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ABSTRACT 

Estimating the spatial distribution of weeds for site-specific control is essential. 

Therefore, this research was conducted to predict and interpolate the spatial distribution 

of Amaranthus retroflexus L. populations using a Radial Basis Function Neural Network 

(RBF-NN) in two potato fields. Weed population data were collected from sampling 200 

and 36 points, respectively, in two commercial potato fields in Jolge Rokh, of Torbat 

Heidarieh in Khorasan Razavi and Mojen of Shahroud in Semnan Provinces, Iran, in 

2012. Some statistical tests, such as comparisons of the means, variance and statistical 

distribution, as well as linear regression, were used for the observed point sample data 

and the estimated weed seedling density surfaces to evaluate the neural network 

capability for predicting the spatial distribution of the weed. The results showed that the 

trained RBF-NN had high capability in the spatial prediction in points that were not 

sampled with 100% output, 0.999 coefficients, and an average error of less than 0.04 and 

0.07 in the Mojen and Jolge Rokh Regions, respectively. Test results also showed that 

there was no significant difference between the statistical characteristics of actual data 

and the values predicted by the RBF-NN. According to the experimental results, the RBF-

NN can be used as an alternative method to estimate the spatial changes function of 

annual weeds with random dispersion, such as Redroot Pigweed. 

Keywords: Density estimation, Patchy distribution, Precision management, Radial Basis 

Function. 
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INTRODUCTION 

In the site-specific management system, 

the first step is to collect information on 

weed spatial distribution in order to prepare 

detailed maps (Grundy et al., 2005) as 

variable-rate applicators need precise maps 

for accurate herbicide application (Kiani and 

Jafari, 2012). Although, at the present time, 

herbicides are often used to kill weeds in 

agricultural fields, the fact is that the weeds 

still appear as patchy within fields (Heijeting 

et al., 2007). On the other hand, weeds are 

considered as one of the factors responsible 

for decreasing the output of crops in 

agricultural fields, so, weed control is one of 

the most important aspects of production in 

the agricultural systems (Barberi, 2002). 

Today, chemical-dependent fielding systems 

have been increasingly reviewed because of 

concerns over environmental pollution, 

human health, and economic costs. In this 
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regard, the studies show that predictions of 

weeds distribution and spot herbicide 

spraying in comparison with broadcast 

spraying reduces herbicide consumption and 

environmental pollution. Furthermore, it is 

economically beneficial for farmers (Jurado-

Exposito et al., 2004; Mohammadi, 2010). 

For example, patchy control of weeds in 

wheat in a five-year period reported that 39 

and 44% of the total field area needed to be 

sprayed for controlling, respectively, 

narrow-leaved and broad-leaved weeds 

(Nordmeyer, 2006). Forecasting and 

preparing accurate maps of weed 

distribution in order to apply spot 

management has been assessed by different 

methods (Lamb and Brown, 2001). Today, 

in many fields such as classification, pattern 

recognition, prediction and modelling 

processes, neural networks are used in 

various sciences (Vakil-Baghmisheh and 

Pavešic, 2003). The advantage of the neural 

network method is direct learning by data 

without the need to estimate the statistical 

specifications (Gholipoor et al., 2013). 

A neural network, regardless of any initial 

hypothesis and prior knowledge of the 

relationships between the studied 

parameters, is able to identify the 

relationship between a set of inputs and 

outputs in order to forecast every 

corresponding output with an arbitrary input 

(Kaul et al., 2005; Torrecilla et al., 2004). 

Another feature of the neural network is 

tolerance against error (Rohani et al., 2011). 

These advantages clarify the reasons of 

using a neural network to predict weed 

density. Nowadays, neural network models 

are considered as well-known tools for 

estimating functions in ecological and 

environmental research, and they can 

accurately distinguish weeds from crops in 

the fields (Zhang et al., 2008). Torra et al. 

