1 2 3	Physical, Mechanical, and Antifungal Properties of Ethyl cellulose/Polycaprolactone Electrospun Nanofibers Incorporated with Gallic Acid and Natamycin for Cheese Packaging
4 5	Samira Beikzadeh ¹ , Ali Ehsani ^{2*} , Amir Mohammad Mortazavian ^{3*} , Zhian Sheikhi ² , Marjan Ghorbani ⁴ , and Soghra Ramezani ⁵
6	Abstract
7	Electrospinning is a process used to produce nanofibers that can be applied in active food packaging.
8	In this study, polymers of ethyl cellulose (ECL) and polycaprolactone (PCL) were blended in ratios of
9	70:30, 80:20, and 90:10 (% w/w), and combined with natamycin (NAT) at concentrations of 1% and
LO	2% (w/w) and gallic acid (GAL) at 10% and 30% (w/w). Nanofibers were produced via electrospinning
l1	under the following conditions: voltage of 16 kV, flow rate of 1 ml/hour, and a tip-to-collector distance
L2	of 15 cm. The nanofibers were characterized for their morphology, FTIR, thermal, mechanical,
L3	antioxidant, water contact angle, and antifungal properties. The results indicated that ECL90/PCL10,
L4	ECL80/PCL20, and ECL70/PCL30 nanofibers had average diameters of 1250.86 \pm 18 nm, 1174 \pm 21.4 \pm
L5	nm, and 754.73 ± 23 nm, respectively. The ECL70/PCL30 ratio was selected and combined with NAT
L6	and GAL. The average diameter of these nanofibers ranged from 779.32 to 924.63 nm. The addition
L7	of NAT and GAL enhanced the thermal stability, mechanical properties, and antifungal efficacy of the
L8	ECL/PCL nanofibers. Notably, nanofibers containing 2% NAT combined with either 10% or 30%
L9	GAL completely inhibited the growth of molds. Cheese samples packaged with nanofibers containing
20	NAT and GAL exhibited a significantly lower increase in mold and yeast counts during storage
21	compared to control samples. Furthermore, sensory evaluation revealed no significant differences in
22	scores among the packaged samples. Therefore, ECL/PCL nanofibers incorporated with 2% NAT and
23	10% GAL present an effective alternative to the direct incorporation of NAT in cheese formulations.
24	Keywords: Cheese, Ethyl cellulose, Gallic acid, Natamycin, Polycaprolactone.

¹ Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Islamic Republic of Iran.

² Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

³ Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.

⁴ Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

⁵ Faculty of Textile Engineering, Urmia University of Technology, Urmia, Islamic Republic of Iran.

^{*}Corresponding authors; e-mails: ehsaniali@yahoo.com and mortazvn@sbmu.ac.ir

27	Introduction
28	Fungi are among the primary agents of food spoilage, rendering food unfit for human consumption
29	by diminishing its nutritional value and producing harmful mycotoxins (Kumar, Mishra et al.
30	2007). Molds belonging to the Aspergillus and Penicillium genera are among the most frequently
31	encountered contaminants during the production, ripening, curing, and refrigerated storage of food
32	products prior to consumption (Gandomi, Misaghi et al. 2009, Beikzadeh, Hosseini et al. 2021).
33	Natamycin (also known as pimaricin) is a polyene macrolide antifungal compound produced by
34	species of Streptomyces, and is commonly classified within the polyene macrolide fungicide group
35	(Delves-Broughton, Thomas et al. 2005). It is widely used as an antimicrobial agent for surface
36	preservation in various sausages and cheeses (Regulation 1333/2008/EC). Compared to other
37	fungicides, natamycin demonstrates superior efficacy, with most fungi being inhibited or destroyed
38	at concentrations ranging from 0.5 to 6 µg/mL (Koontz and Marcy 2003, Delves-Broughton,
39	Thomas et al. 2005). However, the efficacy of natamycin may be diminished when directly
40	incorporated into food matrices, due to interactions with other food components (Fajardo, Martins
41	et al. 2010). Therefore, incorporating NAT into polymer matrices can enhance its stability and
42	enable controlled release, thereby maintaining effective concentrations of the compound on the
43	food surface.
44	GAL (3,4,5-trihydroxybenzoic acid) and its derivatives, including catechin and tannin, are
45	naturally present in a variety of plants, as well as in wine, tea, cereals, citrus fruits, and berries
46	(Laura, Alvarez-Parrilla and González-Aguilar 2009). Owing to its potent antioxidant and
47	antimicrobial properties, gallic acid is widely utilized as an additive in the food and pharmaceutical
48	industries. However, its application in food products is often limited by its inherent bitterness and
49	astringency. Additionally, GAL is sensitive to environmental factors such as light, oxygen, pH,
50	and temperature, which can affect its stability and efficacy (Fang and Bhandari 2010, Li, Kim et
51	al. 2016). Encapsulation techniques are employed to prevent oxidation, enhance stability, and
52	mask the undesirable taste of gallic acid. Common encapsulation methods include lyophilization,
53	cocrystallization, liposome entrapment, coacervation, extrusion, spray cooling or chilling, and
54	spray drying (Fang and Bhandari 2010).
55	Novel encapsulation technologies, such as electrospinning, offer significant advantages by
56	eliminating the need for toxic solvents and high processing temperatures. Electrospinning is
57	particularly suitable for encapsulating food and pharmaceutical compounds for several reasons.

Notably, the process occurs at room temperature, which helps preserve the integrity of sensitive 58 59 active compounds. This technique enables the formation of nano-sized fibers, providing a high surface-area-to-volume ratio that can enhance the release of encapsulated agents. Furthermore, the 60 polymer matrix within the nanofibers facilitates sustained or controlled delivery of the active 61 compounds (Mohammadi, Rostami et al. 2018, Beikzadeh, Hosseini et al. 2021, Beikzadeh, Ehsani 62 and Ramezani 2025). Moreover, a limited surface area can slow the release of active substances. 63 By reducing fiber size from the microscale to the nanoscale, electrospun fibers provide a 64 significantly increased surface area, which facilitates more efficient and controlled release of 65 encapsulated compounds (Neo, Swift et al. 2013, Aytac, Ipek et al. 2017, Beikzadeh, Hosseini et 66 al. 2021). In the electrospinning process, both synthetic and natural polymers can be utilized to 67 fabricate nanofibers (Beikzadeh, Hosseini et al. 2021). The accumulation of packaging waste, 68 especially from synthetic polymers that exhibit long environmental persistence, poses a major 69 worldwide environmental challenge. To address this issue, the use of biodegradable biopolymers 70 in packaging has emerged as a viable approach to reducing plastic waste (Pilevar, Bahrami et al. 71 72 2019, Beikzadeh, Ghorbani et al. 2020, Beikzadeh, Khezerlou et al. 2020, Javdani, Abedi-Firoozjah et al. 2025). Among biopolymers, ethyl cellulose stands out as one of the most important 73 and widely utilized cellulose ether derivatives. It is characterized by its hydrophobic nature and 74 resistance to salts and alkaline conditions (Beikzadeh, Hosseini et al. 2021). Blending different 75 76 polymers is one of the most economical and practical approaches to producing materials with enhanced mechanical and thermal properties (Gregorova, Machovsky and Wimmer 2012, 77 78 Beikzadeh, Hosseini et al. 2021). PCL is recognized for its compatibility with various polymers. It is a six-carbon polymer featuring hydroxyl end groups. However, its relatively low melting point 79 80 (~60 °C) limits its thermal performance. To overcome this constraint, PCL is often blended with other polymers to enhance its thermal and mechanical properties (Chrissafis, Antoniadis et al. 81 2007). 82 In terms of degradability, Electrospinning enables rapid drying because the fibers produced are 83 extremely fine, which limits the time available for crystal growth. Additionally, since the annealing 84 process is performed below the melting point, it further contributes to reduced crystallinity. 85 Consequently, the brief annealing of the electrospun mats appears to be a promising strategy for 86 creating materials that degrade quickly (Salević-Jelić, Lević et al. 2024). Also, PCL demonstrates 87 favorable biodegradability under appropriate environmental conditions. **Different** 88

