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Abstract 4 

This study investigates the impact of climatic variables and agricultural practices on wheat yield 5 

across different climate zones in Iran. Using a comprehensive dataset, we analyse how 6 

temperature, precipitation, soil type, and fertilizer usage influence wheat productivity. Our 7 

findings reveal significant yield variability across temperate, arid, and cold zones, with 8 

temperate regions showing the highest mean yields due to moderate temperatures and adequate 9 

precipitation. In contrast, arid and cold regions face challenges from extreme temperatures and 10 

insufficient rainfall. The study employs a two-step estimation process to isolate the effects of 11 

climatic variables from other factors, enhancing the accuracy of yield predictions. Our results 12 

underscore the critical role of temperature and precipitation in agricultural productivity, 13 

corroborating previous research while providing novel insights through methodological 14 

innovations. We propose several policy recommendations, including improving irrigation 15 

infrastructure, promoting climate-resilient wheat varieties, and developing comprehensive 16 

climate adaptation strategies. These policies aim to enhance agricultural resilience and 17 

sustainability in the face of climate change. Our research contributes to the growing body of 18 

literature on climate change and agriculture, offering a detailed understanding of how climatic 19 

factors affect wheat yields and informing more effective agricultural policies and practices. 20 

Keywords:  Climate Change, Climate Risk, Statistical Modelling, Wheat Yield, Iran. 21 

 22 
Introduction 23 

Climate change, as highlighted by the Intergovernmental Panel on Climate Change (IPCC), is 24 

one of the most significant threats to global agriculture, with developing countries being the 25 

most vulnerable. In Iran, climate change is expected to exacerbate the already challenging 26 

conditions for agriculture, especially wheat production, by increasing temperatures and altering 27 

precipitation patterns, which in turn affect water resources, farming systems, and ecosystems 28 

(Karimi et al., 2018; Nassiri et al., 2006). 29 
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Agriculture remains the fundamental source of food supply worldwide, across all levels of 30 

national development (Praburaj et al., 2018). Around 60% of Iran’s cultivated land is dedicated 31 

to rainfed crops, contributing 32% of Iran’s total agricultural output (https://amar.org.ir/). 32 

Wheat, one of the most essential crops, is pivotal for food security and the growing global 33 

demand for grains. In Iran, wheat is a strategic crop, forming the backbone of almost all cropping 34 

patterns and occupying a special place in the Iranian diet (Araghi et al., 2018; Bannayan et al., 35 

2010; Mojaverian et al., 2021). In 2021, approximately 33% of agricultural land was allocated 36 

to irrigated wheat, while 67% was used for rainfed and dryland wheat, with rainfed wheat 37 

production reaching about 4.47 million tons, accounting for 74.98% of all rainfed crops 38 

(https://maj.ir). The country’s per capita bread consumption is 156 kg per year, significantly 39 

higher than the 59 kg per year in European countries (Babashahi and Shokri, 2021; Eglite and 40 

Kunkulberga, 2017). Achieving self-sufficiency in wheat production has thus become a primary 41 

goal in Iran’s agricultural policies (Alizadeh-Dehkordi et al., 2024). The climatic shifts have 42 

significant implications for Iran’s agricultural sector. Various studies have examined the 43 

impacts of climate change on crop yields in the country, particularly for wheat. For example, 44 

Maddah et al. (2015) used crop models to predict wheat yields in Gorgan, attributing yield 45 

variations primarily to temperature changes. Similarly, Zarakani et al. (2014) and Nazari et al. 46 

(2021) found that temperature and precipitation are crucial factors influencing rainfed wheat 47 

yields across different regions of Iran. These findings underscore the importance of climatic 48 

factors in agricultural planning and policy-making. 49 

The growing concern about climate change has prompted researchers to investigate how crop 50 

yields might respond to its potential impacts, in order to understand the nature of these effects 51 

(Pakrooh and Kamal, 2023; Schierhorn et al., 2020; Wu et al., 2021). Various approaches have 52 

been employed in studies examining the impacts of climate factors on agricultural production, 53 

including crop models, machine learning techniques, and statistical approaches. Crop modeling 54 

is a widely used method for assessing the risks of climate change on crop production (Muller 55 

and Martre, 2019). In a review study, Luo et al. (2023) highlighted that crop models, such as 56 

WOFOST, DSSAT, AquaCrop, and SAFY, are widely used in data assimilation for yield 57 

estimation. These models provide precise simulations of crop growth at the field scale; however, 58 

their effectiveness is limited in larger regional contexts due to the variability in spatial input 59 

parameters (Luo et al., 2023). Despite accounting for physiological processes of crop growth 60 

and development, these models require significant input data, which can be time-consuming and 61 

costly (Eyshi Rezaie and Bannayan, 2012). Machine learning is another technique explored in 62 
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this context (Elbasi et al., 2023; Kuradusenge et al., 2023). While sophisticated machine 63 

learning algorithms, such as Random Forest, AdaBoost, decision trees, and support vector 64 

machines, have successfully enhanced crop yield predictions by utilizing various variables and 65 

advanced techniques like data assimilation and remote sensing, traditional regression models 66 

still offer significant advantages. The statistical approach involves estimating the impact of 67 

changes in climate factors on crop yields using a statistical regression equation with historical 68 

datasets on global, national, and regional scales (Singh et al., 2022). These methods are 69 

particularly notable for their flexibility in measuring interaction terms among climate variables 70 

and other factors, making them powerful tools for evaluating the impacts of climate change on 71 

crop production across different levels (Pakrooh and Kamal, 2023). For example,  Heil et al. 72 

(2020) assessed the impacts of climate change on wheat yields in Germany using the ARIMA 73 

model and Multiple Regression Analysis, finding that climate change had a negligible effect on 74 

wheat yield variation during the winter and spring seasons. 75 

In examining the impact of climate change on wheat yields, we saw a range of methodologies 76 

employed in existing studies, highlighting the significance of temperature and precipitation as 77 

critical climatic factors. Recent studies suggest that future climate change will significantly 78 

limit crop yield across most of Iran’s cultivated regions (Karimi et al., 2018). In Hamedan 79 

Province, rainfed wheat yields are expected to decline by 20.6–41.3% by the 2080s due to 80 

decreased precipitation and rising temperatures (Mohammadian Mosammam et al., 2016). In 81 

