Optimizing Nutrient Levels for Enhanced Rose Growth and Quality

Saeed Khosravi¹, Leyla Cheheltanan¹, Ali Tehranifar^{1*}, and Yahya Selahvarzi¹

ABSTRACT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

This study evaluated the impact of different nutrient supply levels on the growth, flowering, and biochemical responses of two rose (Rosa hybrida L.) cultivars, 'Samurai' and 'Jumilia', under soilless culture. The aim was to optimize fertilizer use for improved flower quality and sustainability. A factorial experiment with four Hoagland nutrient solution levels (25%, 50%, 75%, and 100%) was conducted in a completely randomized design. Increasing nutrient concentrations improved flower diameter, stem length, leaf area, and vase life, while root length declined. Application of 75% nutrient solution increased chlorophyll a content by 38.44% and stem length by 11.19%, and also enhanced nutrient accumulation in roots and leaves, particularly in 'Samurai'. At this level, antioxidant enzyme activities in 'Samurai' rose increased, with superoxide dismutase (SOD) rising by 3.57%, catalase (CAT) by 20%, and peroxidase (POD) by 12.53%. The 100% solution resulted in the highest nitrogen and magnesium levels in 'Jumilia' leaves, with 1.34- and 1.57-fold increases, respectively. Lower concentrations (25% and 50%) reduced chlorophyll content and membrane stability. The 75% Hoagland nutrient supply offered optimal growth, flower quality, and resource efficiency, supporting sustainable floriculture, profitability, and export-quality production while reducing fertilizer use and environmental impact.

20 **Keywords**: Antioxidant enzyme activity, Nutrient solution concentration, *Rosa hybrida*, Vase life.

22 23

24

25

26

27

28

29

30

31

INTRODUCTION

Fertilizers are essential in modern agriculture to meet plant nutrient demands. However, their excessive use can harm the environment. A practical approach to minimize environmental impacts is reducing the concentration of applied fertilizers and nutrient solutions.

Rose is a widely cultivated plant valued for its beauty, fragrance, medicinal uses, and essential oil. Its frequent blooming makes it ideal for landscaping (Khosravi et al., 2025). In Iran, the cultivated area of rose includes about 210 ha in open fields and 185 ha under greenhouse conditions (Horticultural Statistics Yearbook, Ministry of Agriculture-Jahad, 2024). Proper nutrient management significantly affects rose growth and flower quality,

¹ Department of Horticultural Science and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: tehranifar@um.ac.ir

In Press, Pre-Proof Version

- including stem size, color, and shelf life (Savvas, 2002; Khosravi et al., 2025). However, different cultivars respond differently to nutrient solution compositions due to varying nutritional needs (Khoshgoftarmanesh et al., 2008).
 - Hydroponics has emerged as a major method in floriculture, where optimal nutrient concentration and composition are essential for high yield (Sirin, 2011).
 - Meanwhile, nutrient ratios critically affect plant physiology and yield (Khoshgoftarmanesh et al., 2008). In soilless systems, nutrient composition depends on factors like plant stage, solution volume, uptake rate, reformation frequency, and environmental conditions (Melo & dos Santos, 2011; Sirin, 2011). Hoagland's nutrient solution is widely used in hydroponics and supports the growth of various crops (Waheed et al., 2019). So, it is necessary to apply good and appropriate nutrient solutions to rose plants for great yield and well competent flower production in hydroponic culture.
 - While fertilizers enhance crop yield and quality, excessive or unbalanced use increases costs and environmental risks. In roses, improper nutrition reduces floral quality and yield. Supplying a balanced dose of fertilization improves use efficiency, reduces stress and improves production. In other words, the aim of optimizing fertilizer consumption is to achieve maximum income with minimum fertilizer consumption. This is the hypothesis that controlled fertilizer consumption not only improves the growth and performance of roses but also improves the absorption of nutrients by plants. A better understanding of fertilizer application rates for growth, yield, and mineral absorption can help develop optimal strategies for rose fertilization. Therefore, the main aim of this study is to optimize fertilization using four ratios of Hoagland nutrient solution (25%, 50%, 75% and 100% fertilizer) to improve the quality, yield and growth of two cut rose cultivars.

MATERIALS AND METHODS

Plant Material, Treatments and Growth Conditions

Two grafted rose (Rosa hybrida L.) cultivars, 'Samurai' and 'Jumilia', were grown in pots containing 100% perlite (particle size 3–5 mm) as the growth medium, which was selected due to its excellent aeration, drainage capacity, and inert nature, making it suitable for hydroponic rose cultivation (Khosravi et al., 2025). 'Samurai' has dark red, high-petal flowers on long, sturdy stems, while 'Jumilia' is a bicolor rose with creamy white petals edged in pink and medium to large blooms. They were selected as two contrasting but commercially important rose cultivars, widely grown and traded, enabling meaningful comparisons. Plants were

65	cultivated under greenhouse conditions using a hydroponic system equipped with an open
66	dripper irrigation setup to ensure uniform delivery of water and nutrients. To facilitate proper
67	establishment, both cultivars were irrigated with tap water for the first three days, and its
68	chemical composition was analyzed prior to the experiment. The concentrations of major
69	nutrient elements in the water were as follows: Mg (0.0022%), K (0.0003%), Ca (0.0090%),
70	SO ₄ (0.0249%), and Cl (0.0001%). Thereafter, plants received an N: P: K (10:50:10) fertilizer
71	to stimulate root development and were treated with methyl thiophanate fungicide (0.5:1000)
72	for one week to prevent potential fungal infections. Following this period, plants were
73	fertigated with Hoagland's full-strength nutrient solution.
74	Environmental parameters in the greenhouse were carefully controlled, with daytime and
75	nighttime temperatures maintained at 25 \pm 2 °C and 16 \pm 2 °C, respectively. The average
76	relative humidity was 65%, and the mean midday photosynthetic photon flux density (PPFD)
77	was $240 \pm 5 \mu mol \ m^{-2} \ s^{-1}$. A factorial experiment was carried out in a completely randomized
78	design (CRD) with four nutrient concentrations based on the standard Hoagland solution. Each
79	treatment was replicated four times, with six plants per replication. In total, 192 rose plants
80	were studied (96 plants per cultivar, with four nutrient treatments, four replications, and six
81	plants per replication).
82	The experimental treatments including concentrations of 100% Hoagland, 75% Hoagland, 50%
83	Hoagland, and 25% Hoagland based on standard Hoagland fertilizer formulation (Table 1)
84	were applied to each treatment separately after adjusting the pH of the solution at the range of
85	5.6-5.9. It is worthy to note that the volume of the required water for the rose plants was not
86	changed in each treatment and only the concentration of the Hoagland solution was decreased.
87	These regimes were applied for 180 days. At experiment's end, key parameters were assessed.
88	EC and pH were monitored daily, with EC ranging from 900 to 1900 $\mu S\ cm^{^{}}$ based on
89	treatment.