89	microorganisms, including bacteria and fungi, produce extracellular depolymerases that enable
90	them to break down PCL. The breakdown of PCL-based films happens through the attachment of
91	compost microorganisms to the surface, followed by enzymatic action, fragmentation of the film,
92	and the release of degradation byproducts (Salević-Jelić, Lević et al. 2024). The incorporation of
93	ethyl cellulose into polymer matrices has been reported to enhance biodegradability. For instance,
94	Girija et al. (2010) demonstrated that blending ethyl cellulose with poly(ethylene-co-vinyl acetate)
95	(EVA) led to improved biodegradation characteristics (Girija, Sailaja et al. 2010).
96	In this study, ECL/PCL nanofibers containing varying concentrations of NAT and GAL were
97	fabricated. The thermal, mechanical, morphological, and antifungal properties of the nanofibers
98	were evaluated. Subsequently, cheese samples were packaged with the optimized nanofibers, and
99	their mold growth and overall sensory acceptance were assessed.
100 101	Experimental Methods
102	Required Materials
103	Fungal strains were obtained from the Iranian Research Organization for Science and Technology.
104	Polymers, including PCL and ECL, along with NAT and GAL, were procured from Sigma-
105	Aldrich.
106	
107	Production Steps of Electrospinning Solutions
108	Approximately 12.5% (w/v) solutions of ECL and PCL were prepared in a 50:50 (v/v)
109	ethanol/chloroform solvent mixture at 25 °C. Polymer blends with ECL/PCL ratios of 90:10,
110	80:20, and 70:30 were subsequently formulated. Ultimately, the ECL/PCL ratio of 70:30 was
111	selected (Beikzadeh, Hosseini et al. 2021). NAT at 1% and 2% (wt%) and GAL at 10% and 30%
112	(wt%) were then incorporated into the nanofiber solutions (Amjadi, Almasi et al. 2020).
113 114	Electrospinning Operation
115	The electrospinning process was conducted at an applied voltage of 16 kV, a flow rate of 1 ml/hour,
116	and a tip-to-collector distance of 15 cm. The operation was performed at a temperature of 25 ± 2
117	$^{\circ}$ C and relative humidity of 30 \pm 1%. The resulting nanofibers were collected on the grounded
118	collector (Amjadi, Almasi et al. 2020, Beikzadeh, Ehsani and Ramezani 2025).
119	

In Press, Pre-Proof Version

Characteristics of Produced Nanofibers
Scanning Electron Microscopy
Scanning electron microscopy (SEM) operated at 26 kV was employed to examine the
microstructure of the nanofibers. Fiber diameters were quantified using NIS Elements 0.3 image
analysis software.
Fourier Transforms Infrared
Fourier-transform infrared (FTIR) spectra were recorded using a Tensor 27 spectrometer
(Ettlingen, Germany). Interferograms were collected over the spectral range of 1000-4500
cm ⁻¹ (Sheikhi, Mirmoghtadaie et al. 2020).
Antioxidant Activity
DPPH radical scavenging method evaluates antioxidant activities (Altan, Aytac and Uyar 2018).
The antioxidant activity of the nanofibers was evaluated using the DPPH radical scavenging assay.
Briefly, 100 mg of nanofibers were suspended in 2 mL of water and stirred. Subsequently, 1 mL
of the resulting solution was mixed with 0.2 mL of DPPH solution. After incubating the mixture
at 25 °C for 30 minutes, the absorbance was measured at 517 nm using a spectrophotometer. The
scavenging activity was then calculated using the appropriate equation to determine the antioxidant
capacity.
Water Contact Angle (WCA)
A drop of water (5 μ L in volume) was deposited onto the nanofiber surface, after which the contact
angle was photographed and analyzed (Heidari, Bahrami et al. 2019, sheikhi, Farhoodi et al. 2020).
Mechanical Properties
To assess the mechanical properties, the nanofibers were cut into dumbbell-shaped specimens (0.6
cm × 9 cm) and subjected to tensile testing at a crosshead speed of 1.0 mm/min (Amjadi, Emaminia
et al. 2019).
Thermogravimetric Analysis (TGA)
For the TGA, approximately 15 mg of nanofibers were heated under a nitrogen atmosphere at a

rate of 10 °C/min up to 600 °C using a thermogravimetric analyzer.

152	Release Kinetics of NAT and GAL
153	
154	The release profiles of gallic acid (GAL) and natamycin (NAT) were evaluated by immersing
155	nanofibers (15.1 cm ² area) in 10 mL of distilled water at 4 °C. At predetermined time intervals (0,
156	250, 500, 750, 1000, and 1250 hours), the absorbance of GAL and NAT was measured at 260 nm
157	and 320 nm, respectively, using a UV-Visible spectrophotometer. The concentration of each
158	compound was determined based on calibration curves constructed from standard solutions with
159	concentrations ranging from 1 to 50 mg/L (Titone, Ceraulo et al. 2025).
160 161	Antifungal Properties
162	To evaluate antifungal activity, Aspergillus niger (PTCC 5012) and Penicillium notatum (PTCC
163	5014) strains were cultured on potato dextrose agar (PDA) media. A spore suspension (10 6
164	spores/mL) was prepared, and 1 mL of this suspension was homogenized with 99 mL of PDA.
165	Nanofiber samples (1 × 1 cm) were sterilized under ultraviolet light for 1 hour, then placed onto
166	the inoculated plates. The plates were incubated for 5 days, after which the diameter of the
167	inhibition zone around the nanofibers was measured to assess antifungal efficacy (Veras, Roggia
168	et al. 2016).
169 170	UF cheese packaging
171	Based on the evaluation of the morphological, thermal, mechanical, and antifungal properties of
172	the produced nanofibers, those exhibiting optimal characteristics were selected for packaging
173	ultrafiltrated (UF) cheese. For this purpose, aluminum foils coated with nanofibers (both with and
174	without preservatives) were sterilized using ultraviolet (UV) light for 40 minutes. Subsequently,
175	UF cheese was produced and cut into pieces measuring $5 \times 25 \times 30$ mm. The cheese samples were
176	sterilized under UV light for 20 minutes before being packaged using the nanofiber-coated
177	aluminum foils (Beikzadeh, Ehsani and Ramezani 2025).
178	
179	Desired tests on packaged cheeses
180	Microbial analysis of produced cheeses
181	Mold and yeast counts were performed using Sabouraud dextrose agar culture medium via the
182	pour plate method, with a 0.01 dilution, under refrigerated storage conditions throughout the
183	storage period.