(2016) developed an Artificial Neural 

Network (ANN) model for emergence 

prediction of ripgut brome (Bromus 

diandrus Roth) and comparison of their 

predictive capability against already-

developed Non-Linear Regression (NLR) 

models. Both ANN and NLR were able to 

predict satisfactorily B. diandrus Roth 

emergence patterns. However, the ANN 

improved the fitting accuracy with RMSE 

estimates 46% lower compared to NLR 

models. These results confirm that ANNs 

are powerful tools for modeling weed 

emergence, thus they could help improve 

IWM decision support systems. Dyrmann 

and Christiansen (2014) demonstrated a 

framework that was able to distinguish 22 

weed and crop species at early growth stages 

by fusing a shape based classification of 

leaves and whole plants. For these 22 

species, the network was able to achieve a 

classification accuracy of 86.2%. Irmak et 

al. (2006) predicted spatial patterns of 

soybean yields by using an artificial neural 

network in the field and they examined 

factors causing spatial changes in function, 

such as topography and soil fertility. A. 

retroflexus L. is one of the most dominant 

dicotyledonous weeds in the world (Rafael 

et al., 2001), and on a competitive index in a 

scale from zero to one, it is close to one 

(Cowan et al., 1998). Corn and soybean 

yield losses due to high redroot pigweed 

densities (more than 30 plants per square 

meter) have been reported at about 90% 

(Costea et al., 2004). Vangessel and Renner 

(1990) reported that one redroot pigweed per 

meter of row reduced marketable tuber yield 

19-33%. Thus, regarding the significant 

effects of this weed species on potato 

production, knowledge about its 

reproduction, dispersal and distribution can 

play an effective role in better managing the 

impacts of the weed. Wyse-pester et al. 

(2002) reported that the spatial distribution 

of A. retroflexus L  population appeared 

almost in fixed patches during two 

successive years. Thus, these researchers 

concluded that sampling for preparing maps 

of this type of weed pollution may not be 

necessary every year, especially considering 

that the most important principle in 

examining the density and spatial 

distribution of weeds in the fields is 

providing a way for accurate and detailed 

prediction of weed location. In this regard, 

several studies have been conducted by 
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Table 1. Some physicochemical characteristics of the field soil at the two study regions. 

Region pH Ec 

(dS m-1) 

Nitrogen 

(mg kg-1) 

Phosphorous 

(mg kg-1) 

Potassium 

(mg kg-1) 

Organic 

matter (%) 

Sand 

(%) 

Clay 

(%)  

Loam  

(%)   

Mojen 7.2 0.94 0.041 46.4 604 0.31 20 18 62 

Jolge Rokh 7.7 3.4 0.063 9.6 427 0.67 42 14 44 

 

 

various interpolation techniques in order to 

predict, classify, and prepare accurate maps 

of vegetation, biomass, and function changes 

etc., and their main objective is to prepare 

reliable maps for accurate management in 

the fields (Zhang et al., 2008; Wiles, 2005). 

Therefore, our main objective in this study 

was to examine the ability of the Radial 

Basis Function Neural Network (RBF-NN) 

model for predicting the spatial distribution 

function and interpolation of A. retroflexus 

L  in areas not sampled, based on data 

obtained from samples of two potato fields 

in two areas with different climate 

conditions.  

 MATERIALS AND METHODS 

Two field experiments were carried out in 

two potato fields of two different 

agricultural sites including Mojen of 

Shahroud, in Semnan Province (36
o 

26' N, 

54
o 

39' E), and Jolge Rokh of Torbat 

Heidarieh, in Khorasan Razavi Province (36
o 

35' N, 28
o 

59' E), Iran, in July 2012. The 

Jolge Rokh and Mojen fields were 100×200 

and 35.5×70 m in size, respectively. In 

Mojen and Jolge Rokh Regions, the soil 

texture was silt loam and loam, respectively 

(Table 1). A 3- year rotation of wheat-

potato-potato was implemented in the Mojen 

field, and in the Jolge Rokh field, a steady 

rotation of cereal-fallow–potato had been 

done. Paraquat (1, 10-dimethyl-4, 40-

bipyridinium) (Gramoxone 20% SL) was 

applied to the Mojen field at a rate of 480 

gai ha
-1

 during the third week after planting, 

to control annual weeds. However, in the 

Jolge Rokh field, metribuzin (4-Amino-6-

tert-butyl-3-methylsulfanyl-1, 2, 4-triazin-5-

one) (Sencor, 70% WP) was used at a rate of 

500 gai ha
-1

 as pre-plant soil incorporation. 

