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ABSTRACT 

The objective of this study was to compare the accuracy of genomic breeding values 

prediction with different marker densities before and after the imputation in the 

simulated purebred and crossbred populations based on different scenarios of reference 

population and methods of marker effects estimation. The simulated populations included 

two purebred populations (lines A and B) and two crossbred populations (Cross and 

Backcross). Three different scenarios on selection of animals in the reference set 

including: (1) A high relationship with validation population, (2) Random, and (3) High 

inbreeding rate, were evaluated for imputation of validation population with the densities 

of 5 and 50K to 777K single marker polymorphism. Then, the accuracy of breeding values 

estimation in the validation population before and after the imputation was calculated by 

ABLUP, GBLUP, and SSGBLUP methods in two heritability levels of 0.25 and 0.5. The 

results showed that the highest accuracy of breeding values prediction in the purebred 

populations was obtained by GBLUP method and in the scenario of related reference 

population with validation set. However, in the crossbred population for the trait with low 

heritability (h2= 0.25), the highest accuracy of breeding values prediction in the weighting 

mechanism was equal to (𝝀=0.2). Also, results showed that in the scenario of related 

reference population selection when 50K panel was used for genotype imputation to 777K 

SNPs, the prediction accuracy of genomic breeding values increased. But, in most 

scenarios of random and inbred reference set selection, there was no significant difference 

in the accuracy of genomic breeding values prediction between 5K and 50K SNPs after 

genotype imputation to 777K. 

Keywords: Genomic selection, Genotype imputation, Marker density, Prediction accuracy. 

INTRODUCTION  

Recent developments in genotyping 

technologies have led to more knowledge on 

animal differences even in single nucleotide 

sequences. Next generation sequencing 

(NGS) technology is able to sequence 

millions of SNPs throughout the genome. In 

genomic selection area, density of SNP 

chips can affect the accuracy of prediction, 

because with increasing density, the Linkage 

Disequilibrium (LD) between markers and 

Quantitative Trait Loci (QTLs) increases 

and results in capturing QTL effects more 

accurately ( Wang et al., 2017; Chang et al., 

2018). It is also possible to partition SNP 

effects into direct, indirect, and total SNP 

effects (Momen et al., 2018). Imputation 

from single-nucleotide polymorphic chips 

with low density to high-density panels is an 

important step before starting a genomic 

selection, since high-density panels can 

show more reliable genomic predictions 

(Júnioret al., 2017). Imputation is a powerful 

tool for increasing the power of genome-
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related studies, which allows to include 

genotyped animals with low-density panels 

in genomic evaluations without genotyping 

them with more expensive high-density 

panels. Additionally, this process is used to 

predict missing genotypes in breeding 

programs with purebred or crossbred 

population, which can lead to an increase in 

the accuracy of the genomic selection 

(Weigel et al., 2010; Zhang and Druet, 

2010). Weigel et al. (2010) showed that 

accurate imputation of high-density 

genotypes from inexpensive low- or 

medium-density platforms could greatly 

enhance the efficiency of genome selection 

programs in dairy cattle. The accuracy of 

imputation and, consequently, the GEBV 

depends on a number of factors including 

population structure, panel density, the level 

of LD within a population, genetic structure 

of the trait, the number of individuals in 

reference populations genotyped by high-

density panels, and the relationship between 

the reference population and the selection 

candidates (Van Binsbergen et al., 

2014;Weigelet al., 2010). 

Chen et al. (2014) showed that 

performance of both GBLUP and Bayesian 

methods was influenced by imputation 

errors. They demonstrated that for traits 

influenced by a few QTL with large effect, 

the Bayesian method resulted in a greater 

reduction in the accuracy than GBLUP,as 

imputation mademore errors and resulted in 

lower accuracy of genomic prediction in 

very low-density panels. Larmer et al. 

(2017) in studying animals from a variety of 

beef and dairy breeds reported that the 

combination of reference population from 

different breeds with low relationships, or 

the reference with sharing less haplotypes 

with those in the imputation population, 

reduced the accuracy of imputation. Poorly 

imputed individuals may also have a 

significant deleterious effect on the accuracy 

of whole-genome detection results and 

genomic prediction steps. It has been shown 

that the error rate of imputation depends on 

the relationship between the animals of the 

imputation targets and the reference 

populations, and the inclusion of the closest 

ancestors in the reference population with a 

high-density chip could help to reduce the 

errors (Schrooten et al., 2014). 

So far, different statistical methods have 

been proposed to estimate breeding values 

using genomic information (De Los Campos 

et al., 2013;Meuwissen et al., 2001). 