In Press, Pre-Proof Version

Sensory analysis of manufactured cheeses

- The sensory evaluation was conducted by a panel of 30 trained assessors. Cheese samples were
- removed from refrigeration one hour prior to testing to equilibrate to room temperature and were
- coded using a random number table. Each panelist received the samples along with a standardized
- evaluation questionnaire and assessed them based on texture, taste, aroma, and overall acceptance.
- Evaluations were performed using a 5-point hedonic scale.

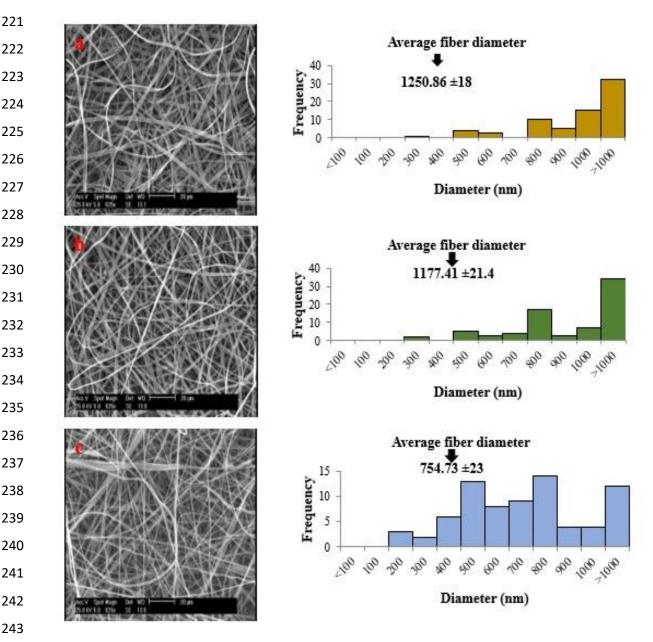
191 192

185

Statistical Evaluation

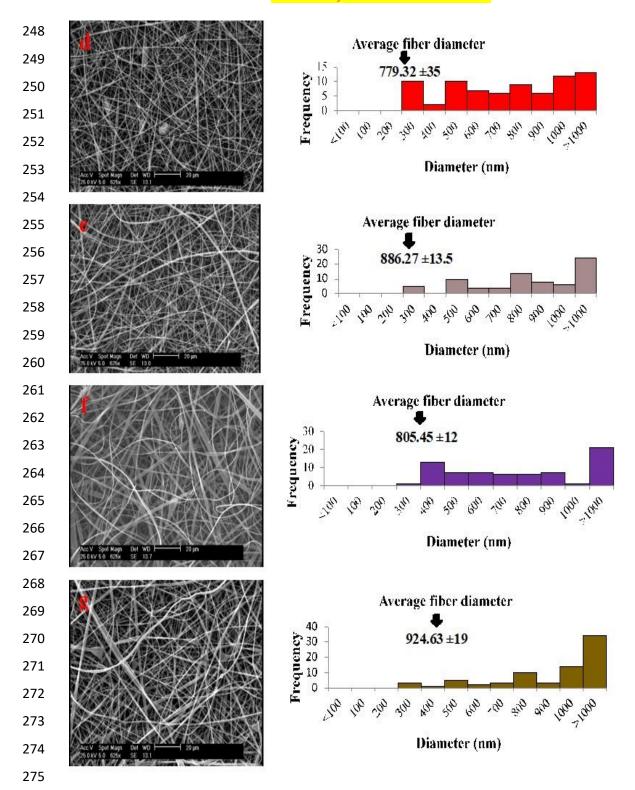
- Data obtained from three independent replicates were expressed as mean \pm standard deviation.
- 194 Statistical differences among groups were analyzed using one-way analysis of variance (ANOVA)
- 195 performed in SPSS software. Duncan's multiple range test was applied to determine significant
- differences at a confidence level of p < 0.05.

197 198


199

Results and Discussion

Scanning Electron Microscopy


- 200 The SEM images and corresponding mean diameter distributions of the electrospun ECL/PCL
- 201 nanofibers are presented in Figure 1. The average fiber diameters for ECL90/PCL10,
- ECL80/PCL20, and ECL70/PCL30 were 1250.86 ± 18 nm, 1174 ± 21.4 nm, and 754.73 ± 23 nm,
- respectively. For comparison, Wang et al. (2020) reported an average diameter of 649 nm for pure
- ECL nanofibers (Wang, Li et al. 2020). Liu et al. (2018) reported nanofibers with a spindle-like
- 205 morphology and an average diameter of 413 nm (Liu, Deng et al. 2018). In contrast, PCL
- 206 nanofibers have been reported to exhibit an average diameter of approximately 419 nm. As shown
- in Figure 2, the average diameters of nanofibers containing ECL70/PCL30 with varying
- concentrations of NAT and GAL (ECL70/PCL30/NAT1/GAL10, ECL70/PCL30/NAT2/GAL10,
- 209 ECL70/PCL30/NAT1/GAL30, and ECL70/PCL30/NAT2/GAL30) were 779.32 ± 35 nm, 886.27
- \pm 13.5 nm, 805.45 ± 12 nm, and 924.63 ± 19 nm, respectively. The highest average diameter was
- observed for the ECL70/PCL30/NAT2/GAL30 sample. Overall, the incorporation of NAT and
- GAL led to an increase in fiber diameter. Neo et al. (2013) reported that the addition of GAL to
- 213 zein solutions resulted in increased fiber diameters. This effect was attributed to the elevated
- solution viscosity caused by GAL, which enhances molecular entanglement and consequently
- leads to larger fiber diameters (Neo, Swift et al. 2013). Similarly, Veras et al. (2020) reported that

the incorporation of NAT into the polycaprolactone electrospinning solution led to an increase in fiber diameter. Notably, tripling the NAT concentration compared to the initial sample resulted in a 64% increase in the average fiber diameter (Veras, Ritter et al. 2020). These findings are consistent with the results obtained in the present study.

Figure 1. Fiber diameter distributions of electrospun nanofibers: (a) ECL90/PCL10, (b) ECL80/PCL20, and (c) ECL70/PCL30. Abbreviations: NAT, Natamycin; GAL, Gallic acid; ECL, Ethyl cellulose; PCL, Polycaprolactone.

In Press, Pre-Proof Version

Figure 2. SEM images and average nanofiber diameters of ECL70/PCL30/NAT1/GAL10 (d), ECL70/PCL30/NAT2/GAL10 (e), ECL70/PCL30/NAT1/GAL30 (f), and ECL70/PCL30/NAT2/GAL30 (g). Abbreviations: NAT, Natamycin; GAL, Gallic acid; ECL, Ethyl cellulose; and PCL, Polycaprolactone.