Esfahan Province, irrigated wheat yields may drop by 1.49–2.1% under different climate 82 

scenarios (Ababaei et al., 2010).  Following the literature, this study aims to apply a novel 83 

statistical approach to predict wheat yield under various climate scenarios, given the relative 84 

simplicity and interpretability of statistical methods. A distinctive feature of our research is the 85 

implementation of a two-step estimation process designed to isolate the effects of climate 86 

variables from other influencing factors.  87 

While numerous studies have assessed the impacts of climate change on wheat yields in Iran, 88 

most have focused on individual regions or employed either crop simulation models or single-89 

stage statistical regressions. These approaches often confound the effects of climatic variables 90 

with those of management practices, such as fertilizer use and soil characteristics. Moreover, 91 

there is a lack of comparative analysis that systematically examines how wheat yield responds 92 

to climate variability across Iran’s major climate zones, temperate, arid, and cold, within a 93 

unified analytical framework. This limits the generalizability and relevance of their findings to 94 

policy. The present study introduces a two-step statistical estimation procedure to fill this gap. 95 
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In the first step, we estimate the effects of fertilizer and soil type on wheat yield; in the second 96 

step, we analyse the residual yield variability as a function of climate factors. This 97 

methodological innovation enhances the precision of climate impact attribution and enables 98 

more reliable, zone-specific yield projections to inform targeted adaptation strategies.  99 

Initially, we assess the impact of a single management factor, specifically fertilizer use, on 100 

wheat yield. According to the literature, fertilizer is recognized as one of the effective factors 101 

in enhancing crop yield (Krasilnikov et al., 2022; Liu et al., 2021). We also included soil type 102 

in our initial model. Soil type is another factor affecting yield and remains constant over time 103 

(Reith et al., 1984). We consider four main types of soil according to the FAO soil 104 

classification. In this study, we assume that the impact of fertilizer on yield will remain constant 105 

in the future, as it has in the past. In the subsequent step, we analyze the residuals from the first 106 

model, representing the portion of yield variability unexplained by fertilizer and soil effects. 107 

These residuals are then used as the dependent variable in a second regression model where 108 

temperature and precipitation are predictors. The idea originated from Heil et al. (2020) and 109 

Singh et al. (2022), who have used techniques to evaluate direct and indirect influences on 110 

agricultural yield outcomes separately. By utilizing future temperature and precipitation 111 

projections, we generate predictions of the residual component. The final yield predictions are 112 

obtained by combining these residual predictions with the mean yield-hat estimate from the 113 

first model, thereby providing a comprehensive forecast for future wheat yields. 114 

 115 
Data Description 116 

Our data comprises wheat yield and fertilizer usage for 183 cities in Iran, spanning up to 23 117 

years, depending on the availability of data. This data has been extracted from the Ministry of 118 

Agriculture Jihad (https://maj.ir) in Iran. In this study, we aim to develop a simple yet 119 

powerful method to predict future wheat yield. To ensure the accessibility of data for an 120 

extensive case study or even for future projections, we focus on two critical climate factors: 121 

precipitation and temperature. Climate factors include precipitation, maximum and minimum 122 

temperatures, obtained from the ERA5 reanalysis database. We have also extracted projected data 123 

for these factors from the CMIP6 climate projections for future predictions. As the effects of 124 

climate factors are the main part of this study, careful consideration is required. The Ministry 125 

of Agriculture Jihad highlights the variability in wheat harvesting and cultivation durations 126 

across different climatic conditions. Accordingly, we have classified our study area into three 127 

climatic types, arid, temperate, and cold, based on the Köppen-Geiger classification system. 128 

https://maj.ir/
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Iran, according to this system, has 10 distinct climate types: BWh, BWk, BSh, BSk, Cfa, Cfb, 129 

Csa, Csb, Dsa, and Dsb, (Ghiai et al., 2021; Raziei, 2022). Considering only the main 130 

groups, we integrated them into three main classes. Tables A.1 to A.3 (in Appendix) present 131 

the regions within each class. This    classification informs our analysis, enabling a more nuanced 132 

understanding of yield predictions across diverse climate scenarios. Soil type information for 133 

each city was obtained from the SoilGrids database (https://soilgrids.org), which provides 134 

globally consistent, high-resolution estimates of soil properties. Using the dominant soil 135 

characteristics per location, we assigned each city to one of four aggregated soil types: Loamy-136 

Soil.1, Loamy-Soil.2, Loamy-Soil.3, and Sandy-Soil, following the FAO soil taxonomy 137 

classification guidelines. 138 

Fig. 1 shows the selected cities along with their climate classifications. The map highlights the 139 

temperate regions in green, the arid regions in orange, and the cold regions in blue. The blank 140 

(white) areas in Fig. 1 represent regions of Iran that were not included in the study because 141 

they are not wheat cultivation areas. 142 

Figure 1. Merging climate types of Iran into three classes according to the Köppen-Geiger climate 143 
classification. 144 

 145 
Methods 146 

To achieve the study’s goal, we look at the data pattern concerning yield, as presented in Figs. 147 

2 and 3. The figures indicate no clear pattern between climate factors and yield within any 148 

climate type zone. However, it appears the use of fertilizer influences that yield. Based on this 149 

observation, we decided to employ a two-step estimation approach. 150 
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(a) Prcp-Arid 

 
(b) Prcp-Temperate 

 

  
(c) Prcp-Cold 

 
(d) TMax-Arid 

 

  
(e)TMax-Temperate 

 
(f) TMax-Cold 

 

  
(g) TMin-Arid 

 
(h) TMin-Temperate 

 

 
(i) TMin-Cold 

Figure 2. Yield Pattern Considering Climate Factors _ y axis = Yield, x axis = Climate Factors. 151 
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(a) Frtz-Arid 

 
(b) Frtz-Temperate 

 

 
(c) Frtz-Cold 

Figure 3. Yield Pattern Considering Fertilizer _ y axis = Yield, x axis = Fertilizer (Frtz). 152 

Estimation of Fertilizer and Soil Type Effects 153 

In the first step, to simplify the model, we focus on fertilizer and soil type as direct influencers 154 

on yield using the following model: 155 

𝑌𝑖,𝑡,𝑐 = 𝐵0 + 𝐵1𝐹𝑖,𝑡 + 𝐵2𝑆𝑖,𝑡 + 𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑡,𝑐
           (1) 156 

