004) and then fixed in the field. The OTCs were lined with transparent polyvinyl chloride (PVC) sheets. Pure CO₂ gas (99.7% v/v CO₂ and less than 10 μ mol⁻¹ CO) was purchased from M/S Gas Associates, New Delhi and released from a commercial grade cylinder fitted with a regulator (DURA, make ESAB, India) through solenoid valve and PVC tubing connected to air-exhaust blower mounted at the base of each OTC. To maintain elevated levels of CO₂ (570 µ mol mol⁻¹) at crop canopy level, continuous injection of pure CO₂ into plenum of OTC was done and mixed with air from air compressor before being let into the chamber. The air sample from the middle of the chamber was drawn periodically into a CO₂ sensor (NDIR, make Topak, USA), the set level of CO_2 being maintained with the help of solenoid valves, Program Logic Control (PLC) and Supervisory Control along with Data Acquisition (SCADA) winlog software (Make SELCO Italy). The CO₂ data logging, control and operations were performed by use of PC through DOIP (digital input and output module) on real time basis. Carbon dioxide exposure was carried out daily during daylight. It was

immediately started after crop after emergence, and continued till harvest. As for control chambers, only ambient air was supplied through blowers to maintain similar environmental conditions. The level of CO_2 concentration and temperature inside the OTCs (elevated and ambient) are illustrated in Figure 1.

Top most fully expanded leaves were selected for the photosynthetic and biochemical analyses.

Observations on rate of photosynthesis were made using LI-COR portable photosynthesis system (IRGA LI-6400 Model, LI-COR, Nebaraska, USA) during tuberization (30 Days After Emergence (DAE)) and bulking (60 DAE) stages and expressed as μ mol CO₂ m⁻² s⁻¹. Sugars were extracted from fully expanded leaf samples (1 g FW) by being boiled in 80% (v/v) ethanol and then clarified following the method of McCready *et al.* (1950). Aliquots from clarified sugar extract were used for the determination of sugar content employing Nelson's method (Nelson, 1944).

For growth analysis, three plants (in three replications) were harvested at different growth stages of: 20, 40, 70 DAE, and also at maturity stage. Plant samples were separated into leaves (including petioles), stems, root, and tubers. They were cleaned and kept in an oven at 75°C till constant weights reached. Dry matter in all the plant parts was assessed using an electronic balance. Dry matter partitioning was determined from dry mass of individual plant parts as a percentage of total plant dry mass. Crop Growth Rate (CGR) was found

Figure 1. Level of CO₂ concentration and mean day temperature inside Open Top Chambers (OTCs) used for ambient (A) and high CO₂ exposure (B).

out through the following formula by Radford (1957).

 $CGR = (W_2 - W_1 / t_2 - t_1) \times 1 / G_A$

Tuber Growth Rate (TGR) was calculated through the following formula described by Manrique (1989).

 $TGR = (T_2 - T_1/t_2 - t_1) \times 1/G_A$

Where, G_A standing for the ground area covered by the crop, W_2 and W_1 representing crop dry weight (g) at t_2 and t_1 , and finally T_2 and T_1 denoting tuber dry weight (g) at time 2 (t₂) and time 1 (t₁).

Following harvest, the number of tubers from a number of 6 plants were counted, averaged and expressed as the number of tubers per plant with their weights recorded as mean tuber weight. For an estimation of percent tuber dry matter, from each treatments, a 100 g sample of tubers was diced and oven dried at 80°C to a constant weight. The tuber fresh weights of 6 plants (1 m² harvested area) were weighed immediately after harvest, using electronic balance. Analyses of variance was carried out based on RCBD using MSTATC Statistical Programme and the difference between means compared through Duncan's Multiple Range Test at 5% probability level.

RESULTS AND DISCUSSION

Rising atmospheric CO₂ has been reported to influence the growth and yield in C_3 plants due to their photosynthetic enhancement, as this process is not fully saturated at current CO₂ concentration in these plants (Drake et al., 1997; Ghildiyal and Sharma-Natu, 2000). The present study reports that the effect of elevated CO₂ was significant on rate of photosynthesis in either one of the potato cultivars (Table 1). enhancement Maximum in rate of photosynthesis was observed at 30 DAE (tuber initiation stage) in K. Surya and at 60 DAE (bulking stage) in K. Chipsona-3. The response of elevated CO₂ exposure on photosynthesis was higher in K. Chipsona-3 compared with K. Surya. The as enhancements in photosynthetic rate (under elevated CO₂) were 22.2 and 24.1% in K. Chipsona-3 at 30 and 60 DAE, respectively while these were 7.6 and 10.5% in K. Surva at similar stages (Table 2). The availability of sufficient sink is important for the photosynthetic response of C₃ plants under elevated CO₂ (Long et al., 2004). In this study, increase in number of tubers as

Table 1. Summary of Analysis Variance (ANOVA) for photosynthetic rate, leaf sugars concentration, yield and yield components in potato cultivars grown under elevated vs. ambient CO₂.