In Press, Pre-Proof Version

Fourier Transforms Infrared (FTIR)

Table 1 and Figure 3 present the wavenumbers of characteristic peaks observed in the nanofibers. For the ECL nanofiber, the peaks at 2879, 3450–3741, 2621–2742, and 1249 cm⁻¹ correspond to -CH₃ stretching vibration, O-H vibration, CH₂ and CH stretching, and C-O-C linkage, respectively (Beikzadeh, Hosseini et al. 2021). For PCL, the peaks observed at 2889–3030 cm⁻¹, 1743 cm⁻¹, 1375 cm⁻¹, and 1047–1257 cm⁻¹ can be attributed to CH₂ stretching vibrations, C=O stretching, C-C stretching, and C-O-C stretching vibrations, respectively (Beikzadeh, Hosseini et al. 2021, Beikzadeh, Ehsani and Ramezani 2025). For NAT, the presence of peaks in the range of 1100–1750 cm⁻¹ was attributed to the C=O bond. In the case of GAL, the peaks at 3490–3748 cm⁻¹ corresponded to O-H stretching vibrations. The peaks observed at 1520-1710 cm⁻¹ were related to the stretching vibrations of C-C and C-H aromatic groups. Additionally, the peaks at 1193-1411 cm⁻¹ were assigned to C–O stretching vibrations. Changes in the ECL spectrum were observed following the addition of PCL, with the peaks at 2870 and 3450 cm⁻¹ shifting to higher wavelengths. Furthermore, a new peak appeared at 2504 cm⁻¹. Upon the incorporation of NAT and GAL, further modifications were detected in the ECL70/PCL30 spectrum, including the emergence of novel peaks at 3380, 3220, and 3114 cm⁻¹, while the peak at 2804 cm⁻¹ shifted to lower wavelengths. Veras et al. (2020) reported that mixing NAT with PCL did not cause significant changes in the nanofiber spectra, likely due to the absence of chemical bonding between the polymers and antifungal compounds (Veras, Ritter et al. 2020).

299 300

280

281

282

283

284

285

286

287

288

289

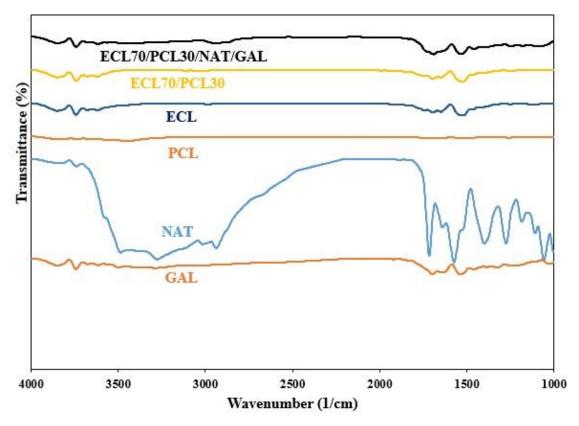
290

291

292

293

294


295

296

297

Table 1. Types of nanofibers, connections, and wavenumber of specified peaks of nanofibers.

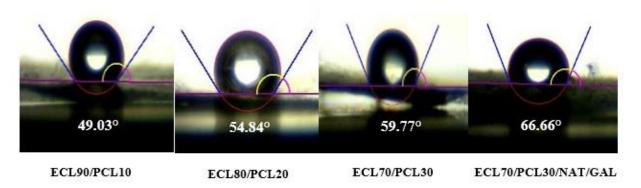
Nanofiber types	Connection	Wavenumber (1/cm)
ECL	-CH ₃ connection vibration	2879
	O–H vibrations	3450-3741
	CH ₂ and CH stretches	2621-2742
	C–O–C connection	1249
PCL	CH ₂ stretching vibration	2889-3030
	CO connection vibration	1743
	CC connection vibration	1375
	C-O-C connection vibration	1047-1257
NAT	C=O connection	1100-1750
GAL	O–H stretching vibration	3490-3748
	C-C/C-H stretching vibration	1520-1710
	C–O stretching vibration	1193-1411

Figure 3. FTIR results of various nanofibers. PCL, Polycaprolactone; ECL, Ethyl cellulose; NAT, Natamycin; GAL, Gallic acid.

Mechanical Properties

The mechanical properties of fibers containing NAT and GAL are presented in Table 2. For ECL70/PCL30 nanofibers, thickness, tensile strength, and elongation at break were measured as 0.112 ± 0.007 mm, 8.22 ± 0.4 MPa, and $4.49 \pm 0.3\%$, respectively. ECL70/PCL30 exhibited superior mechanical properties compared to ECL90/PCL10 and ECL80/PCL20. The increase in tensile strength is attributed to the formation of new interactions between the polymers (Liu, Deng et al. 2018), , a phenomenon also supported by the FTIR results. Additionally, the incorporation of NAT and GAL further enhanced the mechanical properties of the nanofibers.

Table 2. Mechanical properties of nanofibers.


Sample	Thickness (mm)	Tensile strength (MPa)	Elongation at break (%)
ECL90/PCL10	0.108 ± 0.005 b	5.93 ± 0.6 d	2.66 ± 0.2 °
ECL80/PCL20	0.109 ± 0.001 b	6.78 ± 0.4 $^{\rm c}$	3.12 ± 0.4 °
ECL70/PCL30	0.112 ± 0.007 b	8.22 ± 0.4 b	4.49 ± 0.3 b
ECL70/PCL30/NAT/GAL	$0.124 \pm 0.003~^{a}$	9.12 ± 0.5 a	6.32 ± 0.4 a

Mean \pm Standard deviation.

In Press, Pre-Proof Version

Water Contact Angle (WCA)

WCA analysis was conducted to assess the surface wettability of the fabricated nanofibers, with the results presented in Figure 4. The WCA values for ECL90/PCL10, ECL80/PCL20, and ECL70/PCL30 were measured as 49.03°, 54.84°, and 59.77°, respectively. An increase in PCL content corresponded with a higher WCA, indicating enhanced hydrophobicity. This behavior may be attributed to hydrogen bonding interactions between ECL and PCL polymers (Beikzadeh, Hosseini et al. 2021). Additionally, the incorporation of NAT and GAL into the ECL70/PCL30 nanofibers further increased the WCA values. Shen et al. (2021) reported that increasing the weight of encapsulated natamycin led to a rise in the WCA of gelatin/zein/polyurethane nanofibers, attributed to the hydrophobic nature of NAT (Shen, Cao et al. 2021).


Fig

Figure 4. Water contact angles of the formed nanofibers: ECL, ethyl cellulose; PCL, polycaprolactone; NAT, natamycin; GAL, gallic acid.

Thermogravimetric Analysis (TGA)

The thermogravimetric analysis (TGA) results of the nanofibers containing natamycin and gallic acid are presented in Figure 5. The decomposition temperature of pure ECL was approximately 310.56 °C, whereas the ECL/PCL and ECL/PCL/NAT/GAL nanofibers exhibited decomposition temperatures around 315 °C and 325.3 °C, respectively. These results indicate that the thermal stability of the nanofibers improved with the incorporation of NAT and GAL into the ECL matrix. Additionally, the observed shift in thermal decomposition profiles between the neat ECL/PCL blend and the NAT/GAL-loaded nanofibers confirms the successful incorporation of the active compounds. Similarly, Neo et al. (2013) reported that blending GAL with zein enhanced the decomposition temperature of the resulting nanofibers (Neo, Swift et al. 2013).