However, GBLUP, which is a linear mixed 

model integrating a marker-based Genomic 

relationship matrix (G), is generally 

preferred for genomic evaluations more than 

the other methods, e.g. Bayesian, because of 

low computational demand (VanRaden, 

2008). This method can provide GEBV with 

high levels of accuracy in many 

economically important traits, especially the 

traits with high or moderate heritability; 

these GEBVs can be achieved at an early 

age resulted an early selection even before 

having any phenotypic information for 

candidate animals (Schaeffer, 2006). Over 

the past 10 years, genomic selection has 

been extensively introduced in several major 

livestock species for its high accuracy, short 

generation intervals, and recently low 

breeding costs (Georges et al., 2019). The 

genomic information can be included in 

models to estimate breeding value along the 

pedigree information, e.g. single step 

genomic BLUP. Due to abundance of 

pedigree information, phenotypic records, 

and completeness of genotyping, combining 

both information, pedigree and genomic, can 

be helpful and increase accuracy of 

prediction (Gray et al., 2012). Therefore, the 

purpose of this study was to compare the 

accuracy of genomic predictions using low-, 

moderate- and high-density marker panels 

by considering imputation through three 

combinations of marker and pedigree 

information including pedigree-based BLUP 

(ABLUP), GBLUP and combining genomic 

and pedigree information in SSGBLUP 

models. We also aimed to investigate the 

effect of reference population structure on 

accuracy of genomic evaluations under two 

levels of heritability: 0.25 and 0.5. 
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MATERIALS AND METHODS 

Population and Genome Simulations 

The QMSim software was used to 

simulate historical and recent population 

structures (Sargolzaei and Schenkel, 2009). 

A genome consisting of 29 autosomal 

chromosomes with a similar length to the 

cattle chromosomes was simulated. A total 

of 777,026 balletic Single Nucleotide 

Polymorphisms (SNPs) consisting of 725 

QTLs with equal frequency in the first 

generation were designed. SNPs were 

uniformly distributed over the whole 

genome. Distribution of QTLs across 

genome was random. To study the effects of 

trait heritability, both levels of 0.25 and 0.5 

and phenotypic variance 1 were considered. 

In the historical population, to create the 

initial LD between marker and QTL and 

establish mutation-drift equilibrium, at the 

first generation, we constituted 500 animals 

(250 males and 250 females). Then, 1,000 

randomly mated generations without 

changing numbers and 1,000 gradually 

expanded to 4,000 offspring were simulated. 

The number of males in the last generation 

in the historical population was considered 

50 animals. To create the first purebred 

population (line A), 20 males and 200 

females were selected from this generation 

and based on positive assortative mated 

through 10 generations with two progenies 

per dam. To create the second purebred 

population (line B), 20 males and 200 

females were selected again from the last 

generation of the historical population and 

based on positive assortative mated through 

10 generations. To utilize the maximum 

heterosis properties, the selection of animals 

was carried out based on the high breeding 

value (line A) and low breeding value (line 

B). For lines A and B, the genotype, 

phenotype, and pedigree information related 

to the generations 8, 9, and 10 were 

registered and the generation 10 was 

considered as the validation set and the 

generations 8 and 9 as the reference training 

set. In the next step, the hybrid populations 

(cross and backcross) were simulated. The 

cross population was created by mating 20 

randomly selected males from the generation 

10 in line A and 200 randomly selected 

females from generation 10 in line B. The 

backcross population was generated by 

mating 20 randomly selected males from 

generation 10 in line A and 200 randomly 

selected females from cross population 

through one generation of random mating 

(Table 1). The genotype, phenotype, and 

pedigree information that were related to the 

backcross population was registered. In this 

study, the animals of backcross population 

were considered as validation set 

(imputation) and animals of generation 10 

from line A and animals of cross population 

were considered as reference set. 

 After genomic simulation, the quality 

control was performed and SNPs with Minor 

Allele Frequency (MAF) less than 0.01 and 

the monomorphic loci were excluded from 

the genotype data and, finally, 407935 SNPs 

were left for analysis. For 5K and 50K 

SNPs, we sampled from the remaining SNPs 

(400K) and the reduced genotype file was 

used for imputation populations. 

Imputation 

A haplotype-base algorithm that was 

programmed in FImpute software was 

implemented to impute from low- (5K) and 

moderate-density (50K) panels to a high-

density panel (777K) (Sargolzaei et al., 

2014). This software uses the pedigree 

information (if known) and searches for long 

to short haplotypes representing close to far 

relationships, respectively. In comparison to 

most of population imputation software, 

FImpute assumes that all animals are related 

and uses Overlapping Sliding Window to 

find the haplotype fragments that have 

associated with common ancestor between 

individuals. FImpute uses an Overlapping 

Sliding Window approach to efficiently 

exploit relationships or haplotype 

similarities between target and reference  
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Table 1. Parameters for the stimulation of populations and genome. 