Where Y is the yield, F is the amount of fertilizer applied, and S represents soil type. i, t, and 157 

c are city, time, and climate type. 𝐵0 to 𝐵3 are the parameters and Y residual is the residual 158 

which we call 𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. 159 

This procedure was necessary because modeling agricultural yields is complicated by the 160 

numerous factors that influence them. Various elements impact crop yields directly and 161 

indirectly; however, considering all of them is often not feasible due to inadequate 162 

documentation of many data points (Heil et al., 2020).  163 

After estimating this model, we extracted the residuals, representing the portion of yield not 164 

explained by fertilizer and soil type. We also identified the explained portion of the model 165 

(𝑌ℎ𝑎𝑡), which includes fertilizer effectiveness, soil type, and the intercept. The mean of 𝑌ℎ𝑎𝑡 166 

was used as the fixed component for future predictions based on each climate type. 167 

𝑌ℎ𝑎𝑡 = 𝐵0
∗ + 𝐵1

∗𝐹 + 𝐵2
∗𝑆            (2) 168 

 169 
        Regression of Residuals on Climate Factors 170 

In the second step, we regressed the residuals from the first model on climate variables to 171 

isolate the indirect influence of climate. 172 
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Since future climate projections are available but fertilizer usage data is not, this approach 173 

allows us to estimate future outcomes more reliably. Assuming fertilizer usage remains 174 

constant, given that its impact has already been accounted for, we can isolate the effects of 175 

climate on yield and project future agricultural productivity accordingly (Heil et al., 2020). Zhu 176 

et al. (2022) demonstrated the significant influence of temperature changes on precipitation 177 

patterns and intensity, highlighting the importance of this relationship in climate studies. 178 

However, many studies overlook this interaction when examining the impact of climate factors 179 

on yield. To address this gap, we conducted a simultaneous regression that considers the 180 

relationship between temperature and precipitation, providing a more comprehensive analysis 181 

of the climate factors affecting yield. We also include their squared terms in our analysis to 182 

capture the nonlinear effects of climate factors. 183 

Pi,t = ζ0 + ζ1TMaxi,t
+ ζ2TMini,t

+ ζ3TMaxi,t

2 + ζ4TMini,t

2 + πi,t,c (3) 184 

 185 

𝑌𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖,𝑡,𝑐
= 𝛾0 + 𝛾1𝑇𝑀𝑎𝑥𝑖,𝑡

+ 𝛾2𝑇𝑀𝑖𝑛𝑖,𝑡
+ 𝛾3𝑃𝑖,𝑡 + 𝛾4TMaxi,t

2 + 𝛾5TMini,t

2 +186 

𝛾6𝑃𝑖,𝑡2
+ 𝜈𝑖,𝑡,𝑐                                                                                                         (4) 187 

 188 

Where TMaxi,t is the maximum temperature, TMini,t is the minimum temperature, and 𝑃𝑖,𝑡 189 

represents precipitation. 𝛾0 to 𝛾6 and ζ0 to ζ4 are the parameters that show the amount of effects 190 

that come from each factor. For temperature, we used the mean temperature during the 191 

cultivation period, and for precipitation, we used the total amount over the same period. 192 

 193 
Results 194 

In our estimations, first, the data was split into training and testing sets to compare the 195 

performance of multiple regression with the two-step approach. Multiple regression models 196 

were developed for all climate zones using all available variables as predictors. The results are 197 

in Table 1. MAE quantifies the average magnitude of errors between predicted and observed 198 

values, expressed in the same units as the target variable (kg/ha). A lower MAE indicates more 199 

accurate predictions on average. Across all zones, the two-step methodology consistently 200 

achieved lower MAE values than multiple regression, indicating improved average predictive 201 

precision. RMSE provides a measure of prediction error that penalizes larger deviations more 202 

severely due to the squaring of residuals. This makes RMSE particularly sensitive to outliers. 203 

The two-step approach consistently demonstrated lower RMSE values, indicating better 204 
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performance in minimizing significant prediction errors. R² reflects the proportion of variance 205 

in the dependent variable explained by the model. An R² value closer to 1 indicates a better 206 

model fit. The two-step methodology yielded higher R² values in all climate zones, signifying 207 

enhanced explanatory power relative to the multiple regression model. MAPE expresses 208 

prediction errors as a percentage of the actual values, enabling a scale-independent assessment 209 

of model accuracy. For instance, the MAPE decreased from 19.78% under the multiple 210 

regression model in the Temperate Zone to 14.43% using the two-step methodology, further 211 

confirming the latter's superior performance. 212 

Overall, the two-step methodology demonstrated notable improvements across all performance 213 

metrics and climate zones, affirming its robustness and greater predictive capability in 214 

estimating wheat yields. 215 

Table 1. Comparison of Multiple Regression and Two-Step Methodology for Predicting Wheat Yields. 216 

Climate Zone Model 
MAE 

(kg/ha) 

RMSE 

(kg/ha) 

MAPE 

(%) 
R2 

Arid Zone 
Multiple Regression 

Two-Step Methodology 

240.5 

180.4 

310.2 

250.1 

26.63 

19.22 

0.62 

0.74 

Cold Zone 
Multiple Regression 

Two-Step Methodology 

190.3 

140.6 

280.7 

230.5 

20.01 

14.78 

0.65 

0.78 

Temperate 

Zone 

Multiple Regression 

Two-Step Methodology 

220.7 

160.9 

300.4 

240.2 

19.79 

14.43 

0.68 

0.76 

 217 
Table 2 provides a comprehensive summary of agricultural yields and climatic variables across 218 

three climate types: Arid, Cold, and Temperate. The variables include Yield (kg/ha), Minimum 219 

Temperature (°C), Maximum Temperature (°C), Precipitation (mm), and fertilizer usage 220 

(kg/ha). The data reveals that the Temperate climate zone offers the highest mean yield 221 

compared to the Arid and Cold zones, indicating a more favourable environment for crop 222 

production. Temperature notably differs among these zones; the Temperate zone experiences 223 

the most moderate minimum and maximum temperatures, potentially contributing to its higher 224 

yields. Specifically, the mean minimum and maximum temperatures in the Temperate zone are 225 

between those of the Arid and Cold zones, which may mitigate the extremes that could 226 

otherwise stress crops. Precipitation patterns also vary significantly, with the Temperate zone 227 

receiving the highest mean precipitation, supporting more robust growth than the Arid and 228 

Cold zones. This table highlights that while the Temperate climate zone offers the optimal 229 

conditions for agricultural yield, the Cold and Arid zones present more challenging 230 

environments due to lower temperatures and variable precipitation levels. These findings 231 

underscore the importance of climate considerations in agricultural planning and yield 232 

optimization. 233 
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Table 2. Variable Description and Classification. 234 
Climate Arid Cold Temp 