Sampling was done on square grids in 

dimensions of 10×10 m in September, 2012. 

At each node of the grid pattern, the 

numbers of weed seedlings were counted in 

the two fields within a permanent 0.5×0.5 m
2
 

quadrate, perpendicular to crop rows, giving 

a total of 36 and 200 sampling units on the 

first (Mojen) and second (Jolge Rokh) fields, 

respectively. 

Data Preprocessing 

Firstly, the data were divided randomly 

into two groups: 80% training data and 20% 

test data. If this classification did not lead to 

the desirable results, this step would be 

repeated again (Zarifneshat et al., 2012). 

Prior to any ANN training process with the 

trend free data, the data must be normalized 

over the range of [0, 1]. The most commonly 

employed method of normalization involves 

mapping the data linearly over a specified 

range, whereby each value of a variable x is 

transformed as follows: 

minminmax

minmax

min )( rrr
xx

xx
xn 






 (1) 

Where, x  is the original data, nx
the 

normalized input or output values, xmax and 

xmin, are the maximum and minimum values 

of the concerned variable, respectively. rmax 

and rmax correspond to the desired values of 

the transformed variable range. A range of 

0.1–0.9 is appropriate for the transformation 

of the variable on to the sensitive range of 

the sigmoid transfer function (Rohani et al., 

2011)   

RBF Neural Network 

The RBF network structure has been 
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Figure1. The structure of the RBF network with one hidden layer (Vakil-Baghmisheh, 2002). 

 

shown by a hidden layer in Figure 1. The 

network inputs and outputs are the spatial 

coordinates and the density of weeds, 

respectively. The input layer of the network 

includes three neurons as the network inputs 

include the bias factor and spatial 

coordinates. Coordinates are pairs (X, Y) in 

a two-dimensional space referenced to 

location of sampling points. The output layer 

includes only one neuron that indicates the 

density value of A. retroflexus L. The 

optimized values of learning parameters η1, 

η2, and η3 were selected by trial and error, 

and based on the method explained by 

Rohani et al. (2011). The network is in 

charge of vector mapping, i.e., by inserting 

the input vector, X
q
 the network will answer 

through the vector Z
q
 in its output (for q= 

1,...,Q). The aim is to adapt the parameters 

of the network in order to bring the actual 

output Z
q
 close to corresponding with the 

desired output dq (for q= 1,...,Q). For 

network training, Back propagation with a 

Declining Learning-Rate Factor (BDLRF) 

algorithm is employed. The computer code 

of this algorithm was also developed in 

MATLAB software. 

BDLRF Algorithm 

We also used a modified version of the 

back-propagation original algorithm (Vakil-

Baghmisheh, 2002). This training algorithm 

was initiated with a relatively constant large 

step size of learning rate and momentum 

term. Before destabilizing the network or 

when the convergence was slowed down, for 

every T repetition (3≥ T ≥5), these values 

were decreased monotonically by means of 

arithmetic progression, until they reached 

x% (equals to 5) of their initial values. 

Learning parameter (η) was decreased using 

the following equations: 

1

)1(
nQ

Tn
xn


 






  (2) 

Here, n1, ηn and η0 are the start point of 

BDLRF, the learning rate in n
th
 term of 

arithmetic progression, and the initial 

learning rate, respectively. 

The cost function used in this algorithm is 

the Total Sum-Squared Error (TSSE) and it 

is calculated as follows: 

Qq ,...,1
 

  
q k

q

k

q

k zdTSSE
2

  (3)  

Where,
q

kd
and 

q

kz
X are the k

th
 

components of desired and actual out-put 

vectors of the q
th
 input, respectively. 