Morphological Traits Measurement

Stem length (crown to apex) was measured with a ruler and categorized into six quality classes according to the grading standards of the Iranian Rose Society: $A++ (\ge 90 \text{ cm})$, A+ (75-89 cm), A (60–74 cm), B (45–59 cm), C (30–44 cm), and D (<30 cm). Root length was measured with a ruler; root volume by water displacement. Flower length and diameter were recorded using a digital caliper. Leaf area (cm²) was measured with a WinArea-UT-11 leaf areameter.

In Press, Pre-Proof Version

98 Vase Life

- 99 Cut flowers were placed in 500 mL distilled water under controlled conditions (25±2°C,
- 100 65 ± 5% RH, 12 h light photoperiod, light intensity of $\frac{20 \, \mu \text{mol m}^2 \text{s}^-}{\text{(PPFD}^1)}$. Vase life (days)
- was recorded as the time until petal drop or neck bending (Jin et al., 2006).

102103

Relative Water Content

Measured using five discs from fully expanded young leaves based on Cherki et al. (2002):

105
$$RWC = \left[\frac{(FW - DW)}{(TW - DW)}\right] \times 100$$

- where FW = fresh weight, TW = turgid weight (after 4 h rehydration in darkness), DW =
- dry weight (after 24 h at 70 °C).

108109

Membrane Stability Index

110 Calculated following Singh et al. (2008):

111
$$MSI = 1 - \frac{c1}{c2} \times 100$$

where C1 and C2 are conductivity after 30 min at 40 °C and 15 min at 100 °C, respectively.

113114

Chlorophyll Determination

- 115 Chlorophyll a and b were extracted in 80% acetone from 0.1 g fresh leaf, centrifuged, and
- absorbance was recorded at 664 and 647 nm (Lichtenthaler, 1987). Results (mg g⁻¹ FW) were
- 117 calculated using standard equations.

118 Chlorophyll a (mg/gFW) =
$$\frac{12.25(A_{664}) - 2.79(A_{647}) \times \text{Volume made}}{\text{Wt of the sample}}$$

119 Chlorophyll b (mg/g FW) =
$$\frac{21.21(A_{647}) - 5.10(A_{664}) \times \text{Volume made}}{\text{Wt of the sample}}$$

where Wt is the weight of the sample, and $A\lambda$ is the absorption at wavelength λ (nm).

121122

Antioxidant Enzyme Activity

- Enzymes were extracted from 0.2 g frozen tissue (Ozden et al., 2009):
- 124 CAT: H₂O₂ decomposition at 240 nm (Chen et al., 2009)
- POD: o-dianisidine oxidation at 470 nm (pH 7.4)
- SOD: Inhibition of NBT photoreduction at 560 nm (Giannopolitis & Ries, 1977).
- 127 Activities expressed as µmol min⁻¹ mg⁻¹ protein.

129	Mineral Elements
130	Oven-dried samples were dry-ashed (500 °C, 4 h) and extracted with 2N HCl.
131	Concentrations of K, P, Ca, Fe, and Zn were determined via ICP-MS (Volpin & Elad, 1991).
132	Total N was measured using modified macro-Kjeldahl with salicylic acid (Kacar, 1994).
133 134	Statistical Analysis
135	Data were analyzed using SAS (v.9.4), and treatment means were compared by LSD test at
136	the 5% significance level ($p \le 0.05$). Pearson correlation analysis was performed using SAS.
137	Software. ver.9.4. Principle component analaysis (PCA) was performed using Minitab sotware
138	(ver.16)
139 140	RESULTS
141	Root length and volume
142	Root length increased with decreasing Hoagland concentration in both cultivars. The
143	maximum length (38.25 mm) was recorded in 'Samurai' at 50%, while 'Jumilia' showed a
144	marked decrease at 75% (Figure 1A). Root volume was highest in 'Jumilia' at 25% (98.00 cm ³),
145	with no significant difference from 75% and 100%. In contrast, 'Samurai' had the lowest
146	volume (58.50 cm³) at 25%. Across treatments, 'Jumilia' consistently exhibited higher root
147	volume than 'Samurai' (Figure 1B).
148 149	Stem length
150	Hoagland concentrations significantly affected stem length in both cultivars (Figure 1C).
151	The longest stems (69.64 mm) were recorded in 'Samurai' at 75% Hoagland, with no
152	significant difference from 100%. Generally, 'Samurai' marginally outperforming 'Jumilia'
153	under all Hoagland solution. According to standard cut flower grading criteria, stem length
154	quality was classified as grade A.
155 156	Flower diameter and length
157	With the increase in the concentration of Hoagland solution to 100%, there was an increase
158	in flower diameter and length. Plants treated with 50% Hoagland solution showed the lowest
159	flower diameter and length (Figure 2A and 2B). Nonetheless, there was no significant
160	difference in flower length between 75% and 25% Hoagland solution in rose cultivars.
161 162 163	