Information of population simulation Population structure 

 Step 1: Creating base population 

500[0]500[1000]4000[2000] Number of animals (Number of generations) 

50 Number of males in the last generation of base population 

 Step 2: Recent (undergoing selection) population  

 population of line A 

20 Number of males from base population 

200 Number of females from base population 

10 Number of generations 

TBV/h positive assortative Mating system 

10 Number of iterations 

0.25,0.5 Heritability 

1 Phenotype variance 

 Population of line B 

20 Number of males from base population 

200 Number of females from base population 

10 Number of generations 

TBV/l positive assortative 

10 

0.25,0.5 

1 

Mating system 

Number of iterations 

Heritability 

Phenotype variance 

 Cross population 

20 Number of males from the last generation of line A 

200 Number of females from the last generation of line B 

0.5 Male sex ratio 

1 Number of generation 

Random Mating system 

 Backcross population 

20 Number of males from the last generation of line A 

200 Number of females from cross population 

0.5 Male sex ratio 

1 Number of generation 

Random Mating system 

Genome simulation information Genome structure 

29 Number of chromosomes 

26794 Number of markers (For each chromosome) 

Evenly Distribution of Markers 

25 Number of QTL (For each chromosome) 

Random QTL distribution 

 
individuals. The process starts with long 

windows to capture haplotype similarity 

between close relatives. After each 

chromosome sweep, the window size is 

shrunk by a constant factor allowing for 

shorter haplotype similarity (arising from 

more distant relatives) to be taken into 

account. Because closer relatives usually 

share longer haplotypes while more distant 

relatives share shorter haplotypes, the 

algorithm simply assumes that all 

individuals are related to each other at 

different degrees.  

Reference Population Structure 

Three scenarios were investigated to 

evaluate the effect of population structure on 

prediction accuracy as: (1) Animals having the 

highest relationship with the validation set, (2) 

The animals with the highest inbreeding, and 

(3) The randomly selected animals.  
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Prediction Model 

Variance components and genomic breeding 

values were computed by a mixed linear 

model. Generally, GBLUP model assumes that 

all markers contributed equally to genetic 

variation with no major genes. To do this, 

linear mixed models were used to estimate the 

animal effects. Three different relationship 

information were implemented in BLUP 

models as follow: 

Pedigree-based BLUP (ABLUP) method: 

The numerator relationships matrix (A) is 

calculated based on the pedigree information 

using the individuals' relationship average. It is 

worthwhile to mention that the accuracy of 

these estimates can be affected by the 

pedigree's accuracy and quality (Calus, 2010). 

The Estimated Breeding Values (EBVs) were 

derived from a linear model as follows:  

𝑦 = 1𝜇 + 𝑍𝑎 + 𝑒    (1)  

Where, y represents a vector of phenotype 

of interest, 1 is a vector of 1, µ is the 

average population, a and e are vectors of 

breeding values and residual effects, 

respectively, and Z is a design matrix for the 

random effects. In this model, it is assumed 

that a~N(0, A𝜎𝑎
2) and e~ N(0,𝐷𝜎𝑒

2. The 

mixed model equations to estimate the 

breeding value are as equation (2):  

 [
1ˊ1
𝑍ˊ1

1ˊ𝑍
𝑍ˊ𝑍 + 𝐴−1𝛼

] × [𝑏̂
𝑢̂
] = [

1ˊ𝑦
𝑍ˊ𝑦

]  (2) 

Where, 𝜶 is the ratio of error variance to 

additive variance and 𝐴−1 shows the 

inversion of relationship matrix. 

Genotype-based BLUP (GBLUP) method: 

The relationship matrix was calculated based 

on the genotype information, which resulted in 

a Genomic relationship matrix (G). The G 

tends to measure an actual section of the 

common alleles between individuals not an 

expected section such as pedigree-based 

relationship matrix. The individuals with the 

same genotype for a large number of markers 

are genetically more similar and have a large 

value in their corresponding location in the 

genomic matrix. This matrix was created 

and calculated based on the VanRaden's 

model (2008) as follows: 

𝐺 =
(𝑀−𝑃)(𝑀−𝑃)ˊ

2∑ 𝑝𝑖(
𝑚
𝑖=1 1−𝑝𝑖)

=
𝑄𝑄ˊ

2∑ 𝑝𝑖(
𝑚
𝑖=1 1−𝑝𝑖)

  (3) 

Where, M is the genotypes matrix with 

codes -1 and 1 for homozygotes and code 0 

for heterozygotes, P is Minor Allelic 

Frequency (MAF) matrix and 𝑝𝑖shows MAF 

for ith marker, and Q is a matrix that is 

obtained from subtraction of P and M.  

Combining genomic and pedigree 

information in SSGBLUP: The genomic and 

pedigree information were used in a form of 

Kernel matrix (K). This matrix combines the 

pedigree information (A) and the marker 

information (G) as follows:  

𝐾 = 𝜆𝐴 + (1 − 𝜆)𝐺   (4) 

Where, λ is a limited parameter ranging 

between 0 and 1. In this study, we chose λ 

equal to 0 (GBLUP), 0.1, 0.2, 0.5, and 1 

(ABLUP).  

In all models, we evaluated the accuracy 

of GEBV using the different marker 

densities and various subsets of reference 

population under two levels of heritability: 

0.25 and 0.5. 

Prediction Accuracy Access  

The predictive accuracy was calculated 

through evaluating the Pearson correlation 

between the GEBV and TBVas:  

𝜌𝑇𝐵𝑉,𝐺𝐸𝐵𝑉 =
𝜎(𝑇𝐵𝑉,𝐺𝐸𝐵𝑉)

𝜎𝑇𝐵𝑉𝜎𝐺𝐸𝐵𝑉
  

     (5) 

The Duncan’s multiple range test (with α= 

0.01) was performed to compare the effects 

of different scenarios on the accuracy of 

GEBV including the reference subset 

selection, marker densities heritability, and 

statistical methods. 