Network learning occurs in two phases: 

forward pass and backward pass. The 

weights of each layer of the network are 

calculated as follows: 

3( 1) ( )mj mj

mj

E
u un n

u
 

  


  (4) 

2( 1) ( )im im

im

E
v vn n

v
 

  


  (5) 
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2 2

1 2( 1) ( )m m

m

E
n n  




  


  (6) 

i=1,...,l1 m=1,...,l2,j=1,...,l3 

Where, umj is the weight connection 

between nodes j and m, vim is the weight 

connection between nodes i and m, and σmis 

the dispersion parameter for m nodes. The 

initial values of these weights are randomly 

selected from values range [-0.1 0.1]. L1 L2 

and L3 are the number of neurons in the 

input layer, hidden layer, and output layer, 

respectively. η1, η2 and η3 are learning 

momentum for σm vim and umj, respectively, 

and their values are between [0-1] and n is 

the number of algorithm repetition 

(
Nn ,...,1

). When TSSE is lower than the 

threshold value, the algorithm is stopped 

(0.0001 is the threshold value for this study). 

Performance Evaluation Criteria of the 

Network  

To evaluate the capability of the RBF 

neural network for predicting the 

distribution and density of weeds, some 

criteria were applied, which included Mean 

Absolute Error (MAE), Root Mean Squared 

Error (RMSE) and linear regression 

coefficient values predicted by the neural 

network and the actual values and model 

Efficiency (EF). These statistical parameters 

are defined as follows: 

2

1

( )
n

i i

i

d p

RMSE
n








  (7) 

1

1
| |

n

i i

i

MAE d p
n 

 
  (7) 

𝐸𝐹 = 1 −
 (𝑑𝑖 − 𝑝𝑖)

2𝑛
𝑖=1

 (𝑑𝑖 + 𝑑 )2𝑛
𝑖=1

 

 (8) 

Where, di is the component of actual output, 

pi is the component of the predicted output 

(fitted) by the network and  is the average 

of the actual outputs and n is the number of 

variable outputs (Rohani et al., 2017). RMSE 

is the standard deviation of the residuals 

(prediction errors). Residuals are a measure 

of how far from the regression line data 

points are (Jadhav et al., 2017). A model 

with the smallest RMSE, MAE, and largest 

EF is considered to be the best (Das et al., 

2015; Rohani et al., 2017). Here, the null 

hypothesis implicates the equality of mean 

and variance of the two data series. Each 

hypothesis was tested at the probability level 

of 95% by P parameter. For the comparison 

of mean and variance, the t and F tests were 

used, respectively (Rohani et al., 2017). 

RESULTS AND DISCUSSION  

The results showed that the network's best 

performance is achieved in η1 η2= 10
-12

 and 

η3  0.95. It resulted in 150 optimums of the 

repetitions required for the network with the 

starting point (n1) in seven. Makarian and 

Rohani (2012) reported that the Multi Layer 

Perceptron (MLP) neural network for 

learning the distribution pattern of the 

Acroptilon repense based on the threshold in 

order to divide the field, in terms of the 

existence or nonexistence of the weed, 

requires 1000 repetitions. Therefore, the 

repetition number of the RBF-NN is much 

less and about 0.01% of the repetition 

number of the MLP-NN for interpolation 

and prediction of the spatial distribution of 

weeds. The comparison of the results 

obtained by applying the linear 

normalization method showed better 

performance than in non-normalization 

method. Therefore, this method was used in 

order to normalize the data, and this result is 

in accordance with the results of other 

studies (Gholipoor et al., 2013). Figure 2 

demonstrates the convergence diagram of 

the RBF-NN. The initial value of TSSE for 

A. retroflexus L. was found to be much 

higher in the Jolge Rokh Region than in the 

Mojen Region (around five-fold). This is 

due to the more drastic local changes of A. 
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Figure 2. The convergence diagram of the RBF-NN during the training stage for the data of the two 

regions (a) Mojen and (b) Jolge Rokh. q shows repetition number and TSSE the Total Sum of Square 

Errors of training stage for normalized data. 

 

Table 2. Statistical comparison of the actual and predicted values of A. retroflexus L. density by RBF-

NN. 

Statistical analysis       Performing 

       stage of network

Region

P-Value Variance P-ValueMean 
 

 

PvAvdPv
 b

Avd
 a

0.80 35.28 39.090.92 4.65  4.48TrainingMojen

0.9719.03 19.490.98 2.952.91 Testing 

0.49 17.0119.000.783.813.68 TrainingRokh

0.9328.22 29.040.995.465.44 Testing 

a 
The Actual values of the data, 

b
 The Predicted values by the neural network RBF.  