	111 11 CSS, 11 C-11 OOI VCI SION
164	Leaf area
165	Leaf area increased as a result of increase in the concentration of Hoagland solution in both
166	cultivars. The maximum area (807.17 cm²) was observed in 'Samurai' at 100%. In 'Jumilia',
167	leaf area declined notably under 25% and 50% Hoagland (508.5 and 511.04 cm², respectively)
168	(Figure 1D).
169 170	Vase life
171	The plants fertigated with 100% Hoagland solution caused an increase in vase life of rose
172	flowers (15.97%) compared with the lowest value in 25% Hoagland solution (Figure 2C).
173 174	Relative water content and membrane stability index
175	The highest relative water content (67.29%) was observed in 'Jumilia' at 75% Hoagland,
176	while 'Samurai' had the lowest (58.19%) at 50% (Figure 3E). However, the maximum
177	membrane stability index recorded in plants treated with 100% Hoagland nutrient solution
178	(76.74%), having no significant differences occurred in rose flowers treated with 75% and 50%
179	Hoagland solution. The lowest membrane stability index was obtained in both cultivars
180	fertigated with 25% Hoagland nutrient solution (72.05%) (Figure 3C).
181	
182	Antioxidant enzyme activity
183	Catalase activity increased by 16.66% in roses treated with 75% Hoagland compared to the
184	lowest value at 25% (1.60 μmol min ⁻¹ mg ⁻¹ protein), with no significant difference at 100%
185	(Figure 3A). The highest peroxidase activity was recorded at 100% and 75% Hoagland (42.85)
186	and 42.65 µmol min ⁻¹ mg ⁻¹), while the lowest (37.90 µmol min ⁻¹ mg ⁻¹) occurred at 25% (Figure
187	3B). Superoxide dismutase activity varied significantly across cultivars and treatments.
188	Generally, 'Samurai' is as higher than under all concentrations. In 25% Hoagland nutrient
189	solution, 'Jumilia' had the lowest superoxide dismutase enzyme activity (1.44 U mg ⁻¹ protein),
190	having no significant difference with 75% Hoagland nutrient solution in this cultivar. Cultivar
191	'Samurai' in 75% Hoagland nutrient solution results in the greatest rise in superoxide dismutase
192	enzyme activity (2.03 1.44 U mg ⁻¹ protein), while having no significant difference with some
193	concentrations in both cultivars (Figure 3D).

Photosynthetic pigments (chlorophyll a, b and total)

194

195

196

197

Photosynthetic pigments were influenced by Hoagland concentrations. In 'Samurai', chlorophyll a peaked at 100% and 75% Hoagland (27.21 and 27.01 mg g⁻¹, respectively), while

In Press, Pre-Proof Version

lower values were observed at 50% and 25% (Figure 4A). In 'Jumilia', the highest chlorophyll b (29.43 mg g⁻¹) and total chlorophyll (54.52 mg g⁻¹) occurred at 100% Hoagland. Both cultivars showed reduced pigment content at lower concentrations (Figures 4B, 4C).

Mineral elements

Leaf nitrogen content was the highest in 'Jumilia' at 100% Hoagland (31.95%), while the lowest (3.13%) was found in 'Samurai' at 75% (Table 2). Phosphorus increased by 87.80% in 'Samurai' (100%) and 'Jumilia' (25%) compared to the lowest in 'Samurai' at 50%. Maximum potassium (1.65%) and magnesium (66.66% increase) were recorded in 'Samurai' at 100%, while zinc content peaked in 'Jumilia' (0.011%) and 'Samurai' (0.010%) under 100% and 75%, respectively. Iron increased by 3.33% in 'Samurai' (100%), and calcium reached it's the highest in 'Jumilia' (100%), with a 41.80% rise over the lowest in 'Samurai' (50%).

Treatment with 100% Hoagland solution significantly increased root nutrient concentrations in both cultivars, especially in cv. 'Samurai'. This cultivar showed the highest root nitrogen (34.87% increase), phosphorus (2.49%), calcium (55.60% increase), and magnesium (29.41% increase) compared to the lowest values at reduced Hoagland levels (Table 3). With the decrease in the concentration of Hoagland solution to 25%, there was a reduction in root potassium content in both cultivars, that the highest content was observed in cv. 'Samurai' supplied with 100% Hoagland solution treatment (0.76%). The maximum and minimum concentration of iron in root was recorded in cv. 'Samurai' fertigated with 100% Hoagland solution and 25% Hoagland solution, respectively. In cv. 'Jumilia', 100% Hoagland also boosted root zinc by 55.56% relative to its minimum in 'Samurai' under 25% Hoagland.

Correlation

Significant correlations were observed among physiological, biochemical, and morphological traits, revealing interrelated growth responses. Flower length was strongly and positively correlated with flower diameter. Stem length showed positive associations with both stem diameter and leaf area, indicating coordinated vegetative growth. In contrast, flower traits (length and diameter) were negatively correlated with stem traits, suggesting a trade-off between vegetative and reproductive development. Leaf area aligns positively with chlorophyll content and membrane stability, linking it to photosynthesis and cell health. Chlorophyll a, b, and total chlorophyll increases photosynthetic efficiency. Relative water content is positively associated with flower traits and antioxidant enzymes (CAT, POD), underscoring its role in maintaining floral quality under water-limited conditions. Antioxidant enzymes (CAT, SOD,

In Press, Pre-Proof Version

POD) are interrelated and linked to physiological traits, with catalase strongly related to vase life. Furthermore, nutrient elements such as magnesium, potassium, and phosphorus demonstrate strong positive correlations with antioxidant enzyme activities and total chlorophyll, highlighting their roles in enhancing metabolic processes and stress tolerance. Total chlorophyll also reveals strong positive relationships with chlorophyll a and b and leaf

iron content, reflecting coordinated pigment accumulation and nutrient status (Table 4).

Principal component analysis (PCA)

- Principal component analysis revealed that over 75% of the total variance was explained by the first two components, with PC1 and PC2 accounting for 41.7% and 33.8%, respectively (Figure 5a). The results also showed a high correlation pattern between some variables, such as total chlorophyll, leaf and root potassium, magnesium, and phosphorus in the first component, and stem length, leaf area and superoxide enzyme activity in the second component. The biplot indicates that higher Hoagland concentrations are linked to increased pigment and nutrient accumulation (PC1), whereas vegetative growth and antioxidant activity contribute to variation along PC2 (Figure 5b).
- contribute to variation along PC2 (Figure 5b).

 Cultivars treated with 100% Hoagland solution were positively associated with traits loading on PC1 (primarily those related to chlorophyll content and nutrient concentrations). In contrast, lower concentration treatments such as Cultivars 'Jumilia' and 'Samurai' fertigated with 25% Hoagland solution are clustered on the negative side of first component, indicating lower association with these traits (Figure 5c).