RESULTS AND DISCUSSION 

Purebred Population (Line A) 

The results related to the accuracy of 

GEBVs in the different marker densities 

before and after genotype imputation from 

the low- (5K) and moderate-density (50K)  
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Table 2. Accuracy of GEBVs (EBVs for  equal one) in the different marker densities with or without 

genotype imputation to the high-density panel (777K) and using the different weight parameter ( = 0, 

0.2, 0.5 and 1) in the different scenarios of reference population selection for simulated traits with the 

heritabilities of 0.25 and 0.5 in the line A.a 

𝝀  Imputation 

status 

Reference sub-setting 
method (SNP panel 

density) 

h2 

1 0.5 0.2 0 

0.14d (0.025) 
0.18e (0.005) 0.22f (0.002) 0.29g (0.022) No 

Inbreeding (5K) 

0.25 

0.21cd (0.007) 0.24e (0.001) 0.34cd (0.008) Yes 

0.15cd (0.024) 
0.19de (0.004) 0.24e (0.012) 0.32f (0.016) No 

Inbreeding (50K) 
0.21cd (0.007) 0.26cd (0.014) 0.36ab (0.012) Yes 

0.16bc (0.007) 
0.21cd (0.018) 0.25de (0.009) 0.31f (0.01) No 

Random (5K) 
0.22abc (0.028) 0.25de (0.011) 0.34de (0.006) Yes 

0.15cd (0.011) 
0.20de (0.021) 0.24ef (0.029) 0.33ef (0.01) No 

Random (50K) 
0.22ab (0.007) 0.26cd (0.017) 0.35bc (0.006) Yes 

0.17abc (0.005) 
0.20cd (0.012) 0.27bc (0.004) 0.32f (0.009) No 

Relatedness (5K) 
0.21bcd (0.014) 0.29b (0.01) 0.35bc (0.006) Yes 

0.18a (0.005) 
0.21bcd (0.011) 0.29b (0.005) 0.34cde (0.006) No 

Relatedness (50K) 
0.23a(0.004) 0.30a(0.007) 0.37a(0.008) Yes 

0.26ce (0.003) 
0.32vc (0.006) 0.35ab (0.056) 0.48ab (0.043) No 

Inbreeding (5K) 

0.5 

0.34bc (0.007) 0.39ab (0.057) 0.52a (0.07) Yes 

0.27bcd (0.008) 
0.38ab (0.043) 0.38ab (0.055) 0.50ab (0.039) No 

Inbreeding (50K) 
0.36bc (0.058) 0.38ab (0.067) 0.51ab (0.065) Yes 

0.27bce (0.016) 
0.36ab (0.058) 0.38ab (0.077) 0.49ab (0.07) No 

Random (5K) 
0.35bc (0.0916) 0.36ab (0.125) 0.51ab (0.141) Yes 

0.25e (0.025) 
0.31c (0.09) 0.30b (0.121) 0.43b (0.11) No 

Random (50K) 
0.38ab (0.043) 0.37ab (0.063) 0.52ab (0.067) Yes 

0.30ab (0.005) 
0.39ab (0.05) 0.38ab (0.075) 0.51ab (0.047) No 

Relatedness (5K) 
0.41ab (0.066) 0.38ab (0.075) 0.54a (0.062) Yes 

0.31a (0.008) 
0.40ab (0.039) 0.37ab (0.066) 0.51ab (0.043) No 

Relatedness (50K) 
0.44a (0.043) 0.41a (0.074) 0.57a (0.06) Yes 

a Groups with the same heritability and different letters within each column are significant (P< 0.01). 

 

panels to the high-density panel (777K) 

under a different weight parameter (= 0, 

0.2, 0.5 and 1) are shown in Table 2. These 

accuracies were calculated in the different 

scenarios of reference population schemes of 

the simulated traits with 0.25 and 0.5 

heritabilities in the purebred population line 

A.  

In the present study, values of  equal to 0, 

0.2, 0.5 and 1 were studied. When = 0, 

only G matrix and when = 1, only A matrix 

were used. In = 0.2 and 0.5, different 

percentages of G and A matrices were used. 

Increasing the values of  resulted in 

increasing the contribution of a matrix. 

When = 1 and only A matrix was used to 

calculate the breeding values, the values of 
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EBV and, in other states, the values of 