Mean sum of Square (MS) values		Source of var	riance	
for traits measured	Replication	Treatment	Error	CV (%)
Photosynthetic rate at 30 DAE ^{<i>a</i>}	0.098	37.1*	4.7	7.9
Photosynthetic rate at 60 DAE	2.73	83.2*	10.41	13.6
Reducing sugars at 20 DAE	0.063	9.41**	0.26	1.3
Non-reducing sugars at 20 DAE	0.14	46.58**	1.02	2.3
Total sugars at 20 DAE	0.39	96.5**	1.45	1.4
Reducing sugars at 40 DAE	1.16	271.92**	0.22	1.1
Non-reducing sugars at 40 DAE	0.36	536.39**	15.5	6.2
Total sugars at 40 DAE	0.23	1499.1**	15.65	3.7
Reducing sugars at 65 DAE	1.82	21.45**	0.33	1.4
Non-reducing sugars at 65 DAE	4.62	249.64*	19.14	6.1
Total sugars at 65 DAE	0.64	161.92**	15.9	3.5
Tuber yield	23467	94986*	12319	11.1
No. of tubers per plant	3.61	14.71**	1.11	9.9
Mean tubers weight	458.9	193.3 ^{NS b}	233.1	16.1
Tuber percent dry matter	0.9	1.5**	0.11	1.8

** Significant at 1%; * Significant at 5% level. ^a DAE = Days After Emergence, ^b Non Significant;

Treatments	30 DAE		60 DAE	
Treatments	Photosynthesis	% change	Photosynthesis	% change
	$(\mu \text{ mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})$		$(\mu \text{ mol CO}_2 \text{ m}^{-2} \text{ s}^{-1})$	
V ₁ AC	22.52 ^b	-	24.80 ^{ab}	-
$V_1 EC$	27.51 ^a	22.2	$30.77^{\rm a}$	24.1
$V_2 AC$	28.65^{a}	-	18.83 ^b	-
$V_2 EC$	30.82 ^a	7.6	20.80^{b}	10.5
CD at 5%	4.33		6.45	

Table 2. Effect of elevated CO₂ on rate of photosynthesis in the potato cultivars.^a

^{*a*} Data with the same letters are not significantly different. DAE = Days After Emergence. $V_1 = K$. Chipsona-3; $V_2 = K$. Surya; AC= Ambient CO₂, and EC= Elevated CO₂.

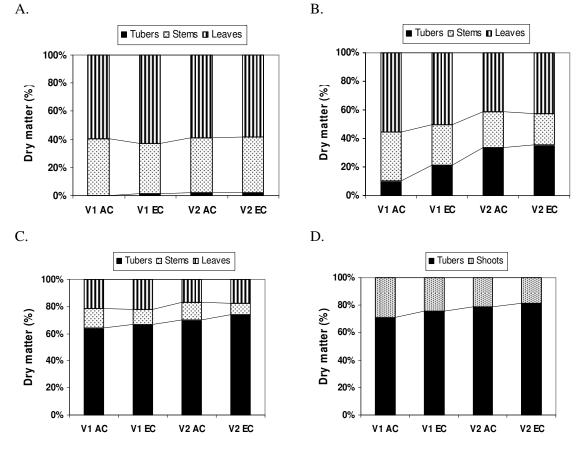
potential sink, may be attributed to photosynthetic enhancement in either one of the two potato cultivars. Similar increase in rate of photosynthesis has been reported by Sicher and Bunce (1999) and Katny *et al.* (2005). On the other hand, Conn and Cochran (2006) did not find any increase in net photosynthesis initially, but reported 53% increase at the final stage (under elevated CO_2).