DISCUSSION

The formulation, concentration, and composition of nutrient solutions are critical determinants of plant performance and yield in hydroponic systems, as plant growth relies entirely on these solutions. According to previous studies, both overly diluted and highly concentrated nutrient solutions can negatively affect plant growth and reduce yield in certain species (spinach, rocket, or lettuce cultivars) (Hosseini et al., 2021). Moreover, choosing the inexpensive and economic nutrient solution as well as the analysis of cost in hydroponic technique are expected (Melo & dos Santos, 2011).

Optimal nutrient solution concentration is a key factor in maximizing root development in hydroponic crops. In this study, increased root length and volume at lower Hoagland concentrations were likely due to enhanced nutrient uptake efficiency, which promotes overall plant growth (Baiyin et al., 2021).

Key morphological traits of cut flowers include color, scent, size, architecture, number per stem, and vase life (Al-Ajlouni et al., 2017). In this study, rose growth and floral traits improved under 100% Hoagland solution, likely due to increased plant biomass, consistent with findings in bedding plants (Kang & van Iersel, 2002). However, 75% Hoagland also produced acceptable stem length for cut flower export. Excessively high nutrient concentrations, due to elevated electrical conductivity (EC), negatively affected growth—while moderate EC levels have been shown to improve traits like leaf area and stem length (Ding et al., 2018; Hosseini et al., 2021). High EC can induce salinity stress, reducing osmotic potential and water uptake, which limits cell expansion and causes ion imbalances (Albornoz & Lieth, 2015; Ding et al., 2022). Conversely, low nutrient concentrations can also limit growth. Thus, managing EC by adjusting nutrient levels is crucial for maintaining floral quality. Similar reductions in floral traits due to excess nutrients have been reported in Calla (Scagel & Schreiner, 2006) and other lily cultivars (Al-Ajlouni et al., 2017).

Postharvest life of rose flowers is defined by the period before wilting or petal curling occurs (Khosravi et al., 2025). The shortest vase life was observed in roses treated with 25% Hoagland solution. Alterations in chemical and physiological processes shorten flower longevity, accelerating senescence during long-distance transport and marketing (Alaey et al. 2011). The decline in relative water content, membrane stability and calcium content due to the inadequate application of Hougland nutrient solution resulted in decrease in rose vase life.

Antioxidant enzyme activities serve as key indicators of plant responses to biotic and abiotic stresses (Ding et al., 2018; Cheheltanan et al., 2024). In this study, the activities of SOD, POD, and CAT increased under high EC conditions (100% and 75% Hoagland solution), while the lowest activities were observed at 25% Hoagland concentration. Elevated CAT and POD activities under high EC suggest their critical role in mitigating stress by detoxifying reactive oxygen species (Ding et al., 2018; 2022). Specifically, SOD, CAT, and POD scavenge superoxide radicals and hydrogen peroxide, with CAT converting hydrogen peroxide to water, and POD using phenolic compounds or antioxidants to break it down (Chen et al., 2009). This upregulation of antioxidant enzymes under stress conditions likely contributes to maintaining plant growth (Cheheltanan et al., 2024), as supported by previous studies (Ding et al., 2018).

Low fertilizer concentrations often reduce plant growth and chlorophyll content due to mild nutrient deficiencies, while excessive levels may induce salt stress and growth inhibition (Kang & van Iersel, 2002). Similar responses have been reported in New Guinea impatiens (Kent & Reed, 1996).

In Press, Pre-Proof Version

In our experiment, roses treated with the lowest concentration of Hoagland nutrient solution showed signs of mineral deficiency. Nutrient scarcity limited leaf growth and leaf area index, likely due to reduced photosynthesis and impaired cell elongation (Roosta & Afsharipoor, 2012). Nitrogen deficiency, linked to smaller leaf cells, was associated with reduced water conductance and tissue hydration. Phosphorus deficiency hindered leaf cell expansion or increased cell density per unit area, resulting in smaller, dark green leaf sheaths (Roosta & Afsharipoor, 2012). However, application of 100% Hoagland nutrient solution increased phosphorus content, which improved flower primordia formation and enhanced both flower number and size in roses (Dangi et al., 2019). Additionally, optimal vegetative growth, particularly leaf area expansion, was closely linked to adequate nitrogen levels in leaves and roots, achieved through a balanced nutrient supply (Roosta & Afsharipoor, 2012). Higher calcium content in roots compared to leaves is likely due to greater root access to calcium in the nutrient solution, consistent with Sobczak et al. (2024). Adequate iron and zinc levels in the 100% Hoagland treatment help maintain membrane protein and phospholipid stability (Marschner, 2012). In contrast, low concentrations of iron, magnesium, and zinc under diluted Hoagland solution reduce antioxidant enzyme activity, leading to elevated free radical production, lipid peroxidation, and membrane degradation (Marschner, 2012).

Overall, PCA analysis indicates that treatment effects are clearly distinguishable and closely linked to specific physiological and biochemical traits, reflecting the complex nature of plant responses. Correlation analysis further highlights the interplay between morphology, stress resilience, and nutrient status, offering useful insights for breeding and management strategies to enhance rose growth and stress tolerance.

CONCLUSIONS

In ornamental plants, understanding resource partitioning throughout the growth cycle is essential for developing efficient production systems. This knowledge enables growers to optimize flower yield while reducing input costs at precise growth stages. This study demonstrated that applying an optimal concentration of nutrient solution allows rose growers to reduce fertilizer usage and input costs while maintaining plant growth and flower quality. Application of an optimal concentration of Hoagland nutrient solution enhanced flower longevity by improving relative water content, leaf area, and mineral nutrient uptake. Overall, optimizing fertilizer use with 75% and 50% Hoagland nutrient solution can promote rose growth and development while maximizing profit through reduced fertilizer input. Moreover,

In Press, Pre-Proof Version

since 75% Hoagland solution produced Grade A stem length based on cut flower quality standards, it is recommended for export-quality rose production.