GEBV were obtained. Comparing 

prediction accuracy of GEBVs (EBVs) 

across different scenarios of reference sub 

sets with a low heritability (h2= 0.25) 

revealed that the highest accuracy 

achieved when references were selected 

based on the highest relationship with the 

test population. Similar results were 

obtained when a trait with the high 

heritability (h2= 0.5) was simulated. With 

increasing the contribution of pedigree 

information in the model through the 

reduction in λ to retrieve the EBVs in two 

heritability levels, the accuracies 

decreased significantly. The accuracies for 

the best sub-setting method, relatedness, 

with or without the imputation from low-

density to the high-density panels in the 

high heritability (0.5) scenario were not 

significantly different. Therefore, in the 

purebred populations for the traits with a 

high heritability, genotyping with a low-

density panel (5K) can obtain an accuracy 

similar to the higher densities (50K) and 

thus reducing the cost of genomic 

selection. In contrast, in the scenario with 

low heritability, the use of 50K panel 

compared to 5K panel resulted in a higher 

accuracy before and after genotype 

imputation. These various results for low 

and high heritabilities indicated that 

selecting a panel with appropriate density 

could be varied based on heritability levels 

of the trait studied. Compared to the other 

values of weighting parameters, the results 

of accuracy in the purebred population 

were generally higher when only G matrix 

was used (= 0). With increasing  in the 

SSGBLUP model from 0.2 to 0.5 the 

accuracy of estimations reduced. In 

ABLUP (= 1) in which only matrix A 

was used, the accuracies of estimations 

were the lowest. The accuracy of genotype 

imputation in the cattle from SNP panels 

with a low density to the panels with 50 or 

777K densities, especially in the breeds 

with a large reference population with the 

dense genotypes and a high level of 

linkage disequilibrium in the genome has 

been reported (Larmer et al., 2017; 

Sargolzaei et al., 2014). The range of 

genomic prediction accuracy in the dairy 

cattle in the developed countries has been 

reported for the traits with intermediate to 

high heritability such as milk production 

from 0.5 to 0.85 and for the traits with low 

heritability such as reproductive and 

survival traits from 0.2 to 0.5 (Weigel et 

al., 2010). While the accuracy of genomic 

predictions has been reported from low to 

intermediate and in the range of 0.21-0.6 

(Mrode et al., 2019) that is consistent with 

the results of the present research. The 

lower accuracy of genomic breeding 

values in the developing countries can be 

due to less effective population size of 

reference set in industrial countries than 

developing ones, the lower accuracy of 

phenotypic data than the proven bulls in 

the developed countries, as well as lack of 

appropriate breeding programs in these 

countries (Mrode et al., 2019). 

Boison, et al. (2017) investigated the 

impact of relations between the validation 

and training populations on the accuracy 

of genomic predictions. They showed that 

the increase of 0.1 in the average of 

genomic relationships between the 

reference and validation population (equal 

to adding selection candidate sire to the 

reference population) yields a high 

increase in prediction accuracy about 0.05, 

which was in agreement with our results. 

Additionally, as we showed in this study, 

increasing the density of marker panels 

causes increase in the LD between QTL 

and SNP and results in higher prediction 

ability and, consequently, the increase of 

accuracy of GEBVs. Although the use of 

50K chips for predicting the genomic 

breeding values within breed is suitable 

and the desired results have been obtained 

(Boison, et al. 2017), the highest density 

chips such as 777K can certainly be 

available and increase LD between 

markers and QTL, consequently, the trend 

of reducing accuracy of GEBVs during 

generations may become slower. 
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Table 3. Accuracy of GEBVs (EBVs for  equal one) in the different marker densities with or without 

genotype imputation to the high-density panel (777K) and using different weight parameters (= 0, 0.2, 0.5 and 

1) in the different scenarios of reference population selection for simulated traits with the heritability leves of 

0.25 and 0.5 in the crossbred population.a 

  Imputation 

status 

Reference sub-setting 

method (SNP panel 

density) 
h2 

1 0.5 0.2 0 

0.09f (0.01) 
0.14h (0.003) 0.20g (0.011) 0.16d (0.011) No 

Inbreeding (5K) 

0.25 

0.14fgh (0.003) 0.22efg (0.004) 0.17d (0.012) Yes 

0.10ef (0.011) 
0.14gh (0.003) 0.21fg (0.012) 0.18cd (0.015) No 

Inbreeding (50K) 0.15fg (0.004) 0.23ef (0.011) 0.18cd (0.019) Yes 

0.11e (0.015) 
0.16de (0.007) 0.23def (0.015) 0.20bc (0.015) No 

Random (5K) 0.17cd (0.012) 0.24cde (0.019) 0.21b (0. 009) Yes 

0.11ef (0.021) 
0.15bf (0.016) 0.23ef (0.023) 0.20bc (0.021) No 

Random (50K) 0.17cd (0.008) 0.25bc (0.009) 0.22b (0.004) Yes 

0.14bc (0.01) 
0.18bc (0.009) 0.25bcd (0.012) 0.21b (0.02) No 

Relatedness (5K) 
0.19a (0.009) 0.24cde (0.019) 0.21b (0.019) Yes 

0.16a (0.012) 
0.19ab (0.003) 0.25bc (0.011) 0.22ab (0.025) No 

Relatedness (50K) 0.20a (0.007) 0.28a (0.019) 0.24a (0.026) Yes 

0.13ce (0.003) 
0.25f (0.011) 0.25c (0.014) 0.35ab (0.05) No 

Inbreeding (5K) 