      Yield_min 17.21 127.69 34.35 

Yield_mean 938.36 950.75 1115.37 

Yield_max 4385.00 3285.96 4415.00 

𝑇𝑀𝑖𝑛_min -6.13 -8.17 -5.84 

𝑇𝑀𝑖𝑛_mean 3.84 -1.24 2.83 

𝑇𝑀𝑖𝑛_max 20.13 11.31 14.73 

𝑇𝑀𝑎𝑥_min 3.96 1.87 3.17 

𝑇𝑀𝑎𝑥_mean 14.41 8.65 13.68 

   𝑇𝑀𝑎𝑥_max 28.81 15.03 26.99 

Prcp_min 47.84 137.61 74.97 

Prcp_mean 293.52 428.59 466.38 

Prcp_max 806.03 1093.11 1319.26 

Frtz_min 0.06 1.00 3.21 

Frtz_mean 94.86 101.99 134.54 

Frtz_max 587.50 356.19 519.78 

T_Max = Max Temperature, T_Min = Min Temperature, Prcp = Precipitation, Frtz = Fertilizer. 235 

 236 
Table 3 presents the correlation coefficients between agricultural yield and various climate 237 

factors, precipitation (Prcp), minimum temperature (𝑇𝑀𝑖𝑛), maximum temperature (𝑇𝑀𝑎𝑥), and 238 

fertilizer usage (Frtz), across three different climate zones: Arid, Temperate, and Cold.  239 

We observe interesting patterns when comparing the temperature correlations across different 240 

climate types. In arid and temperate climates, the correlation between yield and maximum 241 

temperature is negative. This suggests that higher maximum temperatures may have a 242 

detrimental effect on crop yields in these regions. In contrast, the positive correlation between 243 

yield and maximum temperature in cold climates indicates that higher maximum temperatures 244 

can benefit crop yields in colder regions. This positive correlation in Cold climates suggests 245 

that warming temperatures may extend the growing season or improve growing conditions, 246 

thus positively impacting yields. The correlation with minimum temperature is positive in all 247 

three climate types, with the strongest correlation observed in the Cold climate, suggesting that 248 

higher minimum temperatures may generally favor crop growth, particularly in colder regions. 249 

These results indicate that fertilizer usage consistently correlates strongly with yield across all 250 

climate types, underscoring its critical role in agricultural productivity. Precipitation also 251 

shows a positive correlation with yield, particularly in Arid and Cold climates, highlighting the 252 

importance of an adequate water supply. The influence of temperature on yield varies by 253 

climate type, with minimal impact observed in Arid climates, slight beneficial effects of lower 254 

temperatures in Temperate regions, and a moderate positive effect of warmer temperatures in 255 

Cold climates. 256 

 257 
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Table 3. Correlation coefficients between yield and climate factors (Prcp, 𝑇𝑀𝑖𝑛, 𝑇𝑀𝑎𝑥) and fertilizer 258 
(Frtz)for different climate types (Arid, Temperate, Cold). 259 

Yield in Climate Type Prcp 𝑇𝑀𝑖𝑛 𝑇𝑀𝑎𝑥  Frtz 

Yield/ Arid 0.4081 0.0891 -0.0054 0.5429 

Yield/ Cold 0.4371 0.2422 0.1811 0.3760 

Yield/Temp 0.2709 0.1333 -0.0515 0.4086 

 260 
Regression of Yield on Fertilizer and Soil Type 261 

Table 4 illustrates the impact of fertilizers and different soil types on yield across various 262 

climate conditions. The results of the regression analyses across Temperate, Cold, and Arid 263 

areas reveal that fertilizer usage consistently has a significant positive impact on yield, 264 

emphasizing its critical role in agricultural productivity. In Temperate areas, all soil types 265 

(Loamy-Soil.2, Loamy-Soil.3, and Sandy-Soil) significantly increase yield compared to the 266 

reference soil. In contrast, only Sandy-Soil shows a significant positive effect in Cold areas. In 267 

Arid regions, Loamy-Soil.3 and Sandy-Soil contribute significantly to yield, with Sandy-Soil 268 

having the most significant effect. Across all models, the intercepts are highly significant, 269 

establishing robust baseline yields, and the overall model fits are strong, with predictors 270 

collectively explaining substantial yield variability, as evidenced by highly significant F-271 

statistics. 272 

Table 4. Summary of the model predicting Yield with Fertilizer (Frtz) and Soil types for Temperate, 273 
Cold, and Arid zones. 274 

Parameter Estimate Std. Error t value Pr (>|t|) 

  Temperate   

Intercept 452.64 43.09 10.504 < 2e-16 *** 

Frtz 3.52 0.20 17.599 < 2e-16 *** 

Loamy-Soil.2 371.10 74.73 4.966 7.51e-07 *** 

Loamy-Soil.3 198.97 37.79 5.266 1.57e-07 *** 

Sandy-Soil 360.85 65.01 5.551 3.29e-08 *** 

F-statistic:  99.72   

p-value:  < 2.2e-16   

  Cold   

Intercept 656.5679 69.9939 9.380 < 2 × 10−16 *** 

Frtz 2.5050 0.4598 5.448 8.58 × 10−8 *** 

Loamy-Soil.2 43.3467 88.2041 0.491 0.6234 

Loamy-Soil.3 22.7419 66.6432 0.341 0.7331 

Sandy-Soil 224.8900 112.7241 1.995 0.0467 * 

F-statistic:  19.25   

p-value:  1.383e-14   

  Arid   

Intercept 357.4581 35.5290 10.061 < 2.2e − 16 *** 

Frtz 4.7307 0.2021 23.413 < 2.2e − 16 *** 

Loamy-Soil.2 71.2399 52.2822 1.363 0.173 

Loamy-Soil.3 159.9529 34.3569 4.656 3.51e − 06 *** 

Sandy-Soil 693.3563 88.4516 7.839 8.38e − 15 *** 

F-statistic:  187.3   

p-value:  2.2 e - 16   

  Significance Codes   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
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Regression of Residuals on Climate Factors 275 

After completing the initial regression analysis, we extracted the residuals and performed a 276 

second regression to examine the impact of climate factors on these residuals. This two-step 277 

approach allowed us to isolate and analyse the influence of climate variables on yield 278 

variability that the initial model did not explain. 279 

The regression analyses of residuals from initial yield models across Temperate, Cold, and 280 