334335

REFERENCES

- 1. Alaey, M., Babalar, M., Naderi, R., and Kafi, M. 2011. Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase life of rose cut flowers. *Postharvest Biol. Technol.*, **61**:91–94.
- 2. Al-Ajlouni, M. G., Ayad, J. Y., and Othman, Y. A. 2017. Increasing nutrient levels promote growth and flower quality in lilies grown under soilless culture. *Hortic. Sci.*, 44: 179–187.
- 3. Albornoz, F., and Lieth, J. H. 2015. Over-fertilization limits lettuce productivity because of osmotic stress. *Chil. J. Agric. Res.*, **75:** 284–290.
- 4. Baiyin, B., Tagawa, K., Yamada, M., Wang, X., Yamada, S., Shao, Y., and Ibaraki, Y. 2021. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. *Plants*, **10**: 1840.
- 5. Cheheltanan, L., Khosravi, S., and Nemati, S.H. 2024. Effect of different concentrations of salicylic acid in increasing resistance to heat stress in cucumber (*Cucumis sativa* var. Rashid). *J. Hortic. Sci.*, **38:**165-177.
- 6. Chen, C., Lu, S., Chen, Y., Wang, Z., Niu, Y., and Guo, Z. 2009. A gamma-ray-induced dwarf mutant from seeded bermudagrass and its physiological responses to drought stress. *Journal of the American Society for Hortic. Sci.*, **134**: 22–30.
- 7. Cherki, G. H., Foursy, A., and Fares, K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. *Environ. Exper. Bot.*, **47:** 39–50.
- 8. Dangi, S. P., Aryal, K., Magar, P. S., Bhattarai, S., Shrestha, D., Gyawali, S., and Basnet, M. 2019. Study on effect of phosphorus on growth and flowering of marigold (*Tagetes erecta*). *J. Wildl. Biodivers.*, **1:**108–112.
- 9. Ding, X., Jiang, Y., Zhao, H., Guo, D., He, L., Liu, F., and Yu, J. 2018. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (*Brassica campestris* L. ssp. *chinensis*) in a hydroponic system. *PLOS ONE*, *13*: e0202090.

- 10. Ding, X., Zhang, H., Qian, T., He, L., Jin, H., Zhou, Q., and Yu, J. 2022. Nutrient concentrations induced abiotic stresses to sweet pepper seedlings in hydroponic culture.

 Plants*, 11: 1098.
- 11. Hosseini, H., Mozafari, V., Roosta, H. R., Shirani, H., van de Vlasakker, P. C., and Farhangi, M. 2021. Nutrient use in vertical farming: Optimal electrical conductivity of nutrient solution for growth of lettuce and basil in hydroponic cultivation. *Hortic.*, 7: 283.
- 12. Jin, J., Shan, N., Ma, N., Bai, J. and Gao, J. 2006. Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (*Rosa hybrida* L.) cv. Samantha. *Postharvest Biol. Technol.*, **40:** 236-243
- 13. Kacar, B. 1994. *Chemical analysis of plant and soil: III soil analysis*. Ankara
 University, Faculty of Agriculture. Education, Research and Extension Foundation
 Publications, 3.
- 14. Kang, J. G., and van Iersel, M. W. 2002. Nutrient solution concentration affects growth
 of subirrigated bedding plants. *J. Plant Nutr.*, 25: 387–403.
- 15. Kent, M. W., and Reed, D. W. 1996. Nitrogen nutrition of New Guinea impatiens
 'Barbados' and *Spathiphyllum* 'Petite' in a subirrigation system. *J. Am. Soc. Hortic. Sci.*,

 121:816–819.
- 16. Khoshgoftarmanesh, A. H., Khademi, H., Hosseini, F., and Aghajani, R. 2008. Influence of additional micronutrient supply on growth, nutritional status and flower quality of three rose cultivars in a soilless culture. *J. Plant Nutr.*, **31:** 1543–1554.
- 17. Khosravi, S., Tehranifar, A., Khoshgoftarmanesh, A. H., Selahvarzi, Y., and Cheheltanan, L. 2025. Morpho-chemical response of *Rosa hybrida* L. cultivars to the different source of calcium fertilizers under hydroponic conditions. *Sci. Hortic.*, 347:114181.
- 388 18. Marschner, H. (Ed.). 2012. *Marschner's mineral nutrition of higher plants* (3rd ed.). 389 Academic Press.
- 19. Melo, E. F. R., and dos Santos, O. S. 2011. Growth and production of nasturtium flowers in three hydroponic solutions. *Hortic. Bras.*, **29:** 584–589.
- 392 20. Ministry of Agriculture-Jahad. 2024. *Horticultural Statistics Yearbook*. Deputy of Horticulture, Tehran, Iran.

- 394 21. Ozden, M., Demirel, U., and Kahraman, A. 2009. Effects of proline on antioxidant 395 system in leaves of grapevine (*Vitis vinifera* L.) exposed to oxidative stress by H₂O₂. 396 *Sci. Hortic.*, **119:**163–168.
- 22. Roosta, H. R., and Afsharipoor, S. 2012. Effects of different cultivation media on vegetative growth, ecophysiological traits and nutrients concentration in strawberry under hydroponic and aquaponic cultivation systems. *Adv. Environ. Biol.*, **6:** 543–555.
- 23. Savvas, D. 2002. Hydroponic production of vegetables and ornamentals. In H. Passam
 (Ed.), Hydroponic production of vegetables and ornamentals. Athens: Embryo
 Publications. PP. 15–23.
- 24. Scagel, C. F., and Schreiner, R. P. 2006. Phosphorus supply alters tuber composition,
 flower production, and mycorrhizal responsiveness of container-grown hybrid
 Zantedeschia. Plant and Soil, 283, 323–337.
- 25. Singh, A., Kumar, J., and Kumar, P. 2008. Effects of plant growth regulators and sucrose on postharvest physiology, membrane stability and vase life of cut spikes of gladiolus. *Plant Growth Reg.*, **55**: 221–229.
- 26. Sirin, U. 2011. Effects of different nutrient solution formulations on yield and cut flower quality of gerbera (*Gerbera jamesonii*) grown in soilless culture system. *Afric*.

 J.Agric. Res., **6:** 4910–4919.
- 27. Sobczak, A., Pióro-Jabrucka, E., Gajc-Wolska, J., and Kowalczyk, K. 2024. Effect of salicylic acid and calcium on growth, yield, and fruit quality of pepper (*Capsicum annuum* L.) grown hydroponically. *Agro.*, **14:** 329.
- 28. Volpin, H., and Elad, Y. 1991. Influence of calcium nutrition on susceptibility of rose flowers to botrytis blight. *J Physiol. Biochem.*, **81:**1390–1394.
- 29. Waheed, H., Javaid, M. M., Shahid, A., Ali, H. H., Nargis, J., and Mehmood, A. 2019.
 Impact of foliar-applied Hoagland's nutrient solution on growth and yield of mash bean
 (Vigna mungo L.) under different growth stages. J. Plant Nutr., 42: 1133–1141.