0.5 

0.28def (0.011) 0.29bc (0.017) 0.39ab (0.053) Yes 

0.14abc (0.004) 
0.27ef (0.025) 0.28bc (0.025) 0.38ab (0.05) No 

Inbreeding (50K) 0.29cdef (0.028) 0.29bc (0.23) 0.39ab (0.061) Yes 

0.13dc (0.016) 
0.29def (0.048) 0.30bc (0.045) 0.38ab (0.078) No 

Random (5K) 
0.32bcde (0.049) 0.31bc (0.071) 0.37ab (0.126) Yes 

0.12e (0.02) 
0.29def (0.048) 0.27bc (0.066) 0.31b (0.111) No 

Random (50K) 
0.33abc (0.028) 0.32ab(0.035) 0.37ab(0.063) Yes 

0.15ab (0.009) 
0.33bcd (0.043) 0.32ab (0.055) 0.38ab (0.075) No 

Relatedness (5K) 
0.34ab (0.05) 0.34ab (0.062) 0.39ab (0.081) Yes 

0.16a (0.005) 
0.34abc (0.045) 0.33ab (0.054) 0.37ab (0.067) No 

Relatedness (50K) 
0.38a (0.048) 0.37a (0.063) 0.42a (0.074) Yes 

a Groups with same heritability and different letters within each column are significant (P< 0.01). 

 

Crossbred Population 

The results related to the accuracy of 

GEBVs and EBVsin simulated population 

with the different densities, imputation 

status,  values (0, 0.2, 0.5 and 1) and sub-

set selection of reference population for 

the traits with heritability levels of 0.25 

and 0.5 in the crossbred population are 

shown in Table 3. 

Interestingly, the results of this research 

showed that in the crossbred population 

for the trait with the low heritability, the 

combined pedigree information and 

marker information (SSGBLUP with 

=0.2) improved the accuracy of breeding 

values prediction, and the highest accuracy 

was achieved when references were 

selected based on relatedness and 50K 

panel density imputed to a high-density 

panel. Therefore, in the crossbred 

population with low heritability, due to 

more complex genetic architecture, using 

the pedigree information along with 

genomic information can result in a better 

estimation of GEBVs. However, in the 

high heritability using marker information 

can result in a higher accuracy. In other 

words, the heritability level could mainly 

influence effect of the combined pedigree 

information and marker information in 
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Table 4. Accuracy of GEBVs (EBVs for  equal one) in the different marker densities with or without 

genotype imputation to the high-density panel (777K) and using different weight parameters (=  0, 0.2, 0.5 and 

1) in the different scenarios of  reference population selection for simulated traits with the heritability levels of 

0.25 and 0.5 in the  backcross population.a  

 Imputation 

status 

Reference sub-setting 

method (SNP panel 

density) 

h2 

1 0.5 0.2 0 

0.06f (0.014) 
0.14h (0.007) 0.19h (0.003) 0.16g (0.012) No 

Inbreeding (5K) 

0.25 

0.15g (0.008) 0.20g (0.005) 0.17fg (0.011) Yes 

0.07ef (0.014) 
0.15gh (0.005) 0.20g (0.004) 0.17efg (0.016) No 

Inbreeding (50K) 
0.16efg (0.008) 0.21f (0.004) 0.19def (0.025) Yes 

0.09cd (0.015) 
0.16fg (0.007) 0.22e (0.005) 0.20cde (0.015) No 

Random (5K) 
0.17def (0.013) 0.24bc (0.011) 0.21bc (0. 021) Yes 

0.10c(0.013) 
0.15g (0.021) 0.23de (0.008) 0.20cde (0.019) No 

Random (50K) 
0.17cde (0.01) 0.25bc (0.003) 0.22b (0.009) Yes 

0.14b (0.01) 
0.18cd (0.008) 0.24cd (0.009) 0.21bcd (0.019) No 

Relatedness (5K) 
0.19ab (0.007) 0.25b (0.011) 0.22bc (0.019) Yes 

0.15a (0.01) 
0.18bc (0.005) 0.25b (0.006) 0.22bc (0.024) No 

Relatedness (50K) 
0.20a (0.009) 0.27a (0.003) 0.25a (0.027) Yes 

0.13d (0.015) 
0.26d (0.012) 0.31c (0.004) 0.34ab (0.06) No 

Inbreeding (5K) 

0.5 

0.30bcd (0.016) 0.33bc (0.004) 0.37ab (0.059) Yes 

0.14cd (0.015) 
0.28cd (0.024) 0.32bc (0.0009) 0.36ab (0.058) No 

Inbreeding (50K) 
0.30bcd (0.023) 0.33bc (0.004) 0.37ab (0.071) Yes 

0.14cd (0.01) 
0.30bcd(0.036) 0.35bc(0.052) 0.37ab(0.073) No 

Random (5K) 
0.32bc (0.054) 0.35bc(0.1) 0.37ab(0.059) Yes 

0.14cd (0.015) 
0.29bcd (0.053) 0.31c (0.081) 0.29b (0.114) No 

Random (50K) 
0.33abc (0.027) 0.37ab (0.04) 0.36ab (0.059) Yes 

0.18ab (0.031) 
0.33abc(0.049) 0.37abc(0.045) 0.37ab (0.068) No 

Relatedness (5K) 
0.34ab (0.06) 0.39ab (0.05) 0.37ab (0.071) Yes 

0.20a (0.024) 
0.34ab (0.049) 0.38ab (0.036) 0.36ab (0.062) No 

Relatedness (50K) 
0.37a (0.056) 0.41a (0.04) 0.40a (0.067) Yes 

a Groups with same heritability and different letters within each column are significant (P< 0.01). 