Arid regions, shown in Table 5, highlight the nuanced impacts of climatic factors on 281 

agricultural productivity and emphasize the importance of incorporating climate variables into 282 

yield predictions. In temperate areas, positive coefficients for Prcp and 𝑇𝑀𝑖𝑛 indicate that these 283 

factors enhance yields, while the negative coefficients for their quadratic terms (𝑃𝑟𝑐𝑝2 and 284 

𝑇𝑀𝑎𝑥
2 ) reveal diminishing returns or adverse effects at higher levels, underscoring non-linear 285 

relationships and the critical role of optimal climate conditions. In cold regions, Prcp positively 286 

influences residuals, highlighting the underestimated benefits of moisture in the initial model, 287 

while higher 𝑇𝑀𝑖𝑛 shows adverse effects, suggesting overestimated benefits of warming; the 288 

𝑇𝑀𝑖𝑛
2  further reveals non-linear impacts of extremely low temperatures on yields. Similarly, in 289 

arid regions, Prcp and 𝑇𝑀𝑖𝑛 positively affect residuals, with diminishing returns at excessive 290 

levels indicated by negative quadratic terms, reflecting risks like waterlogging or salinization 291 

and adverse crop responses to extreme temperatures. These findings collectively demonstrate 292 

that while initial models based on fertilizer and soil types provide a baseline, integrating 293 

detailed climate variables and their non-linear effects is essential for improving yield model 294 

precision and developing adaptive strategies for climate variability in diverse agricultural 295 

systems. 296 

It is important to note that comprehensive diagnostic tests (such as tests for residual normality, 297 

homoscedasticity, and autocorrelation) were meticulously performed across all models 298 

developed in this study. Given the inherent structure and characteristics of the climatic and 299 

agricultural data, issues such as non-normal residuals, heteroscedasticity, autocorrelation, and 300 

multicollinearity (especially in the presence of polynomial terms) were observed. To ensure 301 

the validity and robustness of our results, we systematically employed robust statistical 302 

methods, including Robust Standard Errors for regression models and variable centering to 303 

mitigate multicollinearity in the second-stage models. Therefore, all outputs and results 304 

presented in this article reflect the application of these corrections and rigorous statistical 305 
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approaches to overcome the inherent challenges of the data, thereby ensuring the credibility 306 

and reliability of our findings. 307 

 308 
Table 5. Summary of the model predicting Residual with Climate Factors for Temperate, Cold, and 309 
Arid zones. 310 

Parameter Estimate Std. Error t value Pr(>|t|) 

  Temperate   

Intercept -3.03374e+02 1.90759e+02 -1.59036 0.1119395 

Prcp 1.25171e+00 2.17896e-01 5.74452 1.0890e-08 *** 

𝑇𝑀𝑎𝑥  1.35803e+01 2.35549e+01 0.57654 0.5643275 

𝑇𝑀𝑖𝑛 5.17179e+01 1.21359e+01 4.26157 2.1406e-05 *** 

Prcp2 -7.97323e-04 1.89560e-04 -4.20618 2.7318e-05 *** 

𝑇𝑀𝑎𝑥
2  -1.89702e+00 7.17554e-01 -2.64373 0.0082748 ** 

𝑇𝑀𝑖𝑛
2  -7.20379e-01 1.04585e+00 -0.68880 0.4910422 

Multiple R-Squared:  0.71   

  Cold   

Intercept -6.33916e+02 2.69843e+02 -2.34920 0.019265 * 

Prcp 1.97903e+00 4.70445e-01 4.20672 3.1552e-05 *** 

𝑇𝑀𝑎𝑥  -3.10292e+01 4.46018e+01 -0.69569 0.486996 

𝑇𝑀𝑖𝑛 -2.83900e+01 1.29129e+01 -2.19858 0.028440 * 

Prcp2 -7.19510e-04 4.27570e-04 -1.68279 0.093142 . 

𝑇𝑀𝑎𝑥
2  3.37268e+00 2.54750e+00 1.32392 0.186233 

𝑇𝑀𝑖𝑛
2  -7.61678e+00 1.17554e+00 -6.47938 2.5253e-10 *** 

Multiple R-Squared:  0.83   

  Arid   

Intercept -6.39796e+02 2.72521e+02 -2.34769 0.01901517 * 

Prcp 3.19122e+00 4.92547e-01 6.47901 1.2366e-10 *** 

𝑇𝑀𝑎𝑥  8.13744e+00 2.94383e+01 0.27642 0.78225994 

𝑇𝑀𝑖𝑛 6.80239e+01 1.48341e+01 4.58566 4.8890e-06 *** 

Prcp2 -2.63468e-03 7.09306e-04 -3.71445 0.00021087 *** 

𝑇𝑀𝑎𝑥
2  -1.37589e+00 7.06383e-01 -1.94779 0.05161992 . 

𝑇𝑀𝑖𝑛
2  -1.93440e+00 6.54692e-01 -2.95468 0.00317714 ** 

Multiple R-Squared:  0.75   

 311 
Our findings align with previous research, emphasizing the critical role of temperature and 312 

precipitation in determining wheat productivity. For instance, studies by Maddah et al. (2015) 313 

and Zarakani et al. (2014) in Iran demonstrated that temperature and precipitation are primary 314 

drivers of yield variations in both irrigated and rainfed conditions. Similar conclusions were 315 

drawn by Nazari et al. (2021), who found that climate change impacts rainfed wheat yields 316 

differently across various climatic regions. Cold semi-arid areas potentially benefit from 317 

warmer temperatures, while temperate and hot arid regions face negative impacts. 318 

Future Yield 319 

After completing the estimations, we proceeded to forecast future yields using climate data 320 

under three scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. We first used the initial regression 321 

model to predict future yields, which relate yield to fertilizer and soil type, to determine the 322 
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explained yield component. We calculated the mean of this explained component and treated 323 

it as a fixed part for each climate scenario. Next, we employed a second regression model, 324 

which analyzes the residuals from the first model in relation to climate factors. Using this 325 

model, we predicted the residuals for each climate scenario. Finally, we obtained the forecasted 326 

yield for each climate scenario by summing the predicted residuals from the second model with 327 

the fixed component from the first model. 328 

We also computed prediction intervals to quantify the uncertainty in our model’s forecasts. 329 

These intervals are crucial as they provide a range within which future observations will likely 330 

fall, accounting for model parameter uncertainty and data variability. For instance, a 95% 331 

prediction interval means that 95% of such intervals would contain the actual outcome if the 332 

experiment were repeated multiple times. Even with additional factors in the model, future 333 

yield predictions are expected to fall within these intervals, as they encompass the full range 334 

of plausible values, reflecting the overall uncertainty (Nagashima et al., 2019; Nikulchev and 335 