Significant differences were observed for the reducing, non-reducing as well as total sugars among the treatments (Table 1). The accumulations of reducing, non-reducing and total sugars were significantly higher in the potato leaves under elevated CO_2 indicating higher photosynthetic activity. Maximum reducing, non-reducing, and total sugars were recorded in K. Surya cultivar grown under elevated CO_2 (Table 3). Miglietta et al. (1998) reported that elevated CO_2 exposure significantly affected the accumulation of total non structural carbohydrates (soluble sugars+starch) in the potato leaves during a sunny day. Similarly, Ainsworth et al. (2002) observed a 45% increase in total non-structural carbohydrates content in soybean. Pal et al. (2008), also found that the concentration of such non-structural carbohydrates as sugars and starch in chickpea leaves was higher in under elevated CO₂ grown plants. Stitt (1991) and Sage (1994) have suggested that an extra accumulation of carbohydrate in leaves might be one of the most important determinants for the development of new sinks. This excess carbohydrate accumulation throughout the present study might have acted as useful in generation and development of more new sink, contributing to more productivity, as significant increase in tuber yield was recorded for both cultivars.

Elevated CO₂ exposure significantly increased total dry matter production in both of the potato cultivars (Figure 3-C). The cultivar K. Chipsona-3, grown under elevated CO₂, exhibited greater increase in biomass at all harvesting stages as compared with the ambient. At harvesting stage percentage increases in biomass were 35.8 and 28.9% in K. Chipsona-3 vs. K. Surya, respectively. Elevated CO₂ affected the pattern of biomass allocation in various parts the potato crop. Carbon dioxide of enrichment enhanced the partitioning of dry matter towards the tubers and decreased to it haulms at all the sampling stages (Figure 2). Conn and Cochran (2006) found no effect of CO₂ on shoot dry weight at final harvest but total tuber dry weight was 36% higher under elevated CO₂ as compared with the ambient. Miglitta et al. (1998) found that elevated CO₂ did not increase the above-ground dry weight of plant parts in potatoes grown in a FACE experiment. Various other studies report that elevated CO_2 exposure affect the allocation of dry biomass more towards tubers in potato as compared with the above ground plant parts, resulting in higher tuber number as well as their higher mean dry weights (Lawlor and Mitchell, 1991; Craigon et al., 2002).

_
S
6
- ·
5
16
· .•
14
0
0
ė.
5
2
5
õ
16
•
Ξ
8
Ξ
Ċ.
ñ
24
õ
р

to cultivars. ^a
tration of potatc
concentration
evated CO2 on leaf sugar concentra
I CO ₂ 0
le 3. Effect of elevated
Tab


		20 DAE			40 DAE			65 DAE	
Treatments	Reducing	Non-reducing	Total sugars	Reducing	Non-reducing	Total sugars	Reducing	Non-reducing	Total sugars
	sugars	sugars		sugars	sugars	(mg g ⁻¹ dw)	sugars	sugars	(mg g ⁻¹ dw)
	(mg g ⁻¹ dw)	(mg g ⁻¹ dw)		(mg g ⁻¹ dw)	(mg g ⁻¹ dw)		(mg g ⁻¹ dw)	(mg g ⁻¹ dw)	
V ₁ AC	40.97^{b}	40.97°		35.97^{d}	48.53 ^d		42.10^{a}	62.30°	104.40°
V ₁ EC	43.9^{a}	48.67^{a}	92.57^{a}	40.10°	$66.40^{\rm b}$	$106.50^{\rm b}$	43.07^{a}	68.20^{bc}	111.27^{bc}
	(7.2)	(18.8)		(11.5)	(36.8)		(2.3)	(9.5)	(0.0)
$\mathbf{V}_2 \mathbf{AC}$	39.7°	40.23°		42.37^{b}	57.83°		37.37°	75.63^{ab}	113.00^{b}
\mathbf{V}_2 EC	41.93^{b}	45.27^{b}		57.77^{a}	80.00^{a}		$38.90^{\rm b}$	83.33^{a}	122.23^{a}
	(5.6)	(12.5)		(36.3)	(38.3)		(4.1)	(10.2)	(8.2)
CD at 5%	1.02	2.02	2.4	0.93	7.87	7.90	1.14	8.74	7.97
a Data with the same letters are not significantly diff	rs are not signifi	erent.	Values in parenth	ieses indicate pe	ndicate percent change due to elevated CO_2 exposure. DAE= Days After Emergence;	to elevated CO ₂	exposure. DAE	i= Days After Em	argence; $V_{1}=$

Days Aller Emergence; elevated CU₂ exposure. DAE= 3 ²⁷ Data with the same letters are not significantly different. Values in parentheses indicate percent change due K. Chipsona-3; V_2 = K. Surya; AC= Ambient CO₂, and EC= Elevated CO₂.