 

models on accuracy in crossbred 

populations. Selecting of reference 

population based on relatedness was still an 

appropriate approach to reduce the number 

of reference set for this population structure.  

The results of crossbred population also 

revealed that using a higher density panel 

(50K) may have a beneficial effect on 

accuracy of the GEBVs. In the simulated 

trait with heritability of 0.5, the highest 

accuracy of breeding values were achieved 

after imputation of 50K density panel to a 

high-density panel. These results suggest 

that in crossbred populations, using high-

density panels or imputation from low- to 

high-density panels could improve accuracy 

of GEBVs. 

Backcross Population 

The results of the accuracy of GEBVs in 

the various marker densities with or without 

genotype imputation under a different 

weight parameter (= 0, 0.2, 0.5 and 1) are 

shown in Table 4. These accuracies were 

estimated in different selection methods for 

reference population sub-setting for 

simulated traits with the heritability levels of 

0.25 and 0.5 in the backcross population. 

Prediction accuracy results obtained from 

the backcross population was similar to the 

results of the crossbred population. In this 

population, similar to the crossbred for the 

trait simulated with the low heritability, 

combining pedigree and marker information 
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(SSGBLUP with = 0.2) resulted in 

improvement of the accuracy of breeding 

values prediction, and the highest accuracy 

was achieved when references were selected 

based on relatedness and 50K panel density 

imputed to a high-density panel. Therefore, 

in this population, due to the complexities of 

breeding structure, using the pedigree 

information along with a small weight for 

genomic information can result in a better 

estimation of GEBVs. The results showed 

that with increasing the level of heritability, 

genomic accuracy also increased. Selecting 

reference population based on relatedness 

showed the highest accuracy, which means 

that this method of sub-setting was an 

appropriate approach to reduce the number 

of reference set. 

Silva et al. (2016) studied the relationship 

between the reference population and three 

sampled validation populations (random, 

young, and unrelated) by using the pedigree 

relationship matrix and its influence on the 

genomic prediction accuracy. In their study, 

the random population had the highest 

relationship between the reference and 

validation populations in which 2.14% of the 

animals had relationship coefficients 

between0.25 to 0.5 in both reference and 

validation data sets. The corresponding 

estimations for the young and unrelated 

validation populations were 1.87 and 0.53%, 

respectively. In their study, the average of 

genomic predictions accuracies was higher 

in the random dataset. In the purebred 

population, the accuracies of genomic 

breeding values prediction in GBLUP (= 0) 

method in all scenarios of reference 

population selection were considerably 

higher than the traditional method of 

ABLUP (=1) and changed from 0.25 for 

the trait with heritability of 0.25 to 0.57 for 

the trait with heritability 0.5, while in the 

traditional method of ABLUP the accuracies 

of breeding values estimation were in the 

range of 0.14 to 0.35. The reason for the 

higher accuracy of genomic evaluations in 

GBLUP method compared to ABLUP is the 

use of all the variances between and within 

family in the genomic evaluations. The 

genomic selection by means of markers 

makes it possible to estimate the Mendelian 

sampling variance with a high accuracy that 

will lead to a better differentiation within 

families and a stable genetic gain, while in 

the traditional method of ABLUP selection 

all full sibs without record have the same 

breeding value. Villumsen et al. (2009) 

conclude that using genomic relationship 

matrix is more efficient than using the 

predicted relationship matrix for calculating 

the breeding value accuracy, because the 

pedigree-based relationship matrix has no 

ability for registering the Mendelian 

sampling effects, while the relationship 

marker matrix is able to calculate this effect. 

These finding are consistent with our results. 

In both traditional and genomic 

evaluations, the trait with high heritability 

(0.5) had higher prediction accuracies than 

the trait with lower heritability (0.25). The 

reason for the reduction of genomic 

breeding values prediction accuracy in the 

lower heritability’s is to increase in the 

estimates of Mendelian sampling variance of 

marker effects along with the increase of 

environmental variance (Lopes et al., 2017; 

Meuwissen et al., 2001). In the purebred 

populations using different scenarios of 

reference population, when the reference 

population selection is based on a high 

relationship with the validation population, 

it could yield a significant improvement in 

the breeding values accuracy (Tables 2). The 

results revealed that the increase in 

relationship between the validation 

population and the reference population 

increased the accuracy of genomic breeding 

values, consistent with the results obtained 

by Hayes et al. (2009) and Clark et al. 

(2012). The Stronger relationship between 

the reference population and validation 

population increases the efficiency of using 

LD due to common blocks, which are 

established between the related animals 

resulting from linkage disequilibrium 

between markers and gene loci. Also, the 

higher relationships, due to sharing more 

haplotypes, play an important role in the 

results related to the accuracy of GEBVs. By 
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studying the accuracy of genotype 

imputation in the purebred and crossbred 

sheep populations and its effect on the 

accuracy of genomic predictions, 

Moghaddar et al. (2015) reported that the 

crossbred animals need larger reference 

populations that have genotypes for all 

related breeds. The accuracy of genotype 

imputation in the purebred and crossbred 

population is increased when the breed-

specific haplotypes are available in the 

reference population.  