 

retroflexus L. Probably, it may be related to 

the greater variance of weed density and 

distribution in Jolge Rokh than Mojen 

Region  As seen in Figures 4 and 5, patches 

in Jolge Rokh Region are small and 

abundant but in Mojen field they are low 

and widespread. At the end of the learning 

process, the SSE obtained for both the Jolge 

Rokh and Mojen Regions was 1.173 and 

0.325, respectively. Makarian et al. (2007) 

also reported that, because of lower relative 

variance in seed bank than seedling, the 

difference between observations was greater 

at seedling level compared to seed bank.  

Table 2 shows the mean and variance 

values, as well as the comparison between 

mean and variance values of actual density 

data of A. retroflexus L. and the values 

predicted by the network at the two stages of 

training and testing of the RBF-NN for both 

the Jolge Rokh and Mojen Regions. 

According to reports by Rohani et al. (2011) 

and Gholipoor et al. (2013), in order to 

achieve better performance, the division of 

data into two sets of training and testing can 

be different in each case. No significant 

difference is observed between the statistical 

features of the predicted values and their 

actual values for the trained neural network. 

The results show that the mean and variance 

of actual and predicted values of A. 

retroflexus L. density in the two regions 

have no significant difference with each 

other (in all cases P> 0.49). The result 

related to the training stage of the network 

shows that learning parameters and other 

parameters of the network have been well 

optimized. Furthermore, based on the results 

obtained from the testing of the network 

with a data collection separated from the 

training data collection, it can be claimed 

that the network can have a good prediction 
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Table 3. Performance of the RBF-NN in prediction of A. retroflexus L. distribution in the two stages 

of training and testing. 

EF
 c

RMSE
 b
 

 

MAE
 a
 Region 

Total 

data 
Testing

Training Total 

data
Testing

Training

99.092.0 85.093.0 51.048.0 51.0Mojen 

99.082.022.091.041.015.047.0Jolge Rokh 

a
 Mean Absolute Error; 

b
 Root Mean Square Error, 

c
 is model Efficiency. 

  
(a) (b) 

Figure 3. Linear regression relationship and coefficient of determination between the Actual data 

(Adv) and Predicted data (Pv) for the sum of the data of the two regions (a) Jolge Rokh and (b) 

Mojen. 

 

in the new conditions (generalizability 

capability).  

The performances of the RBF-NN planned 

at both the data training and testing stages 

were compared with each other (Table 3). It 

was quite evident that RMSE and MAE at the 

training and testing stages were very limited, 

indicative of a high capability of the 

artificial RBF-NN in interpolation of the 

distribution and density of A. retroflexus L.. 

As the data of the testing stage seemed new 

to the neural network, the error value at the 

testing stage was lower than at the training 

stage. As the results show (Table 3), RMSE 

and MAE values derived from both the 

training and testing stages for the Mojen are 

greater than Jolge Rokh Region. The reason 

for this may be due to the variability and 

pattern of weed distribution in the two 

regions such that the inherent function of 

weed distribution in the Mojen Region is 

more complex compared to the Jolge Rokh. 

Therefore, the values of neural network 

errors in the fitting of distribution function 

for Mojen Region are more than Jolge Rokh. 

The efficiency value of the RBF model for 

all the data in each of the two regions was 

0.99, so, the neural network model was 

successful in the prediction of patterns of A. 

retroflexus L. density in the field. 

Figure 3 demonstrates the coefficients of 

determination and also the relationship of 

linear regression between the actual density 

of the weed and densities predicted by the 

RBF-NN. If the linear equation of actual and 

predicted values by the neural network have 

high coefficients of determination (R
2
), low 

y-intercept (near to zero) and a slope near to 

1 (pv= 1.000 Adv+0.000), the best result is 

attained (Rohani et al., 2011). The 

coefficients of determination between the 

actual and predicted data are very high (R
2
> 

0.96). Furthermore, the linear regression 

equation between them has slopes near to 1 

and low y-intercepts. Therefore, such 

networks can be trusted. As the variability of 
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Figure 4. Map of population distribution and density of A. retroflexus L. seedling in interpolated mode 

by the RBF-NN model for the Jolge Rokh Region. Legend shows the number of weeds per square meter. 