Table 4. Effect of elevated CO₂ on yield and yield components of the potato cultivars.

Treatments	Total yield (g m ⁻²)	% change	No. of tuber plant ⁻¹	% change	Mean tuber weight (g)	% change	Tuber percent dry matter (%)	% change
V ₁ AC	837.0^{b}	I	9.5 ^{bc}	I	87.7^{a}	1	19.0^{a}	
$V_1 EC$	1182.7^{a}	41.3	13.4^{a}	41.1	88.3^{a}	0.7	19.4^{a}	2.1
$V_2 AC$	852.7 ^b	ı	8.3°	ı	103.6^{a}	ı	17.9^{b}	ı
$V_2 EC$	1115.7^{a}	30.8	11.5^{ab}	33.6	99.7^{a}	-3.8	18.2^{b}	1.7
CD at 5%	221.7		2.1		30.5		0.66	
	-	0011 10 20					()	

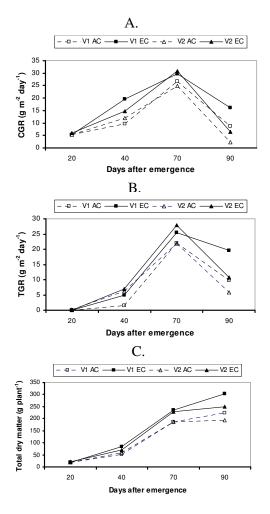

^{*a*} Data with the same letters are not significantly different. $V_1 = K$. Chipsona-3; $V_2 = K$. Surya; AC= Ambient CO₂, and EC= Elevated CO₂.

Figure 2. Dry matter partitioning in different parts of potato cultivars grown under ambient *vs.* elevated CO₂ at 20 DAE (A); 40 DAE (B); 70 DAE (C), and maturity stage (D). V_1 = K. Chipsona-3; V_2 = K. Surya; AC= Ambient CO₂, and EC= Elevated CO₂.

High CO₂ exposure resulted in enhanced CGR in both cultivars with the increment observed greater in K. Chipsona-3. Crop Growth Rate (CGR) in K. Surya, grown under high CO₂, sharply increased from 40 DAE stage to 70 DAE and afterwards sharply decreased while K. Chipsona-3 maintained its CGR higher than that in K. (Figure 3-A). Elevated Surya CO_2 significantly increased the TGR in both cultivars as compared with the ambient CO_2 treatment (Figure 3-B). The enhancement of CGR and TGR in both cultivars, under elevated CO₂, was found out as due to the stimulation of photosynthesis. Das (2003) reported that elevated CO_2 caused significant increase in NAR, RGR and CGR at each stage of growth in Brassica. Similarly higher CGR and NAR have been reported in rice under elevated CO_2 by Sujatha (2005).

Tuber yield in both potato cultivars significantly increased under elevated CO₂ (Table 1). Tuber yield increased by 41.3% in K. Chipsona-3 and 30.8% in K. Surya. Enhancement in tuber yield in response to elevated CO₂ was 36% for either one of the cultivars. The highest fresh tuber weight per plant was observed in K. Chipsona-3 under elevated CO₂ (Table 4). A number of studies have reported that potato yield increased with the doubling of the level of CO₂, but the level of enhancement varied (Schapendonk et al., 2000; Craigon et al., 2002: Conn and Cochran, 2006). Throughout the present study significant increase in number of tubers was observed per plant under elevated CO₂, but mean

Figure 3. Effect of elevated CO_2 on Crop Growth Rate (CGR) (A); Tuber Growth Rate (TGR) (B), and total dry matter (C) at different growth stages in two potato cultivars. V1= K. Chipsona-3; V2= K. Surya; AC= Ambient CO₂, and EC= Elevated CO₂.

tuber weight and percent tuber dry matter recordings were not affected (Table 4). In contrast, Craigon *et al.* (2002) found higher mean dry weight and tuber numbers under elevated CO_2 .