420 421

422

423

424

425

In Press, Pre-Proof Version

	Table 1. Concentration of salts in nutrient solutions.											
	Compound	Concentration of stock solution (g/L)	Volume of stock solution per liter of final solution (ml)	Element	Final concentration of element (ppm)							
ıts				N	224							
Macro Nutrients	KNO_3	101.10	6	K	235							
Į,	$Ca(No_3)_2$ -4 H_2O	236.16	4	Ca	160							
\mathcal{Z}	$NH_4H_2Po_4$	115.08	2	P	62							
CLC	$MgSo_4-7H_2O$	246.49	1	S	32							
\mathbb{Z}				Mg	24							
	KCl	1.864	2	Cl	1.77							
nts	H_3Bo_3	0.773	2	В	0.27							
rie	MnSo ₄ -H ₂ O	0.169	2	Mn	0.11							
ž	ZnSo ₄ -7H ₂ O	0.288	2	Zn	0.13							
0.	CuSo4-5H2O	0.062	2	Cu	0.03							
Micro Nutrients	H ₂ MoO ₄ (85%MoO3)	0.040	2	Mo	0.05							
\geq	NaFeDTPA(10%Fe)	30.0	0.3-1	Fe	1-3							

427

Table 2. Effect of Hoagland nutrient concentration on leaf nitrogen, phosphorous, potassium,

zinc, iron, calcium and magnesium content in two rose cultivars.

Cultivar	Hoagland	Nitrogen	Phosphorous	Potassium	Zinc	Iron(%)	Calcium	Magnesium
	concentration	<mark>(%)</mark>	<mark>(%)</mark>	<mark>(%)</mark>	<mark>(%)</mark>		<mark>(%)</mark>	<mark>(%)</mark>
	<mark>(%)</mark>							
	100	4.31 ^b	0.77 ^a	1.65 ^a	0.010^{ab}	0.033 ^a	1.21 ^a	0.45 ^a
	<mark>75</mark>	3.13^{f}	<mark>0.65^e</mark>	0.95 ^d	$0.0084^{\rm f}$	0.031 ^b	1.15 ^{ab}	0.34 ^c
'Samurai'	<mark>50</mark>	3.55 ^d	0.41 ^g	<mark>0.75</mark> e	0.0086^{ef}	0.027^{d}	0.71 ^d	0.30^{d}
	<mark>25</mark>	<mark>3.84°</mark>	0.53 ^f	0.33 ^f	0.0091 ^{cd}	0.029°	1.04 ^c	0.15^{f}
	100	4.60 ^a	0.74 ^b	1.52 ^b	$0.1063^{\rm b}$	0.026^{ab}	1.22 ^a	0.44 ^b
	<mark>75</mark>	3.31 ^{ef}	0.68 ^d	1.06°	0.0095°	0.032 ^{ab}	1.18 ^a	0.33°
'Jumilia'	<mark>50</mark>	3.46 ^{de}	0.70°	1.03°	0.0088^{de}	0.022 ^e	1.06 ^{bc}	0.30^{d}
	<mark>25</mark>	3.44 ^{de}	0.77 ^a	1.04°	0.0110^{a}	0.026 ^d	1.21 ^a	0.28 ^e

Means followed by the same letter within a column are not significantly different according to LSD test at P<0.05.

428

429

Table 3. Effect of Hoagland nutrient concentration on root nitrogen, phosphorous, potassium,

zinc, iron, calcium and magnesium content (%) in two rose cultivars

Cultivar	Hoagland	Nitrogen	Phosphorous	Potassium	Zinc	Iron	Calcium	M agnesium
	concentration							
	<mark>(%)</mark>							
<mark>'Samurai'</mark>	100	3.24 ^a	2.49 ^a	0.76ª	0.0145^{b}	0.118^{a}	2.05 ^a	0.34 ^a
	<mark>75</mark>	<mark>2.86</mark> b	1.84 ^c	<mark>0.45^e</mark>	0.0115 ^e	0.114^{b}	<mark>1.99ª</mark>	0.33 ^b
	<mark>50</mark>	2.38 ^d	1.20 ^e	$0.23^{\rm f}$	$0.0099^{\rm f}$	$0.051^{\rm f}$	1.25 ^e	0.26 ^e
	<mark>25</mark>	2.77 ^{bc}	<mark>0.83^g</mark>	0.18 ^g	0.0084^{h}	0.033 ^g	<mark>0.91^g</mark>	0.27 ^d
'Jumilia'	100	2.65°	2.06 ^b	<mark>0.65</mark> ^b	<mark>0.0189ª</mark>	<mark>0.091°</mark>	1.74 ^b	0.28°
	<mark>75</mark>	2.26^{de}	1.58 ^d	<mark>0.56°</mark>	0.0131 ^d	0.070^{d}	1.62°	0.25^{ef}
	<mark>50</mark>	2.22^{ef}	$0.92^{\rm f}$	<mark>0.49^d</mark>	0.0136°	0.073 ^d	1.38 ^d	0.24^{f}
	<mark>25</mark>	2.11^{f}	0.73 ^h	0.11 ^h	0.0091 ^g	0.062 ^e	0.98 ^f	0.25 ^{ef}

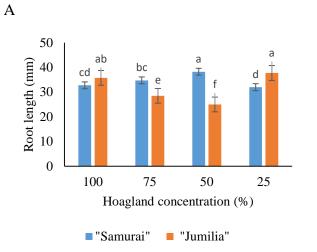
Means followed by the same letter within a column are not significantly different according to LSD test at P<0.05.

In Press, Pre-Proof Version

Table 4. Correlation analysis of physiological, nutritional and morphological parameters of the rose cultivars.