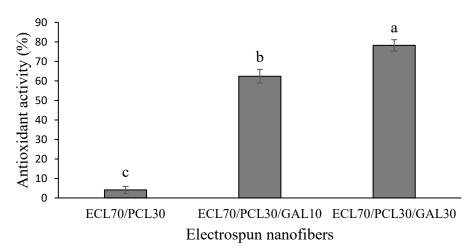
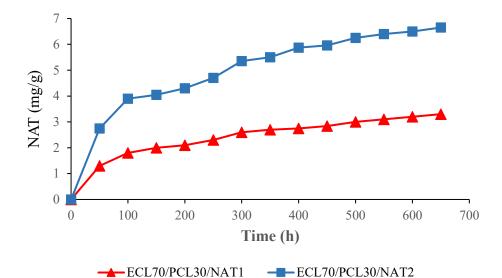

In Press, Pre-Proof Version

Figure 5. TGA curves of ECL70/PCL30 and ECL70/PCL30/NAT/GAL nanofibers. ECL: Ethyl cellulose, PCL: Polycaprolactone, NAT: Natamycin, GAL: Gallic acid.


Antioxidant Activity Measurements

The antioxidant activity of the nanofibers in 80% ethanol aqueous solutions is presented in Figure 6. GAL reduces free radicals by acting as a hydrogen or electron donor (Chuysinuan, Chimnoi et al. 2009). ECL70/PCL30 electrospun nanofibers incorporated with 10% and 30% GAL exhibited antioxidant activities of approximately $62.38 \pm 3.5\%$ and $78.23 \pm 2.9\%$, respectively. In contrast, the neat ECL70/PCL30 nanofiber showed only $4.12 \pm 1.8\%$ antioxidant activity. Neo et al. (2013) reported antioxidant properties ranging from 58% to 89% for zein nanofibers containing GAL.

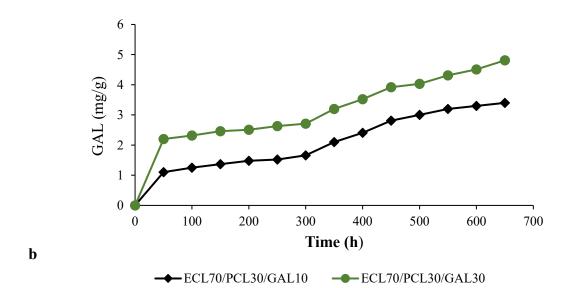


Figure 6. Antioxidant properties of electrospun nanofibers. ECL: Ethyl cellulose, PCL: Polycaprolactone, NAT: Natamycin, GAL: Gallic acid.

Release Kinetics of NAT and GAL 355 356 Figure 7(a) illustrates the release profiles of natamycin (NAT) from the ECL70/PCL30/NAT1 and ECL70/PCL30/NAT2 nanofibers. The NAT2 formulation demonstrated a higher cumulative 357 release of approximately 6.7 mg/g, compared to around 3.3 mg/g for NAT1, over a period of nearly 358 700 hours. Both samples exhibited an initial burst release within the first 100 hours, which is 359 characteristic of electrospun nanofibers and is likely caused by the rapid desorption of NAT 360 molecules located near the fiber surface (Sill and Von Recum 2008). Following this phase, the 361 release continued at a slower, sustained rate, consistent with diffusion-controlled mechanisms 362 commonly observed in polymeric nanofiber systems (Li and Xia 2004). The differences in release 363 profiles may be attributed to variations in fiber morphology, polymer crystallinity, and drug-364 polymer interactions influencing the diffusion rate of NAT. The U.S. Food and Drug 365 Administration (FDA) regulation No. 155-172 (200) authorizes the application of NAT on cheese 366 surfaces, with the stipulation that its concentration in the final product dose not exceed 20 ppm 367 (Türe, Eroğlu et al. 2008). 368 Also, the release profiles of GAL from ECL 70/PCL 30/GAL10 and ECL 70/PCL 30/GAL30 are 369 shown in Figure 7 (b). Both samples exhibited an initial burst release within the first 100 hours, 370 followed by a sustained and gradual release over the subsequent period (up to 700 hours). The 371 GAL30 formulation released a significantly higher amount of GAL (~5.2 mg/g) compared to 372 373 GAL10 (~3.6 mg/g), indicating that increasing the GAL loading enhances cumulative release. The burst release phase is commonly attributed to the presence of GAL near the fiber surface, allowing 374 375 for rapid diffusion into the release medium (Sill and Von Recum 2008). After this stage, the release rate decreased, suggesting that the migration of GAL molecules through the polymer matrix was 376 377 primarily governed by diffusion (Kenawy, Bowlin et al. 2002). Variations between the two formulations might result from modifications in the nanofiber structure due to elevated GAL 378 379 content. A higher concentration of GAL can impact the fiber's porosity, hydrophilic properties, and degree of crystallinity, which collectively affect the release behavior (Kenawy, Bowlin et al. 380 381 2002). Additionally, the small molecular size and hydrophilic characteristics of GAL facilitate its prolonged release from the hydrophobic PCL/ECL mixture, as this blend restricts water 382 penetration and slows down drug diffusion (Bhardwai and Kundu 2010). These controlled and 383 sustained release characteristics are beneficial for antifungal drug delivery, as they help maintain 384 the prolonged bioactivity of both NAT and GAL (Agarwal, Wendorff and Greiner 2008). 385

a

Figure 7. (a) Cumulative NAT release from ECL/PCL/NAT, (b) Cumulative GAL release from ECL/PCL/GAL. ECL: Ethyl cellulose, PCL: Polycaprolactone, NAT: Natamycin, GAL: Gallic acid.

Antifungal Properties

The results of the antifungal activity of nanofibers containing NAT and GAL are shown in Table 3 and Figure 7. Control samples (ECL70/PCL 30) and samples containing 1% NAT and 10% or 30% GAL did not exhibit antifungal activity against the growth of *Aspergillus niger* and *Penicillium notatum*. However, nanofibers containing 2% NAT inhibited fungal growth. ECL/PCL /NAT/GAL nanofibers also showed lower antifungal activity against *Aspergillus niger* compared

In Press, Pre-Proof Version

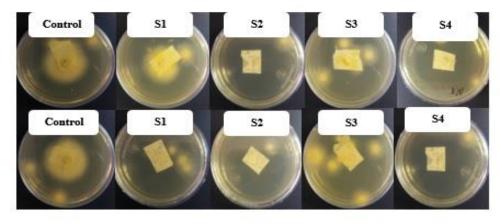

to *Penicillium notatum*. Overall, the results indicate that the antifungal properties of the nanofibers improve with increasing amounts of NAT. Additionally, adding 2% NAT combined with 10% or 30% GAL completely prevented the growth of both molds. Veras et al. (2020) reported that the inhibition zones of PCL nanofibers containing 1% to 4% NAT ranged from approximately 6.6 to 24 mm against *Aspergillus flavus* and *Penicillium citrinum*. With increasing amounts of NAT, the antifungal properties of nanofibers increased (Veras, Roggia et al. 2016).