Chervyakov, 2023; Tian et al., 2022). 336 

𝐿𝑜𝑤𝑒𝑟/𝑈𝑝𝑝𝑒𝑟 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑌𝑖𝑒𝑙𝑑 ±  𝑍 × 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝐸𝑟𝑟𝑜𝑟              (5) 337 

Table 6, provides a comprehensive comparison of observed and projected average crop yields 338 

across the Temperate, Cold, and Arid regions, highlighting the impacts of climate change under 339 

different emissions scenarios from 1991-2023 to 2051-2073. The observed yields, which are 340 

highest in the Temperate region, are followed by the Cold and Arid regions, reflecting the 341 

varying climatic conditions that influence agricultural productivity. Under the SSP1-2.6 342 

scenario, characterized by low emissions and moderate temperature increases, all regions show 343 

a decline in yields. The Temperate region experiences a 9.6% decrease, attributed to slight 344 

temperature increases that could reduce the optimal growing conditions. The Cold region sees 345 

a 15.6% reduction, likely due to shorter growing seasons as temperatures rise. In comparison, 346 

the Arid region faces a 16.9% drop, exacerbated by potential decreases in precipitation and 347 

increased evapotranspiration rates. These changes suggest that temperature and precipitation 348 

patterns shifts will adversely affect yields even under a scenario with strong mitigation efforts. 349 

In the SSP2-4.5 scenario, the moderate emissions decline is more pronounced due to greater 350 

temperature increases and altered precipitation patterns. The Temperate region’s yield 351 

decreases by 11.3%, as warmer temperatures could push conditions beyond the optimal range 352 

for some crops. The Cold region experiences a 16.4% decline, potentially due to further 353 

shortening of the growing season and more erratic precipitation patterns. The Arid region faces 354 

a substantial 20.3% drop, likely driven by increased temperatures and decreased rainfall, 355 
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exacerbating water scarcity and crop stress. The SSP5-8.5 scenario, characterized by high 356 

emissions and significant temperature increases, predicts the most severe declines. The 357 

Temperate region sees a 14.2% reduction, as higher temperatures could lead to heat stress and 358 

reduced yields. The Cold region experiences a 20% decline, reflecting drastic temperature 359 

changes and potentially more variable and extreme precipitation events, which can disrupt crop 360 

growth. The Arid region suffers the steepest drop, at 24.5%, driven by extreme heat and further 361 

reductions in precipitation, severely impacting water availability and crop viability. This 362 

comparison illustrates the significant impact of rising temperatures and changing precipitation 363 

patterns on crop yields across different regions. While the Temperate region may retain some 364 

resilience due to its initially favorable conditions, the Cold and Arid regions are particularly 365 

vulnerable to the projected climatic shifts. These findings emphasize the critical importance of 366 

addressing temperature increases and precipitation variability through comprehensive 367 

mitigation and adaptation strategies, as these factors are key drivers of the potential decline in 368 

agricultural productivity under future climate scenarios. 369 

Table 6. Average Yield for Each Scenario (2051-2073) and Average Observed Yield (1991-2023). 370 
 Temperate Cold Arid 

Observed Yield 1115.37 950.75 938.36 

SSP1-2.6 1008.72 802.53 779.88 

SSP2-4.5 989.99 795.14 747.70 

SSP5-85 957.41 760.67 708.84 

 371 

Analysing the predicted yield values and their 95% prediction intervals reveals significant 372 

insights into the variability and uncertainty inherent in agricultural yield forecasts. As shown 373 

in Figs. 4 to 6, the predicted yields for various cities exhibit considerable variation, with 374 

corresponding prediction intervals indicating the potential range of yield outcomes. This 375 

variability underscores the importance of understanding and managing the factors contributing 376 

to yield fluctuations. Policymakers and agricultural stakeholders must consider these prediction 377 

intervals when planning and implementing agricultural strategies. In conclusion, the predicted 378 

yields and their associated prediction intervals provide valuable information for understanding 379 

and mitigating the risks associated with agricultural production. By leveraging this 380 

information, stakeholders can make informed decisions to enhance yield stability and ensure 381 

food security. Future research should focus on refining prediction models to reduce uncertainty 382 

and developing innovative solutions to address the underlying causes of yield variability. 383 
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(a) 

SSP1-2.6 

 

(b) 

SSP2-4.5 

 

(c) 

SSP5-8.5 

Figure 4. Predicted Yield _ Temperate Areas / Blue point = Predicted Yield, Red line = Intervals. 384 
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(a) 

SSP1-2.6 

 

(b) 

SSP2-4.5 

 

(c) 

SSP5-8.5 

Figure 5. Predicted Yield _ Cold Areas / Blue point = Predicted Yield, Red line = Intervals. 389 
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(a) 

SSP1-2.6 

 

(b) 

SSP2-4.5 

 

(c) 

SSP5-8.5 

Figure 6. Predicted Yield _ Arid Areas / Blue point = Predicted Yield, Red line = Intervals. 401 

Fig. 7 presents projected volatility in yields across 80 temperate cities from 2051 to 2073 under 402 

three climate scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The results indicate that SSP1-2.6 403 

generally exhibits the lowest yield volatility, suggesting more stable agricultural conditions. In 404 

contrast, SSP5-8.5, which is associated with significant climate change impacts, exhibits 405 

consistently high volatility, reflecting substantial fluctuations in crop yields and increased 406 

uncertainty. The moderate scenario, SSP2-4.5, shows intermediate volatility levels. Across all 407 

scenarios, a general trend of increasing volatility over time is observed, particularly 408 

pronounced under SSP5-8.5. 409 
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 410 

Figure 7. Volatility of the Yield in Temperate Cities over Years in Different Scenarios, y = Volatility, 411 
x = Years. 412 
 413 
Fig. 8, represents the projected volatility of agricultural yields across 20 cold cities from 2051 414 

to 2073 under three different climate scenarios. The SSP1-2.6 scenario exhibits moderate 415 

volatility, with notable peaks, such as 264.9 in 2059, indicating significant variability. SSP2-416 

4.5, a scenario representing moderate emissions, exhibits more consistent volatility, with 417 

significant peaks, such as 213.1 in 2054 and 228.3 in 2071, indicating heightened 418 

unpredictability in yields. The SSP5-8.5 scenario, characterized by high emissions and 419 

substantial climate change impacts, shows fluctuating but generally high volatility, peaking at 420 