 

Figure 5. Interpolated map of population distribution and density of A. retroflexus L. in interpolated 

mode by the RBF neural network model for the Mojen Region. (no m
-2

) in legend refer to the number of 

weed per square meter. 

 
A. retroflexus L. density in the Mojen 

Region is higher than in the Jolge Rokh 

Region, y-intercept and the slope of 

regression line for the Mojen Region toward 

the Jolge Rokh Region are nearer to 1 and 

zero, respectively. 

Zhang et al. (2008) studied the distribution 

patterns of insects on the surface of a 

grassland using means of artificial neural 

networks. The same researchers mentioned 

that recognition performance of neural 

networks depended upon not only the 

ecological scale but also the criterion for 

classification, because under the uniform 

criterion, recognition efficiency of linear 

methods became weaker as ecological scale 

became coarser. Also, in the output of the 

neural network, the number of available data 

for training the network and finding the 

optimal values of their weights and the 
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degree of complexity inherent functions can 

be effective (Vakil-Baghmisheh, 2002; 

Zhang et al., 2008). Therefore, it seems that 

differences in management practices and, 

probably, the environmental conditions of 

the two regions under study affected the 

ecological behaviors of A. retroflexus L. 

and, besides the difference in the number of 

available data for training the network and 

feature of inherent functions, resulted in 

different behaviors of this weed in both 

regions. As we observed, these differences 

influence the network's function. Tang et al. 

(2016) state that weed density can influence 

the accuracy of weed distribution 

algorithms, such that the accuracy of 

algorithm decreases when there are fewer 

weeds in corn fields. But, when there are a 

lot of weeds in corn fields, the accuracy of 

this paper algorithm decreases, and the 

algorithm can still correctly identify the 

center line of the crop rows. Therefore, our 

results confirm that the neural network can 

be a useful tool in the field of ecological 

behavior studies.  

Weed Spatial Distribution 

Figures 4 and 5 demonstrate the 

interpolated map of A. retroflexus L. in the 

Jolge Rokh and Mojen Regions, 

respectively, and show that the A. 

retroflexus L. has a heterogeneous 

distribution pattern in the two fields. In other 

words, numerous small and large weed 

patches were observed in the Jolge Rokh 

field, which does not follow a specific 

pattern. In the Mojen field, two spots of A. 

retroflexus L. were observed, which had 

infested a large part of the field. Distribution 

patterns of the population of the weeds 

demonstrate the proliferation method (sexual 

or asexual), the mechanism of seed 

distribution (by means of wind for small 

seeds or seeds having umbellate, water for 

small or winged seeds, machinery, predators 

activity etc.), seed size, existence or 

nonexistence of dormancy in seeds, soil-

related factors (moisture, nitrogen, and other 

fertilizers, as well as texture and organic 

matters of the soil), and field management 

(Shaukat and Siddiqui, 2004; Streibig et al., 

1984). Burks et al., (2005) stated that A. 

retroflexus L. seeds, along with dried 

inflorescence, are easily displaced on the 

fields by the wind in winter. A. retroflexus 

L. is an annual species that proliferates by 

seed; its seeds do not have a specific 

distribution mechanism but the large number 

of seeds may result in the success of this 

species in agricultural ecosystems (Costea et 

al., 2004). Although the seeds of this weed 

are tiny, they are not adjusted for 

distribution by wind, therefore, a large part 

of the seeds of this weed are scattered in a 

distance of 0.2 to 2 meters from the mother 

plant (Costea et al., 2004). According to 

Goslee et al. (2006), interactions among 

rainfall, temperature, soil texture, and 

management methods result in 

heterogeneous distribution of weeds in the 

fields, while, actually, a large part of this 

heterogeneity in the distribution of weeds 

populations, seed banks, and biomass of 

crops on the fields results from management 

practices (Makarian et al., 2007). However, 

annual proliferous species can have patchy 

distribution by means of seed, and even 

preserve the stability of their patches for 

several years. Therefore, population 

predictions of these weed species in 

agricultural fields for site specific 

management purposes would be useful 

(Heijeting et al., 2007). Therefore, it seems 

that due to the effective factors in 

distribution of this weed and its biological 

features, its different distribution in the 

fields under our study, obtained by 

application of neural network models, can be 

expected.  