Table 3. The colony diameter of *Aspergillus niger* and *Penicillium notatum*.

Nanofiber samples	Colony Diameter (mm)		
	Aspergillus niger	Penicillium notatum	
ECL70/PCL30	38 ± 1.4	36 ± 1.6	
ECL70/PCL30/NAT1/GAL10	32 ± 0.9	25 ± 1.1	
ECL70/PCL30/NAT2/GAL10	0	0	
ECL70/PCL30/NAT1/GAL30	18 ± 0.7	12 ± 1.3	
ECL70/PCL30/NAT2/GAL30	0	0	

Aspergillus niger

Figure 7. Antifungal properties of nanofibers: (ECL70/PCL30 (control), ECL70/PCL30/NAT1/GAL10 (S1), ECL70/PCL30/NAT2/GAL10 (S2), ECL70/PCL30/NAT1/GAL30 (S3), and ECL70/PCL30/NAT2/GAL30 (S4) nanofibers. ECL: Ethyl cellulose, PCL: Polycaprolactone, NAT: Natamycin, GAL: Gallic acid.

Mold and Yeast Analysis of Cheeses Packaged by Nanofibers

- Changes in the amount of mold and yeast in cheeses packaged with nanofibers are shown in Table 4. In all treatments, the levels of mold and yeast increased over time, with the control sample (cheese packed with nanofibers without NAT and GAL) showing a higher increase compared to the other samples.
- Fajardo et al. (2010) packaged semi-hard cheese (Saloio cheese) with chitosan and chitosan coatings containing natamycin for 37 days at 4°C. Microbial analysis of the cheese samples

In Press, Pre-Proof Version

showed that the amount of mold and yeast ranged from 4.53 to 6.06 Log (CFU g⁻¹). The shelf life of Saloio cheese is about 50 days, but after 37 days, fungal growth on the surface of the cheese ended the microbial analysis (Fajardo, Martins et al. 2010). These findings are consistent with our results. Also, Jalilzadeh et al. (2020) used whey protein containing NAT to package ultra-refined cheese, and the results showed that the amount of mold and yeast in the control samples was higher than in the coated samples after 28 days (Jalilzadeh, Hesari et al. 2020). The lower levels of mold in cheeses packaged with nanofibers containing NAT and GAL, compared to the control sample, demonstrate the stability of these active compounds during storage and their antimicrobial effects.

Table 4. Mold and yeast levels Log (CFU g⁻¹) of cheeses packaged with nanofibers.

Packaging type		Storage period (days)		
	1	14	28	56
Without packaging	5.16 ± 0.11 aC	$6.29\pm0.43~^{aB}$	$7.55 \pm 0.54^{\mathrm{aA}}$	-
ECL70/PCL30	$5.09 \pm 0.26~^{aC}$	5.33 ± 0.47 bBC	$5.98\pm0.29^{\rm\; aAB}$	$6.28\pm0.61~^{aA}$
ECL70/PCL30/NAT2/GAL10	$5.12 \pm 0.09 ^{\mathrm{aC}}$	5.28 ± 0.16 bBC	$5.78\pm0.24^{~aAB}$	$6.03\pm0.27~^{\mathrm{aA}}$
ECL70/PCL30/NAT2/GAL30	5.04 ± 0.17 aB	$5.15 \pm 0.46 ^{\mathrm{bB}}$	$5.69 \pm 0.15 ^{\mathrm{aA}}$	$5.97\pm0.35~^{\mathrm{aA}}$

Overall Acceptance of Cheeses Packaged by Nanofibers

Overall acceptance of cheese samples packed with nanofibers during refrigerated storage is shown in Table 5. The results of the sensory evaluation scores for the packaged cheese samples did not show a significant difference between samples packaged with NAT-free nanofibers, nanofibers containing 2% NAT and 10% GAL, and nanofibers containing 2% NAT and 30% GAL. The control sample (without packaging) had a lower score in terms of overall acceptance. Nottagh et al. (2019) used chitosan containing natamycin to package ultra-refined cheese for 6 weeks. The highest scores for taste, smell, and overall acceptance were observed in the packaged samples at the third week compared to the control sample (without packaging) (Nottagh, Hesari et al. 2020).

Table 5. Sensory evaluation score of cheeses packaged with nanofibers.

Overall acceptance	Storage time (days)		
-	1	14	28
Without packaging	$4.0\pm0.18^{\mathrm{aA}}$	$3.8\pm0.35~^{\mathrm{aA}}$	3.6 ± 0.16 bA
ECL70/PCL30	$3.8\pm0.14^{\rm \ aA}$	$4.0\pm0.15~^{\mathrm{aA}}$	$4.1\pm0.37^{ m \ abA}$
ECL70/PCL30/NAT2/GAL10	$4.2\pm0.17^{\rm \ aA}$	$3.9\pm0.39~^{\mathrm{aA}}$	$4.2\pm0.32~^{\mathrm{aA}}$
ECL70/PCL30/NAT2/GAL30	$3.9 \pm 0.36~^{\mathrm{aA}}$	$4.0\pm0.10^{~\mathrm{aA}}$	$4.0\pm0.29~^{\mathrm{abA}}$

Conclusions

This study investigated the antioxidant, antifungal, morphological, and thermal properties of ECL/PCL nanofibers containing NAT and GAL. The results revealed that ECL70/PCL30

In Press, Pre-Proof Version

- exhibited the desired morphological and mechanical properties compared to ECL90/PCL10 and
- 446 ECL80/PCL20. Additionally, mixing NAT with GAL increased the average fiber diameter,
- 447 mechanical characteristics, water contact angle (WCA), and thermal stability. Electrospun
- ECL70/PCL30 nanofibers containing 30% GAL had the highest antioxidant content. Furthermore,
- 449 ECL70/PCL30/NAT2/GAL10 and ECL70/PCL30/NAT2/GAL30 nanofibers completely
- prevented the growth of *Aspergillus niger* and *Penicillium notatum*.