230.98 in 2062. Overall, the data suggest that as emissions increase, the volatility of yields 421 

becomes more pronounced. 422 

 423 

Figure 8. Volatility of the Yield in Cold Cities over Years in Different Scenarios, y = Volatility, x = 424 
Years. 425 
 426 

Fig. 9 presents projections of agricultural yield volatility across 83 arid cities. Under SSP1-2.6, 427 

characterized volatility remains substantial, peaking at 317.4 in 2058, suggesting that even with 428 
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significant climate mitigation efforts, arid regions may face considerable yield instability. In 429 

the SSP2-4.5 scenario, moderate emissions result in pronounced volatility, reaching 333.7 in 430 

2057 and 324.4 in 2069, indicating a high sensitivity of yields to fluctuating climate conditions. 431 

The SSP5-8.5 scenario, characterized by high emissions, exhibits the highest volatility, as 432 

evidenced by peaks of 368.4 in 2062 and 361.5 in 2070, indicating severe potential disruptions 433 

to agricultural production due to the extreme impacts of climate change. 434 

 435 

Figure 9. Volatility of the Yield in Arid Cities over Years in Different Scenarios, y = Volatility, x = 436 
Years. 437 
 438 

Generally, each region exhibits increasing volatility with higher emissions, particularly under 439 

SSP5-8.5, which shows the most significant fluctuations. While SSP1-2.6, characterized by 440 

low emissions, generally results in lower volatility, especially in arid and cold regions, where 441 

the impacts are most pronounced. These findings underscore the critical need for adaptive 442 

agricultural strategies in these regions to manage the increased risks and uncertainties 443 

associated with future climate scenarios. According to the results, we observe a consistent 444 

reduction in wheat yield across all scenarios, aligning with findings from other studies. For 445 

instance, Rahmani et al. (2015) demonstrated that wheat yields are expected to decrease by 446 

13% to 28% by 2050 in Birjand. Similarly, Paroon et al. (2020) found that temperature has an 447 

inverse relationship with wheat yield, while rainfall has a direct relationship in Hormozgan 448 

Province. Their study also indicated that wheat production will experience a significant decline 449 

due to climate change by 2100. Moreover, Farajzadeh et al. (2021) projected a 28% to 35% 450 

reduction in wheat yield across all stations in northwest Iran by 2100. 451 

 452 

 453 
 454 
 455 
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Conclusions 456 

This study comprehensively examines the impact of climatic variables and agricultural 457 

practices on wheat yield across different climate zones in Iran. Our approach, which employs 458 

a two-step estimation process, isolates the effects of climatic variables from other factors, such 459 

as fertilizer use and soil type. This method enhances the accuracy of yield predictions by 460 

accounting for the nonlinear effects of temperature and precipitation. The significant 461 

coefficients for precipitation and temperature in our regression models corroborate the 462 

importance of these variables in agricultural productivity, as highlighted by studies using 463 

similar statistical approaches (Heil et al., 2020; Kumar and Khanna, 2023). Our results indicate 464 

substantial variability in wheat yield based on climate type, with temperate zones showing the 465 

highest mean yields due to moderate temperatures and higher precipitation. Conversely, the 466 

arid and cold zones face more challenging growing conditions due to temperature extremes and 467 

lower, more variable precipitation.  468 

Climate-specific agricultural strategies are crucial for addressing the disparities observed in 469 

our analysis. In temperate zones, which showed the highest mean yield and significant effects 470 

from multiple soil types and fertilizer usage, policies should focus on sustaining productivity 471 

through practices that enhance soil health and improve water-use efficiency. In arid zones, 472 

where wheat yield was most sensitive to precipitation variability, adaptation strategies should 473 

prioritize investment in modern irrigation infrastructure and adopting drought-tolerant wheat 474 

varieties. For cold zones, our regression models revealed strong nonlinear effects of minimum 475 

temperature on yield, suggesting that moderate warming may offer benefits. However, extreme 476 

cold or sudden shifts may be detrimental.  Additionally, fertilizer usage demonstrated a 477 

consistently strong and positive impact on wheat yield across all zones, with significant p-478 

values. This finding underscores the importance of policies that ensure equitable access to 479 

fertilizers and promote their efficient use. Soil type also plays a critical role, particularly in arid 480 

zones, where sandy soils showed the most significant positive effect on yield. As such, soil 481 

improvement strategies, including organic matter enhancement and conservation tillage, can 482 

be instrumental in boosting yields, especially in more fragile agro-climatic areas. 483 

This study aligns with previous research highlighting the critical role of climate variables in 484 

agricultural productivity. For instance, Wu et al. (2021) demonstrated the impact of climate 485 

change on maize yields in China, underscoring similar trends in temperature and precipitation 486 

effects on crop yields. Similarly, Lobell et al. (2011) analyzed the global impacts of climate 487 

change on food production and found that increasing temperatures and changing precipitation 488 



Journal of Agricultural Science and Technology (JAST), 28(4) 

In Press, Pre-Proof Version 

22 
 

patterns have a significant effect on yields. Furthermore, Zhang et al. (2017) emphasized the 489 

importance of considering multiple climatic variables in assessing economic impacts on 490 

agriculture, which is corroborated by our findings on the intricate interactions between 491 

temperature, precipitation, and yield. 492 

Limitations and Implications 493 

This study introduces a novel two-step statistical modeling framework that offers distinct 494 

advantages in distinguishing between climatic effects and management-related influences on 495 

wheat yield. Unlike previous models that often aggregate all explanatory variables in a single 496 

step, our approach enhances interpretability and allows for more precise attribution of yield 497 

variability. Applying this method across Iran’s temperate, arid, and cold climate zones 498 

represents a rare and valuable comparative analysis that few studies have achieved with this 499 

level of resolution. 500 

Using a large, long-term dataset and integrating it with CMIP6 climate projections enhances 501 

the robustness of our findings and enables forward-looking analysis under multiple emissions 502 

scenarios. While the study focuses on key factors such as temperature, precipitation, fertilizer, 503 

and soil type, we recognize that future research could incorporate additional dynamic variables 504 

such as pest incidence, land-use change, or economic interventions. 505 

Importantly, the modeling framework presented here is transferable to other crops and regions, 506 

making it a powerful tool for national and regional agricultural planning. The differentiated 507 

findings across climate zones provide concrete guidance for targeted adaptation policies, 508 

investment in irrigation systems, and the development of climate-resilient wheat varieties. This 509 

work serves as a foundation for both scientific exploration and policy formulation in the face 510 

of climate change. 511 
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Appendix 619 