CONCLUSION

The study revealed that rising atmospheric CO_2 (in the future climate scenario) may fall beneficial to Indian potato crop cultivars in

enhanced vegetative growth, terms of biomass development photosynthetic partitioning of dry matter to below ground parts, and tuber yield through an increased number of tubers per plant. Since the response of high temperature sensitive K. Chipsona-3 cultivar was more pronounced to high CO₂ content than K. Surya, it is expected that high CO_2 (in the future environment) may reduced sensitivity, imparting high temperature tolerance to sensitive potato cultivars.

REFERENCES

- Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Ra, H. S. Y., Zhu, X.G., Gurtis, P..S. and Long, S. P. 2002. A Meta-analysis of Elevated CO₂ Effects on Soybean (*Glycine* max) Physiology, Growth and Yield. *Glob. Change Biol.*, 8: 695-709.
- Conn, J. S. and Cochran, V. L. 2006. Response of Potato (*Solanum tuberosum L.*) to Elevated Atmospheric CO₂ in the North American Subarctic. *Agric. Ecosys. Environ.*, **112**: 49–57.
- Craigon, J., Fangmeier, A., Jones, M., Donnelly, A., Bindi, M., De Temmerman, L., Persson, K. and Ojanpera, K. 2002. Growth and Marketable Yield Responses of Potato to Increased CO₂ and Ozone. *Eur. J. Agron.*, 17: 273–289.
- Das, R. 2003. Characterization of Response of Brassica Cultivars to Elevated CO₂ Under Moisture Stress Condition. PhD. thesis, Indian Agricultural Research Institute, New Delhi, India.
- Drake, B. G., Gonzalezmelar, M. A. and Long, S. P. 1997. More Efficient Plants: A Consequence of Rising Atmospheric CO₂. *Ann. Rev. Plant Physiol. Mol. Biol.*, 48: 609-639.
- 6. FAO. 2009. Statistical Yearbook, Website at http://www.fao.org
- Farrar, J. F. and Williams, M. L. 1991. The Effects of Increased Atmospheric Carbon Dioxide and Temperature on Carbon Partitioning, Source-sink Relations and Respiration. *Plant Cell Environ.*, 14: 819– 830.

- Ghildiyal, M. C. and Sharma-Natu, P. 2000. Photosynthetic Acclimation to Rising Atmospheric Carbon Dioxide Concentration. *Ind. J. Exp. Biol.*, 38: 961-966.
- 9. IPCC. 2007. The Physical Science Basis. Inter-Governmental Panel on Climate Change. Summary Report of the Working Group I of IPCC, Paris, PP. 989.
- Katny, M. A. C., Hoffmann-Thoma, G., Schrier, A. A., Fangmeier, A., Jager, H. and Van Bel, A. J. E. 2005. Increase of Photosynthesis and Starch in Potato under Elevated CO₂ is Dependent on Leaf Age. *J. Plant Physiol.*, **162**: 429-438.
- Lawlor, D. W. and Mitchell, R. A. C. 1991. The Effects of Increasing CO₂ on Crop Photosynthesis and Productivity: A Review of Field Studies. *Plant Cell Environ.*, 14: 807–818
- Long, S. P., Ainsworth, E.A., Rogers, A. and Ort, D. R. 2004. Rising Atmospheric Carbon Dioxide: Plants FACE the Future. *Ann. Rev. Plant Biol.*, 55: 591-623.
- 13. Manrique, L. A. 1989. Analysis of Growth of Kennebec Potatoes Grown under Differing Environments in the Tropics. *Amer. Potato J.*, **66:** 277-291.
- McCready, R. M., Guggloz, J., Silviera. V. and Owens, H. S. 1950. Determination of Starch and Amylase in Vegetables. *Anal. Chem.*, 22: 1156-1158.
- Miglietta, F., Magliulo, V., Bindi, M., Cerio. L., Vaccari, P., Loduca, V. and Peressotti, A. 1998. Free Air CO₂ Enrichment of Potato (*Solanum tuberosum* L.), Development Growth and Yield. *Glob. Change Biol.*, 4: 163–172.
- Nelson, N. 1944. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem., 153: 375-380.