	RL	RV	SL	SD	FD	FL	VL	LA	RWC	MSI	CAT	SOD	POD	СНА	СНВ	TCH	IL	MgL	KL	ZnL	PL	NL
RL	1																					
RV	0.22	1																				
SL	0.29	-0.68**	1																			
SD	0.19	-0.64**	0.78^{**}	1																		
FD	-0.26	0.63^{**}	-0.75**	-0.67**	1																	
FL	-0.29	0.63**	-0.76**	-0.67**	0.93^{**}	1																
VL	-0.24	0.68^{**}	-0.57**	-0.65**	0.81^{**}	0.80^{**}	1															
LA	0.28	-0.56**	0.89^{**}	0.64^{**}	-0.50**	-0.55**	-0.36*	1														
RWC	-0.60**	0.16	-0.57**	-0.44*	0.73^{**}	0.70^{**}	0.50^{**}	-0.32	1													
MSI	0.14	-0.19	0.52^{**}	0.28	-0.30	-0.25	-0.08	0.49^{**}	-0.46**	1												
CAT	-0.29	0.70^{**}	-0.71**	-0.67**	0.76^{**}	0.80^{**}	0.82^{**}	-0.55**	0.54^{**}	-0.24	1											
SOD	0.11	-0.63**	0.76^{**}	0.68^{**}	-0.52**	-0.59**	-0.45**	0.73^{**}	-0.24	0.34	-0.62**	1										
POD	-0.36*	0.67^{**}	-0.65**	-0.65**	0.83**	0.85^{**}	0.93**	-0.47**	0.56^{**}	-0.11	0.83^{**}	-0.44*	1									
CHA	-0.04	-0.03	0.39^{*}	0.13	0.15	0.08	0.36^{*}	0.62^{**}	0.07	0.34	0.17	0.28	0.27	1								
CHB	0.13	0.12	0.21	-0.07	0.36	0.31	0.48^{**}	0.47^{**}	0.27	0.22	0.30	0.19	0.36	0.74^{**}	1							
TCH	0.07	0.06	0.29	0.0006	0.30	0.24	0.46^{**}	0.56^{**}	0.21	0.28	0.27	0.23	0.35	0.89^{**}	0.96^{**}	1						
IL	0.21	-0.06	0.35^{*}	0.06	0.09	0.006	0.19	0.67^{**}	0.07	0.21	-0.03	0.25	0.05	0.74^{**}	0.67^{**}		1					
MgL	0.07	0.33	0.14	-0.16	0.35	0.37^{*}	0.63^{**}	0.29	0.04	0.43	0.35^{*}	0.007	0.55^{**}	0.74^{**}	0.73^{**}		0.47^{**}	1				
KL	0.006	0.40^{*}	-0.03	-0.31	0.52^{**}	0.53^{**}	0.68^{**}	0.13	0.20	0.30	0.42^{*}	-0.15	0.62^{**}	0.65^{**}	0.68^{**}	0.72^{**}	0.40^{*}	0.95^{**}	1			
ZnL	0.21	0.38	-0.27	-0.38	0.52	0.53	0.39	-0.07	0.33	-0.18	0.22	-0.41	0.29	0.15	0.36	0.30	0.28	0.44	0.62	1		
PL	-0.20	0.37^{*}	-0.38*	-0.49**	0.74^{**}	0.68^{**}	0.65^{**}	-0.18	0.51^{**}	-0.16	0.52^{**}	-0.36*	0.60^{**}	0.45^{**}	0.43*	0.46**	0.20	0.54**	0.73**	0.68^{**}	1	
NL	0.17	-0.02	0.17	-0.04	0.22	0.27	0.16	0.35^{*}	0.23	0.28	-0.04	0.10	0.07	0.22	0.64**	0.52**	0.37^{*}	0.47^{**}	0.52**	0.56**	0.25	1

*p < 0.05 (2-tailed). **p < 0.01 (2-tailed).


431

451										
RL= root length		RV=root volum	e	SL= stem length	SD= stem diameter	FL=flower leng	th	FD=flower diameter	VL=vase life	LA=leaf area
RWC=relative	water	r MSI=membrane		CAT=catalase	SOD=superoxide	POD=peroxidase		CHA= chlorophyll a	CHB= chlorophyll b	TCH=total chlorophyll
content		stability index		enzyme	enzyme	enzyme				
IL= leaf iron		MgL=	leaf	KL=leaf potassium	ZnL= leaf zinc	PL=	leaf	NL= leaf nitrogen		
		magnesium				phosphorous				

432

In Press, Pre-Proof Version

В

(c) 100 Hoagland concentration (%)

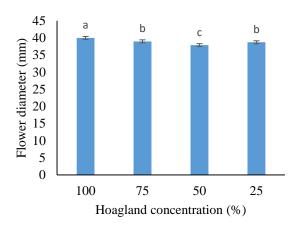
■ "Samurai"

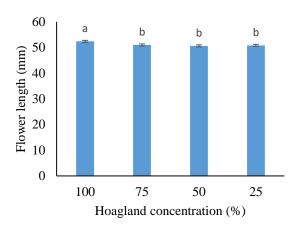
C 80 80 60 90 40 90 40 100 75 50 25 Hoagland concentration (%)

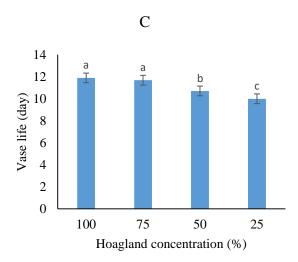
■ "Jumilia"

■ "Samurai"

1000
800
800
600
100
75
50
25
Hoagland concentration (%)


■ "Jumilia"


Figure 1. Interaction between different concentrations of Hoagland nutrient solution and cultivars on root length (A), root volume (B), stem length (C), and leaf area (D). The graph's bars represent the average value over three replicates, while the error bars denote the standard deviation.