The accuracy of breeding values estimation 

in the purebred populations was relatively 

higher than cross and backcross populations. 

In the purebred population with more identical 

by descent loci, more common haplotypes are 

shared and the genetic interval between 

haplotypes in the reference and validation 

populations becomes shorter. Thus, the 

accuracy of imputation and, consequently, the 

accuracy of genomic breeding values 

prediction in the purebred is higher than the 

crossbred populations, which is consistent with 

the results obtained by Moghaddar et al. 

(2015). By studying the different strategies for 

genotype imputation in the crossbred dairy 

cattle populations (Guernsey Holstein), 

Oliveira Júnior et al. (2017) showed that the 

highest imputation accuracy was observed 

when crossbred animals entered the reference 

population, but using only Guernsey animals 

in the reference population resulted in a low 

imputation accuracy. Their results revealed 

that haplotypes segregation in the reference 

population had more effect on the accuracy 

compared to the purebred haplotypes, and the 

crossbred animals should be included in the 

reference population to obtain the best 

genotype imputation accuracies. Lopes et al. 

(2017) studied the genomic selection in the 

purebred and crossbred populations and 

reported that considering the allele breed 

origin of alleles and using a model that 

considers the breed- specific effects can 

improve the accuracy of genomic prediction. 

They also concluded that when the breed-

specific effects are considered, the use of 

crossbred data in the reference population 

results in a genomic prediction accuracy 

higher than the purebred data. 

CONCLUSIONS 

In the present research, the accuracy of 

GEBVs in a different population structure 

including purebred, crossbred, and 

backcross populations was studied based on 

different combinations of pedigree and 

marker information and various methods of 

reference set selection. A higher accuracy of 

breeding values prediction in the purebred 

populations compared to the crossbred 

populations reveals that the haplotypes 

segregated in the purebred populations had 

probably more influence on the imputation 

accuracy and, consequently, on the accuracy 

of genomic breeding values prediction. The 

higher breeding values accuracy in the state 

of selecting the reference population with a 

strong relationship with the validation 

population demonstrates the importance of 

sharing more haplotypes. Additionally, the 

results of this research revealed that in most 

scenarios studied, GBLUP method (using 

only G matrix) resulted in the highest 

accuracy of genomic breeding values 

prediction. However, in the crossbred and 

back crossbred populations for the trait of 

interest with low heritability, using the 

pedigree information along with a small 

weight for genomic information can result in 

a more accurate estimation of GEBVs.  
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بر صحت ارزیابی  SNPتاثیر استنباط ژنوتیپی، ساختار جمعیت مرجع و تراکم پنل 

 های خالص و آمیختهجمعیتدر  ژنومی

 والهم. وفای و یعتی، شری، م. م. رکوع، م. داشابر.  ، غ.برجستهش. 

 چکیده

های مختلف های اصلاحی ژنومیکی با تراکمبینی ارزشهدف از این تحقیق، مقایسه صحت پیش

سناریوهای سازی شده خالص و آمیخته بر اساس های شبیهنشانگری قبل و بعد از ایمپیوت در جمعیت

سازی های شبیههای مختلف برآورد آثار نشانگری بود. جمعیتمختلف انتخاب جمعیت مرجع و روش

کراس( بودند. سه ( و دو جمعیت آمیخته )کراس و بکBو  Aشده شامل دو جمعیت خالص )لاین 

دی بالا با رابطه خویشاون-1ها در جمعیت مرجع شامل: سناریو مختلف در ارتباط با نحوه انتخاب دام

و  K5های همخونی بالا، برای ایمپیوت حیوانات جمعیت تأیید با تراکم-3تصادفی -2جمعیت تأیید 

K55  به تراکممارکریK777 های اصلاحی در افراد ارزیابی شدند. سپس صحت برآورد ارزش

در دو سطح  SSGBLUP و ABLUP ،GBLUPهای جمعیت تأیید، قبل و بعد از امپیوت با روش

های بینی ارزشمحاسبه گردید. نتایج نشان داد که حداکثر صحت پیش 5/5و  25/5پذیری ثتورا

و در سناریو انتخاب جمعیت مرجع خویشاوند با  GBLUPهای خالص با روش اصلاحی در جمعیت

حیوانات جمعیت ایمپیوت )تأیید( بود. همچنین نتایج نشان دادند در سناریو انتخاب جمعیت مرجع 

-بینی ارزشصحت پیش K777برای استنباط ژنوتیپی به تراکم  K55در زمان استفاده از پنل  خویشاوند

های اصلاحی ژنومی افزایش یافت، ولی در اکثر سناریوهای انتخاب جمعیت مرجع همخون و تصادفی 
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بعد از  K55و  K5های های اصلاحی ژنومی بین تراکمشبینی ارزداری در صحت پیشتفاوت معنی

وجود نداشت. K777استنباط ژنوتیپی به 
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