- Pal, M., Karthikeyapandian, V., Jain, V., Srivastava, A.C., Raj, A. and Sengupta, U.K. 2004. Biomass Production and Nutritional Levels of Berseem (*Trifolium alexandrium*) Grown under Elevated CO₂. Agric. Ecosys. Enviorn., **101**: 31-38.
- Pal, M., Talawar, S., Deshmukh, P.S., Vishwanathan, C., Khetarpal, S., Kumar, P. and Luthria, D. 2008. Growth and Yield of Chickpea under Elevated Carbon Dioxide Concentration. *Ind. J. Plant Physiol.*, 13: 367-374.
- Radford, P. J. 1967. Growth Analysis Formulae: Their use and Abuse. *Crop Sci.*, 7: 171–5.
- Sage, R. F. 1994. Acclimation Photosynthesis to Increasing Atmospheric CO₂: The Gas Exchange Prospective. *Photosyn. Res.*, **39**: 351-368.
- Schapendonk, H. C. M., Van Oijen, M., Dijkstra, P., Pot, C. S., Wilco, J. R. M., Stoopen, J. and Stoopen, G. M. 2000. Effects of Elevated CO₂ Concentration on Photosynthetic Acclimation and Productivity of Two Potato Cultivars Grown in Open-top Chambers. *Aust. J. Plant Physiol.*, 27: 1119– 1130.
- Sicher, R. C. and Bunce, J. A. 1999. Photosynthetic Enhancement and Conductance to Water Vapor of Field-grown *Solanum tuberosum* (L.) in Response to CO₂ Enrichment. *Photosyn. Res.*, 62: 155–163.
- Stitt, M. 1991. Rising CO₂ Levels and Their Potential Significance for Carbon Flow in Photosynthetic Cells. *Plant Cell Environ.*, 14: 741-762.
- 24. Sujatha, K. B. 2005. Characterization of the Response of Rice Cultivars ($Oryza \ sativa \ L$.) to the Interaction of Elevated CO₂ and Temperature. PhD. thesis, Indian Agricultural Research Institute, New Delhi, India.

تاثیر افزایش غلظت CO₂ اتمسفری بر رشد و عملکرد دو رقم سیب زمینی

ا. آیین، م. پال، س. ختار پال، و س. کومار پندی

چکیدہ

به احتمال زیاد غلظت CO₂ اتمسفر تا اواسط قرن ۲۱ به ۵۵۰ میکرو مول بر مول افزایش می یابد. این افزایش میزان CO₂ اتمسفر، رشد و تولید گیاهان زراعی را تحت تاثیر قرار می دهد. لذا یک آزمایش مزرعه ای در داخل OTCبا غلظت فعلی CO₂ محیط (۵۰ ± ۳۸۵ میکرو مول بر مول) و غلظت زیاد کوفری سوریا و کوفری سوریا و با دو رقم سیب زمینی به نامهای کوفری سوریا و کوفری CO_2 چیپسونا ۳ در سال زراعی ۲۰۱۰ –۲۰۰۹ در انستیتو تحقیقات کشاورزی هندوستان انجام شد. نتایج نشان داد شدت فتوسنتز در شرایط غلظت بالای CO₂ به طور معنا داری در هر دو رقم افزایش یافت و میزان افزایش درکوفری چیپسونا ۳ بیشتر ازکوفری سوریا بود. انباشت قندهای احیا شونده، غیر احیا شونده و قند کل در برگهای هر دو رقم در نتیجه افزایش غلظتCO₂ به طور معنا داری افزایش نشان داد. سرعت رشد محصول (CGR) و سرعت رشد غده (TGR) در هر دو رقم در شرایط غلظت بالای CO₂ در مقایسه با غلظت موجود CO₂ محیط، بالاتر بود. افزایش غلظت CO₂، تسهیم ماده خشک به سمت غده ها را در تمامی مراحل نمونه برداری افزایش داد. عملکرد غده در بوته های رشد یافته در شرایط غلظت بالایCO₂ ، به دلیل افزایش تعداد غده در بوته، بیشتر بود. وزن کل غده ها (عملکرد غده) در شرایط افزایش غلظت CO₂ در مقایسه با غلظت CO₂فعلی محیط، ۳۶ درصد بیشتر بود. عکس العمل کوفری چیپسونا۳ نسبت به افزایش غلظت CO₂ در مقایسه با کوفری سوریا بهتر بود. بنابراین می توان نتیجه گیری نمود که افزایش CO₂اتمسفر در پدیده تغییرات آب و هوایی جهانی در آینده، می تواند برای محصولات غده ای مانند سیب زمینی از نظر رشد و همچنین عملکرد غده مفید ىاشد.