D

In Press, Pre-Proof Version

A B

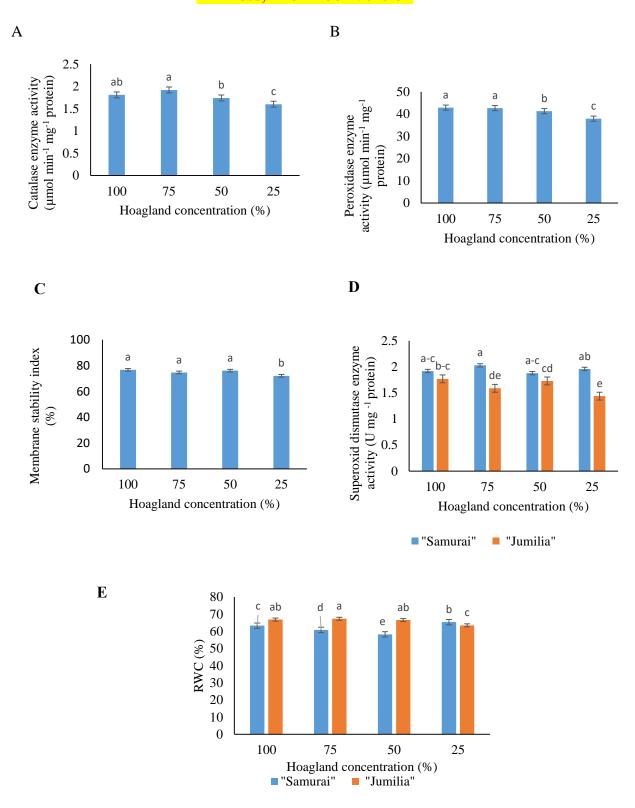
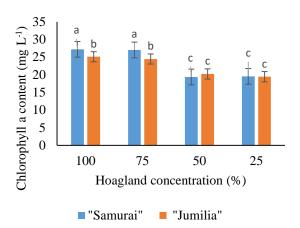
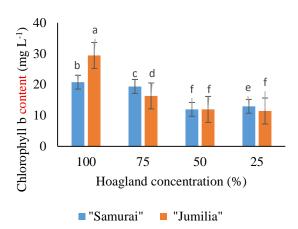


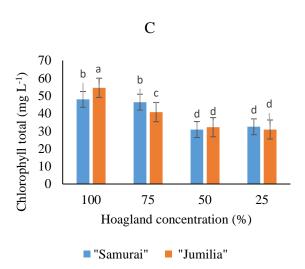
Figure 2. Effect of different concentrations of Hoagland nutrient solution on flower diameter (A), flower length (B) and vase life (C) of rose. The graph's bars represent the average value over three replicates, while the error bars denote the standard deviation.

442443

444


In Press, Pre-Proof Version




Figure 3. Effect of concentrations of Hoagland nutrient solution on CAT (A) and POD (B) enzyme activities, and membrane stability index (C) in rose. The interaction between concentrations of Hoagland nutrient solution and cultivars is shown for SOD enzyme activity (D) and relative water content (E). The graph's bars represent the average value over three replicates, while the error bars denote the standard deviation.

In Press, Pre-Proof Version

A B

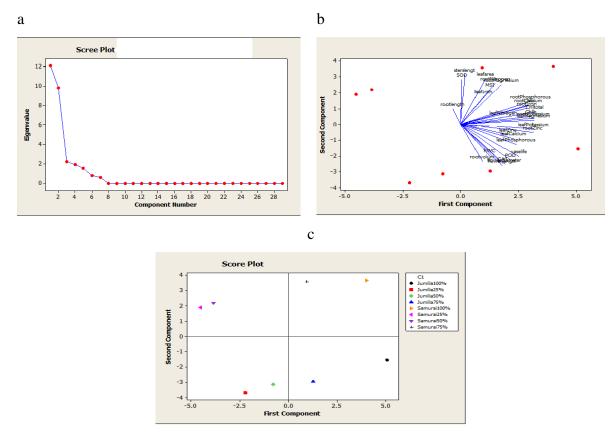


Figure 4. Interaction between concentrations of Hoagland nutrient solution and cultivars on chlorophyll a (A), chlorophyll b (B) and chlorophyll total (C) contents. The graph's bars represent the average value over three replicates, while the error bars denote the standard deviation.

In Press, Pre-Proof Version

Figure 5. Models of principal component analysis (PCA) plots. Scree plot (a) and score for the rose variable (b), and biplot (c).

بهینه سازی سطوح عناصر غذایی برای بهبود رشد و کیفیت گل رز

سعید خسروی، لیلا چهل تنان، علی تهرانی فر، و یحیی سلاح ورزی

این پژوهش به منظور بررسی تأثیر سطوح مختلف عناصر غذایی بر رشد، گلدهی و پاسخ بیوشیمیایی دو رقم رز، سامورایی و جومیلیا، در سیستم کشت بدون خاک طراحی شد. بنابراین هدف، بهینه سازی مصرف کود در راستای بهبود کیفیت و عمرگلجای گل رز بود. این آزمایش به صورت فاکتوریل و در قالب طرح کاملاً تصادفی با چهار سطح محلول غذایی هوگلند (25%، 50%، 75% و 100%) انجام شد. نتایج نشان داد که افز ایش غلظت محلول غذایی، قطر گل، طول ساقه، سطح برگ و عمر گلجای را بهبود بخشید، در حالی که طول ریشه را کاهش داد. استفاده از محلول غذایی الله کرا بهبود بخشید، در حالی که طول ریشه را کاهش داد. استفاده از محلول غذایی را در ریشه و برگ، به ویژه در رقم سامورایی افز ایش داد. همچنین کاربرد این سطح از محلول غذایی، فعالیت آنزیمهای آنتیاکسیدانی و برگ، به ویژه در رقم سامورایی افز ایش داد. همچنین کاربرد این سطح از محلول غذایی، فعالیت آنزیمهای آنتیاکسیدانی در سامورایی را افز ایش یافت، به طوری که فعالیت سوپر اکسید دیسموتاز، کاتالاز و پر اکسیداز را به ترتیب ۲۰٫۵%، افز ایش داد. محلول ٪ ۱۰ منجر به بالاترین سطح نیتروژن و منیزیم در برگهای جومیلیا شد که این افز ایش به ترتیب ۱٫۵۳ و ۱٫۵۳ و ۱٫۵۳ و ۱٫۵۳ و ۱٫۵۳ و کاهش محتوای کلروفیل و پایداری غشا شد. بهطور کلی، تأمین ۷۵٪ محلول غذایی هوگلند در گل رز رشد بهینه، کیفیت گل و بهرهوری کار وفیل و پایداری غشا شد. بهطور کلی، تأمین ۷۵٪ محلول غذایی هوگلند در گل رز رشد بهینه، کیفیت گل و بهرهوری در عین حال مصر ف کو د و تأثیر ات ز بست محبطی را کاهش میدهد.