CONCLUSIONS  

Accurate weeds identification, 

classification, and precision spraying are the 

main trend of modern agricultural 

development. This study demonstrated that 

the RBF neural network with a high 
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precision (99% efficiency, 0.97coefficient of 

determination, average error less than 0.51, 

and 0.41 for the Mojen and Jolge Rokh 

Regions, respectively) was successful in the 

prediction and interpolation of distribution 

patterns of A. retroflexus L. In other words, 

the network was successful in the prediction 

of the weed status at other points, by means 

of 80% of sample point data. Furthermore, 

the maps obtained from the interpolation of 

the weed population demonstrated that A. 

retroflexus in the Mojen field had an array 

of spots. However, in the Jolge Rokh 

Region, numerous small and big spots of the 

weed were observed in the field, which 

indicated that these different distribution 

patterns resulted from the difference in 

management practices at the two fields. One 

of the problems of site-specific management 

is a lack of diagnosis of patches on the 

fields, or a lack of detailed practical maps 

and the large costs of sampling (Dille et al., 

2003). It seems that the RBF neural network 

can resolve these problems by proper 

prediction. In particular, when the weed has 

spot distribution, it becomes possible to 

conduct site-specific management of the 

weeds, in which time and costs can be 

saved, and the pollution that results from 

overall use of herbicides in the field will 

abate. 
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پیش بینی توزیع مکانی علف هرز تاج خروس با استفاده از مدل شبکه عصبی مصنوعی 

 (RBFتابع پایه شعاعی )

 دخت. ر. فکور شرقی، ح. مکاریان، ع. درخشان شادمهری، ع. روحانی، و ح. عباسا

 چکیده

ی ضريری است. تخمیه تًزیع مکاوی علف َای َرز بٍ مىظًر کىترل متىاسب با مکان آوُا امر

بىابرایه ایه پژيَص بٍ مىظًر پیص بیىی ي دريویابی تًزیع مکاوی جمعیت علف َرز تاج خريس با 

( در سطح دي مسرعٍ زیر کطت سیب زمیىی RBFاستفادٌ از ضبکٍ عصبی مصىًعی تابع پایٍ ضعاعی )

وقطٍ بترتیب از  33ي  200ادٌ َای مربًط بٍ جمعیت علف َرز از طریق ومًوٍ برداری از اوجام ضذ. د

 1331سطح دي مسرعٍ تجاری سیب زمیىی در مىطقٍ جلگٍ رخ تربت حیذریٍ ي مجه ضاَريد در سال 

برای ارزیابی قابلیت ضبکٍ عصبی در پیص بیىی تًزیع مکاوی علف َرز از مقایسٍ آماری ي بذست آمذ. 

تبییه رگرسیًوی خطی بیه مقادیر پیص بیىی ضذٌ مکاوی تًسط ضبکٍ عصبی ي مقادیر ياقعی آوُا  ضریب

، RBFي ویس معیارَای خطا ي بازدٌ مذل استفادٌ ضذ. وتایج وطان داد کٍ ضبکٍ عصبی آمًزش دیذٌ 

%، ضریب 100دارای قابلیت بالایی در پیص بیىی مکاوی علف َرز در وقاط ومًوٍ برداری وطذٌ با بازدٌ 

. بًد بٍ ترتیب برای مىطقٍ مجه ي جلگٍ رخ 00/0ي  04/0ي متًسط خطای کمتر از  333/0تبییه 

مجمًعٍ دادٌ َای ياقعی  بیه مقادیر يیژگی َای آماری وتایج وطان داد کٍ در مرحلٍ آزمایصَمچىیه، 

بر  ت.تفايت معىی داری يجًد وذاض RBFتًسط ضبکٍ عصبی ي پیص بیىی ضذٌ مکاوی علف َرز 

می تًاوذ بٍ عىًان یک ريش جایگسیه برای تخمیه تابع  RBFاساس وتایج آزمایص، ضبکٍ عصبی 

 تغییرات مکاوی علف َرز یکسالٍ ای با پراکىص تقریبا تصادفی ماوىذ تاج خريس استفادٌ ضًد. 
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