451

452 Acknowledgements

- This research can be introduced with ethics code IR.SBMU.NNFTRI.REC.1398.067 from the
- 454 Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

455 456

References

- 1. Agarwal, S., J. H. Wendorff and A. Greiner. 2008. Use of electrospinning technique for
- 458 biomedical applications. *Polymer.*, **49**(26): 5603-5621.
- 2. Altan, A., Z. Aytac and T. Uyar. 2018. Carvacrol loaded electrospun fibrous films from zein
- and poly (lactic acid) for active food packaging. *Food Hydrocoll.*, **81**: 48-59.
- 3. Amjadi, S., H. Almasi, M. Ghorbani and S. Ramazani. 2020. Reinforced ZnONPs/rosemary
- essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydr. polym.,232:
- 463 115800.
- 464 4. Amjadi, S., S. Emaminia, S. H. Davudian, S. Pourmohammad, H. Hamishehkar and L.
- Roufegarinejad. 2019. Preparation and characterization of gelatin-based nanocomposite
- 466 containing chitosan nanofiber and ZnO nanoparticles. *Carbohydr. polym.*, **216**: 376-384.
- 5. Aytac, Z., S. Ipek, E. Durgun, T. Tekinay and T. Uyar. 2017. Antibacterial electrospun zein
- anofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food
- 469 *chem.*, **233**: 117-124.
- 6. Beikzadeh, S., A. Ehsani and S. Ramezani. 2025. Electrospun ethyl cellulose/sage seed mucilage
- 471 incorporated with cumin essential oil: as a new source for cheese packaging. J. Food
- 472 *Meas. Charact.*, **19**(7): 4585-4596.
- 7. Beikzadeh, S., M. Ghorbani, N. Shahbazi, F. Izadi, Z. Pilevar and A. M. Mortazavian. 2020.
- 474 The effects of novel thermal and nonthermal technologies on the properties of edible food
- 475 packaging. *Food Eng. Rev.*, **12**(3): 333-345.
- 8. Beikzadeh, S., S. M. Hosseini, V. Mofid, S. Ramezani, M. Ghorbani, A. Ehsani and A. M.
- 477 Mortazavian. 2021. Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The
- 478 investigation of mechanical, antioxidant, and antifungal properties for food packaging.
- 479 Int. J. Biol. Macromol., 191: 457-464.
- 9. Beikzadeh, S., A. Khezerlou, S. M. Jafari, Z. Pilevar and A. M. Mortazavian. 2020. Seed
- 481 mucilages as the functional ingredients for biodegradable films and edible coatings in the food
- industry. Adv. Colloid Interface Sci., 280: 102164.
- 483 10. Bhardwaj, N. and S. C. Kundu. 2010. Electrospinning: A fascinating fiber fabrication
- 484 technique. *Biotechnol. Adv.*, **28**(3): 325-347.

In Press, Pre-Proof Version

- 485 11. Chrissafis, K., G. Antoniadis, K. Paraskevopoulos, A. Vassiliou and D. Bikiaris. 2007.
- 486 Comparative study of the effect of different nanoparticles on the mechanical properties and thermal
- 487 degradation mechanism of in situ prepared poly (ε-caprolactone) nanocomposites.
- 488 *Compos. Sci. Technol.*, **67**(10): 2165-2174.
- 489 12. Chuysinuan, P., N. Chimnoi, S. Techasakul and P. Supaphol. 2009. Gallic acid-loaded
- 490 electrospun poly (L-lactic acid) fiber mats and their release characteristic."
- 491 *Macromol. Chem. Phys.*, **210**(10): 814-822.
- 492 13. Delves-Broughton, J., L. V. Thomas, C. H. Doan and P. M. Davidson. 2005. Natamycin." Food
- 493 Sci. Technol. (N.Y.)., 145: 275.
- 494 14. Fajardo, P., J. Martins, C. Fuciños, L. Pastrana, J. Teixeira and A. Vicente. 2010. Evaluation
- of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese.
- 496 *J. Food Eng.*, **101**(4): 349-356.
- 497 15. Fang, Z. and B. Bhandari. 2010. Encapsulation of polyphenols–a review. *Trends Food Sci*
- 498 *Technol.*, **21**(10): 510-523.
- 499 16. Gandomi, H., A. Misaghi, A. A. Basti, S. Bokaei, A. Khosravi, A. Abbasifar and A. J. Javan.
- 500 2009. Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by
- Aspergillus flavus in culture media and cheese. Food Chem. Toxicol., 47(10): 2397-2400.
- 502 17. Girija, B., R. Sailaja, S. Biswas and M. Deepthi. 2010. Mechanical and thermal properties of
- EVA blended with biodegradable ethyl cellulose. J. Appl. Polym. Sci., 116(2): 1044-1056.
- 18. Gregorova, A., M. Machovsky and R. Wimmer. 2012. Viscoelastic properties of mineral-filled
- poly (lactic acid) composites. Int. J. Polym. Sci.
- 19. Heidari, M., S. H. Bahrami, M. Ranjbar-Mohammadi and P. Milan. 2019. Smart electrospun
- 507 nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering.
- 508 *Mat. Sci. Eng.*, **103**: 109768.
- 509 20. Jalilzadeh, A., J. Hesari, S. H. Peighambardoust and I. Javidipour. 2020. The effect of whey
- 510 protein-based edible coating containing natamycin and lysozyme-xanthan gum conjugate on the
- shelf life of ultrafiltrated white cheese. *J. food bioprocess eng.*, **3**(2): 168-177.
- 512 21. Javdani, H., R. Abedi-Firoozjah, S. Beikzadeh, B. Bahramian, A. Ebrahimi, A. Ehsani and M.
- Tavassoli. 2025. Application of Chitosan/Polyvinyl Alcohol-Based Functional Films Integrated
- 514 with Anthocyanins from Echium amoenum and Carbon Dots Derived from Onion Peel for
- 515 Tracking Freshness and Increasing the Shelf Life of Red Meat Sample. Food Bioprocess Tech.,
- **18**(8): 7580-7603.
- 517 22. Kenawy, E.-R., G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders and G.
- 518 E. Wnek. 2002. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-
- vinylacetate), poly (lactic acid), and a blend. JCR., 81(1-2): 57-64.
- 520 23. Koontz, J. L. and J. E. Marcy. 2003. Formation of natamycin: cyclodextrin inclusion
- 521 complexes and their characterization. J. Agric. Food Chem., 51(24): 7106-7110.
- 522 24. Kumar, R., A. K. Mishra, N. Dubey and Y. Tripathi. 2007. Evaluation of Chenopodium
- ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity.
- 524 *Int. J. Food Microbiol.*, **115**(2): 159-164.
- 525 25. Laura, A., E. Alvarez-Parrilla and G. A. González-Aguilar. 2009. Fruit and vegetable
- 526 phytochemicals: Chemistry, nutritional value and stability, John Wiley & Sons.
- 527 26. Li, D. and Y. Xia. 2004. Electrospinning of nanofibers: reinventing the wheel?. J. Adv. Mater.,
- 528 16(14): 1151-1170.
- 529 27. Li, J., S. Y. Kim, X. Chen and H. J. Park. 2016. Calcium-alginate beads loaded with gallic
- acid: Preparation and characterization. LWT-Food Sci. Technol., **68**: 667-673.