Table A.1. Arid regions in study. 620 
Arid 

Ahar Dayyer Khodabandeh Qaen 

Ahvaz Dehloran Kolaleh Qasr-e-Shirin 

Aqqala Delijan Kowsar Qom 

Ardabil Eejrud Lamerd Quchan 

Ashtian Esfarayen Larestan Ramhormoz 

Azarshahr Fariman Mahneshan Sabzevar 

Babol Ferdows Maku Sarakhs 

Bandar Gachsaran Malekan Sari 

Bijar Ganaveh Maragheh Saveh 

Bilasavar Germi Marand Shabestar 

Birjand Gonbad-e-Kavus Mashhad Shahindej 

Bojnurd Gorgan Masjed-Soleyman Shahrud 

Bonab Hashtrud Meshginshahr Shirvan 

Bostanabad Heris Mianeh Shushtar 

Buinzahra Jahrom Neka Tabriz 

Bushehr Jajrom Nir Tafresh 

Chenaran Jolfa Nishapur Tangestan 

Dargaz Kangan Osku Tarom 

Dashtestan Kashmar Parsabad Taybad 

Dashti Kazerun Qaemshahr Torbat-e-Heydarieh 

Torbat-e-Jam Urumia Zanjan  

 621 

Table A.2. Temperate regions in study. 622 
Temperate 

Abdanan Dezful Kuhdasht Rezvanshahr 

Aliabad Dorud Kuhrang Rudbar 

Aligudarz Eqlid Lordegan Sahneh 

Amlash Eyvan Mahabad Sannandaj 

Andimeshk Farsan Malayer Saqqez 

Arak Firuzabad Mamasani Sardasht 

Ardal Gilan-e-Gharb Marivan Sarpol-e-Zahab 

Asadabad Hamadan Marvdasht Savadkuh 

Astara Harsin Mehran Selseleh 

Azna Ilam Miandoab Semirom 

Babolsar Islamabad-e-Gharb Minudasht Sepidan 

Baghmalek Izeh Nahavand Shahrekord 

Baneh Javanrud Namin Shiraz 

Behshahr Kamyaran Naqadeh Shirvan-o-Chardavol 

Borujen Kangavar Noshahr Siahkal 

Borujerd Kermanshah Oshnaviyeh Sonqor 

Bukan Khansar Piranshahr Takestan 

Damavand Khomein Poldokhtar Talesh 

Darreh Shahr Khorramabad Qazvin Tuyserkan 

Delfan Kohgeluyeh Qorveh Yasooj 

 623 

Table A.3. Cold regions in study. 624 
Cold 

Abhar Bahar Chaldoran Divandarreh 

Faridan Fereydunshahr Firuzkuh Kabudarahang 

Kalibar Khalkhal Khorramdarreh Khoy 

Nur Paveh Razan Rudsar 

Salmas Sarab Shazand Takab 

 625 

 626 

 627 
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Table A.4. Full English description for abbreviations. 628 
Abbreviations  Full description  

IPCC Intergovernmental Panel on Climate Change  

DSSAT Decision Support System for Agrotechnology Transfer 

WOFOST World Food Studies 

SAFY Simple Algorithm for Yield estimates 

ARIMA Autoregressive integrated moving average 

CMIP Coupled Model Intercomparison Project (CMIP) 

MAE Mean absolute error 

RMSE Root Mean Squared Error 

MAPE Mean Absolute Percentage Error 

SSP Shared Socioeconomic Pathway 

 629 

 630  ییدر مناطق آب و هوا یادو مرحله  یآمار لی تحل کی: رانیبر عملکرد گندم در ا یمی اقل راتیتأث

 631 متنوع

 632  علی هی زاده قر یو بهزاد زک ،یفاطمه مجتهد

 633 چکیده 

 634  ران یا  ییبر عملکرد گندم در مناطق مختلف آب و هوا  یکشاورز  یهاوهیو ش  یمیاقل  یرهای متغ  ریتأث  یمطالعه به بررس  نیا

 635  ی ورنوع خاک و استفاده از کود بر بهره  ،یدما، بارندگ  ری تأث   یمجموعه داده جامع، ما چگونگ   کی. با استفاده از  پردازدیم

 636قابل توجه عملکرد در مناطق معتدل، خشک و سرد    یر یرپذییدهنده تغ ما نشان  یهاافتهی.  میکن یم  لیو تحل  هیگندم را تجز

 637. در  دهندی عملکرد را نشان م  نیانگ یم  نیبالاتر  ،یکاف  یو بارندگ متوسط    یدما لیکه مناطق معتدل به دل  یاست، به طور

 638  ن یتخم  ندیفرآ  کیمطالعه از    نی. استندمواجه ه  یناکاف  یو بارندگ   دیشد  یاز دما  ییهامقابل، مناطق خشک و سرد با چالش

استفاده م  ریاز سا  یمیاقل  یرهایاثرات متغ   یجداساز  یبرا  یادو مرحله  پ   کندیعوامل  دقت  را   یهاینی بشیو   639عملکرد 

 640  کندیم  دییرا تأ  یقبل  قاتی و تحق  کندیم  دیتأک  یکشاورز  یوردر بهره  یدما و بارندگ  یاتیما بر نقش ح  جی. نتادهدی م  شیافزا

 641از جمله    ،یاستیس  هیتوص  نی. ما چنددهدی ارائه م  یشناختروش  یهاینوآور  قیرا از طر  یدیجد  یهانشیحال ب  ن یدر ع  و

 642با   یجامع سازگار  یهایگندم مقاوم در برابر آب و هوا و توسعه استراتژ  یهاگونه  جیترو  ،یاریآب  یهارساختیبهبود ز

 643است.   یمیاقل  راتییدر مواجهه با تغ  یکشاورز  یداریو پا  یآورتاب  شیفزاا  هااستیس  نی. هدف ا میدهی آب و هوا، ارائه م

 644  ر یتأث   یاز چگونگ   یقیو درک دق  کندیکمک م  یو کشاورز  یمیاقل  راتییدر مورد تغ  اتیحجم ادب  شیما به افزا  قاتیتحق

 645 .دهدیمؤثرتر ارائه م یکشاورز یهاوهیو ش  هااستیبه س یبخشیبر عملکرد گندم و آگاه یمیعوامل اقل