In Press, Pre-Proof Version

- 28. Liu, Y., L. Deng, C. Zhang, F. Feng and H. Zhang. 2018. Tunable physical properties of
- ethylcellulose/gelatin composite nanofibers by electrospinning. J. Agric. Food Chem., 66(8): 1907-
- 533 1915.
- 29. Mohammadi, M. A., M. Rostami, S. Beikzadeh, M. Raeisi, M. Tabibiazar and M. Yousefi.
- 535 2018. Electrospun nanofibers as advanced antibacterial platforms: A review of recent studies.
- 536 *Int. J. Pharm. Sci. Res.*, **10**(2): 463-473.
- 30. Neo, Y. P., S. Swift, S. Ray, M. Gizdavic-Nikolaidis, J. Jin and C. O. Perera. 2013. Evaluation
- of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials.
- 539 *Food Chem.*, **141**(3): 3192-3200.
- 31. Nottagh, S., J. Hesari, S. H. Peighambardoust, R. Rezaei-Mokarram and H. Jafarizadeh-
- Malmiri. 2020. Effectiveness of edible coating based on chitosan and Natamycin on biological,
- physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. *Biologia.*, **75**: 605-
- 543 611.
- 32. Pilevar, Z., A. Bahrami, S. Beikzadeh, H. Hosseini and S. M. Jafari. 2019. Migration of styrene
- 545 monomer from polystyrene packaging materials into foods: Characterization and safety
- evaluation. *Trends Food Sci Technol.*, **91**: 248-261.
- 33. Salević-Jelić, A., S. Lević, C. Prieto, S. Jeremić, S. Stevanović, V. Rac, I. Vukašinović, V.
- Nedović and J. M. Lagaron. 2024. Polycaprolactone-based electrospun films incorporating sage
- extract: From active food packaging application to accelerated biodegradation by Pseudomonas.
- 550 Future Foods., **10**: 100465.
- 551 34. sheikhi, Z., M. Farhoodi, S. Beikzadeh, F. kazemian-, S. shojaee-aliabadi and L.
- 552 Mirmoghtadaie *. 2020. Effect of Using Cold Plasma Treatment on the Surface and
- Physicochemical Properties of Starch-chitosan Composite Film. Iran J Nutr Sci Food Technol.
- **15**(1): 103-111.
- 35. Sheikhi, Z., L. Mirmoghtadaie, M. R. Khani, M. Farhoodi, S. Beikzadeh, K. Abdolmaleki, F.
- Kazemian-Bazkiaee, B. Shokri and S. Shojaee-Aliabadi. 2020. Physicochemical Characterization
- of Argon Plasma-Treated Starch Film. J. Agric. Sci. Technol., 22(4): 999-1008.
- 36. Shen, C., Y. Cao, J. Rao, Y. Zou, H. Zhang, D. Wu and K. Chen. 2021. Application of solution
- 559 blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial
- nanofibers for food packaging. *Food Packag. Shelf Life.*, **29**: 100721.
- 37. Sill, T. J. and H. A. Von Recum. 2008. Electrospinning: applications in drug delivery and
- tissue engineering. *Biomaterials.*, **29**(13): 1989-2006.
- 38. Titone, V., M. Ceraulo, F. Lopresti, G. Garofalo, R. Gaglio, M. C. Mistretta and L. Botta. 2025.
- Use of Natamycin for the Development of Polymer Systems with Antifungal Activity for
- Packaging Applications. *Polymers.*, 17(5): 686.
- 39. Türe, H., E. Eroğlu, F. Soyer and B. Özen. 2008. Antifungal activity of biopolymers containing
- natamycin and rosemary extract against Aspergillus niger and Penicillium roquefortii. IJFST.,
- **43**(11): 2026-2032.
- 569 40. Veras, F. F., A. C. Ritter, I. Roggia, P. Pranke, C. N. Pereira and A. Brandelli. 2020.
- Natamycin-loaded electrospun poly (ε-caprolactone) nanofibers as an innovative platform for
- antifungal applications. SN Appl. Sci., 2(6): 1-14.
- 572 41. Veras, F. F., I. Roggia, P. Pranke, C. N. Pereira and A. Brandelli. 2016. Inhibition of
- 573 filamentous fungi by ketoconazole-functionalized electrospun nanofibers. *EJPS.*, **84**: 70-76.
- 574 42. Wang, P., Y. Li, C. Zhang, F. Feng and H. Zhang. 2020. Sequential electrospinning of
- 575 multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin.
- 576 Food chem., **308**: 125599.

بررسى ويژگيهاى فيزيكى، مكانيكى و ضد قارچى نانوالياف الكتروريسى شده اتيل سلولز/پلى	577
کاپرولاکتون حاوی گالیک اسید و ناتامایسین برای بستهبندی پنیر	578
	579
سمیرا بیک زاده، علی احسانی، امیر محمد مرتضویان، ژیان شیخی، مرجان قربانی، و صغری رمضانی	580
	581
چکیده	582
الكتروريسي فرآيندي براي توليد نانوالياف است كه ميتواند براي بستهبندي فعال مواد غذايي به كار رود. در اين مطالعه، ا	583
$_{ m e}$ پلیمر های اتیل سلولز (ECL) و پلیکاپرولاکتون (PCL) با نسبتهای وزنی 70:30، $_{ m e}0$ و 90:10 درصد و ناتامایسیر	584
(L) (NAT) و 2 درصده زنه /وزنه) و گالیک اسید (GAT) (10 و 30 درصده زنه /وزنه) استفاده شد نانوالیاف پس ا	585

الحروريسي هراييدي براي دوبيد داوالياف است كه مي دواند براي بسد مبدي قعال مواد عدايي به كار رود. در اين مطابعه ار پليمر هاي انيل سلولز (ECL) و پلي كاپرو لاكتون (PCL) با نسبت هاي وزني (70:30 و 80:20 درصد و زني (وزني) استفاده شد. نانوالياف پس از (NAT) (1 و 2 درصد وزني /وزني) استفاده شد. نانوالياف پس از فر آيند الكتروريسي (ولتاژ 16 كيلوولت، سر عت 1 ميلي ليتر در ساعت، فاصله 15 سانتي متر) توليد شدند. سپس، نانوالياف از نظر ويژگيهاي مور فولوژيكي، FTIR، حرارتي، مكانيكي، آنتي اكسيداني، زاويه تماس آب و خواص ضد قارچي بررسي شدند. نتايج نشان داد كه ECL80/PCL20 ، ECL90/PCL10 و ECL70/PCL30 داراي قطر متوسط 18 ± 80/86 الافروتر بودند. LT79 و با PCL و انتخاب و با NAT و نانومتر، المحتوب شدند. قطر متوسط نانوالياف توليد شده بين 179/32 و LT79 با نسبت 70 به 30 انتخاب و با NAT و NAT تركيب شدند. قطر متوسط نانوالياف توليد شده بين 179/32 فزايش يافت. افزودن 2 درصد NAT به همراه 10 مي GAL مكانيكي و ضد قارچي لاحرك كرد. نمونه هاي پنير بستهبندي شده با نانوالياف حاوي NAT با 30 درصد GAL در تمام تيمار ها، افزايش كمتري در ميزان كپک و مخمر در طول دوره نسبت به نمونه كنترل داشتند. همچنين، نتايج ارزيابي حسي تفاوت معني داري بين نمونه هاي بستهبندي شده نشان نداد. بنابر اين، نانوالياف LCL/PCL تركيب شده با 20 درصد CAL و 10 درصد GAL مي وانند به عنوان جايگزيني مؤثر براي افزودن مستقيم NAT به فرمو لاسيون پنير مورد درصد الم 30 در د.