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ABSTRACT  4 

The visual quality control of bean grains is currently conducted manually and relies heavily on 5 

identifying surface-level defects to classify the product type. Among these defects, germinated 6 

grains pose a unique challenge: in their early stages, germination is not externally visible, requiring 7 

invasive methods such as physically breaking the seed for detection. This study proposes a non-8 

invasive and automated approach that combines laser speckle imaging with deep learning to 9 

identify early-stage germinated defects in beans. Speckle images were captured under coherent 10 

laser illumination (λ = 633 nm) for samples subjected to germination periods of 0, 6, 12, and 24 11 

hours. Two contrast analysis techniques were evaluated: Laser Speckle Spatial Contrast Analysis 12 

(LASCA) and the more advanced Laser Speckle Temporal Contrast Analysis (LASTCA), the latter 13 

using temporal intensity fluctuations across 120 video frames. From the resulting contrast maps, 14 

regions of interest (50×50 pixels) were extracted and used to train a Convolutional Neural Network 15 

(CNN) for binary classification. The proposed system achieved high performance, with an 16 

accuracy of 92.33% and sensitivity of 98.21%, successfully detecting germinated defects invisible 17 

to conventional inspection. By integrating temporal biospeckle analysis with deep learning, this 18 

method offers a scalable solution for intelligent, non-destructive grain inspection—addressing a 19 

critical gap in current computer vision systems and contributing to the advancement of 20 

Agribusiness 4.0. 21 

Keywords: Laser Speckle image, Computer Vision, Convolutional Neural Network, Bean, 22 
Germinated. 23 

 24 
1. INTRODUCTION 25 

Given the significant market demand for grains, including beans, agroindustries have directed 26 

their investments toward advanced technological innovations, driven by the imperative need to 27 

maintain a competitive position in the current socioeconomic landscape. These initiatives 28 
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primarily aim to satisfy the evolving preferences of consumers while simultaneously committing 29 

to the production of safe and high-quality food products. The implementation of these 30 

technological innovations has enabled companies to minimize waste, maximize profits, reduce 31 

dependence on manual inspections, optimize productivity on a broad scale, capture new markets, 32 

and enhance organizational performance [1].  33 

Quality control and inspection tasks for agricultural products aim to ensure that they are free 34 

from abnormal odors, moisture, foreign bodies, impurities, pest infestations, and mechanical 35 

damage, guaranteeing their safe delivery to consumers [2,3].  36 

 Nowadays, the inspection of bean grains is still conducted manually using a minimum 1 kg 37 

sample extracted from a batch of the product. Initially, foreign objects such as insects, stones, and 38 

impurities are separated using a sieve with circular openings measuring five millimeters in 39 

diameter. Subsequently, the beans are categorized into Group, Class, and Type. The Group pertains 40 

to the botanical species, while the Class is determined based on the color of the bean hulls (Black, 41 

White, Colored, or Mixed), regardless of the group. Finally, the Type is defined according to the 42 

maximum tolerance limits for defects (split, scorched, moldy, deformed, impurities, foreign 43 

matter, and germinated beans) found in the inspected sample [3].  44 

 The “germinated” defect, in its early stage, can only be detected through invasive methods that 45 

involve physically breaking the grain to enable visualization, rendering them unsuitable for 46 

consumption after such analyses. Therefore, despite computer vision playing a crucial role in the 47 

non-invasive assessment of the quality of agricultural products through the identification of visual 48 

patterns, it, like human vision, is incapable of detecting the germinated defect. As an example, 49 

consider the work of Belan et al. [4] in which they proposed a computer vision system (CVS) for 50 

inspecting the quality of bean grains, capable of detecting some defects (deformed, broken, 51 

scorched, and moldy), but notably excluding germinated beans. In this context, a non-invasive 52 

alternative lies in the laser speckle imaging analysis methods, which have already been applied in 53 

the analysis of seeds and agricultural grains. For instance, such methods have been used to identify 54 

genetic characteristics, patterns related to storage, and seed viability for planting purposes. 55 

The phenomenon of speckle is elucidated as an optical interference occurrence that materializes 56 

when coherent light, such as laser emissions, undergoes dispersion subsequent to its interaction 57 

with a physical medium. At first glance, a speckle pattern may seem like a random cluster of bright 58 
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and dark spots, nevertheless it carries information on the surface and sub-surface characteristics of 59 

the sample [5-12]. 60 

Silva et al. [13], Peixoto et al. [14], Xia et al. [15], and Singh et al. [16] have conducted studies 61 

with the aim of demonstrating that speckle can be advantageously employed as an efficient, non-62 

destructive, and cost-effective tool for analyzing seeds and grains, ultimately enhancing 63 

germination properties and productivity. Silva et al. [13] proposed to investigate the treatment of 64 

pathogens using bioprotectants in maize seeds, both immediately after and during storage. Peixoto 65 

et al. [14] applied biospeckle to discern microbial activity in maize seeds through the generation 66 

of activity maps via Laser Speckle Contrast Analysis (LASCA). Xia et al. [15] conducted a 67 

literature review on emerging technologies for seed viability analysis in cultivation, sales, and 68 

planting contexts. Singh et al. [16] explored the application of biospeckle in characterizing pre-69 

sowing treatments as a cost-effective approach to improve seed germination properties and 70 

productivity. 71 

Kurokawa et al. [17] and Contado et al. [18] have collectively affirmed that speckle techniques, 72 

when coupled with numerical analysis, can effectively be employed to monitor biological activity 73 

throughout the germination process. In this context, Singh et al. [19] and Thakur et al. [20] 74 

conducted biospeckle analyses to track the germination process, aiming to assess the viability and 75 

vigor of both bean and soybean seeds. Their findings collectively underscore the significant 76 

potential of this non-invasive technique.  77 

In earlier yet pertinent studies concerning the present research, such as those conducted by Braga 78 

et al. [21] and Rabelo et al. [22], it was ascertained through biospeckle analysis that fungal 79 

activities exhibited notable distinctions between inoculated and non-inoculated bean seeds.  80 

Indeed, it is worth noting that the majority of studies in laser speckle image analysis have relied 81 

on the traditional classical Statistical Theory, a framework developed several decades ago, as 82 

pointed by Goodman and his contemporaries [23].  83 

Laser speckle image analysis holds the potential to extract valuable information from samples 84 

and correlate patterns with specific conditions. However, it's important to note that the analysis 85 

and classification of these patterns are currently conducted manually by a trained technician. This 86 

manual approach, while effective, can be labor-intensive and subject to interobserver variability. 87 

Hence, there is a growing interest in automating and enhancing this process through advanced 88 
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computational techniques, such as machine learning and deep learning, to improve efficiency, 89 

accuracy, and consistency in pattern recognition and classification tasks. 90 

In this research, we break new ground by introducing state-of-the-art artificial intelligence 91 

techniques to the analysis of laser speckle images. Specifically, we employ these modern AI 92 

techniques to automate the classification of different types of bean grains, marking a significant 93 

advancement in the field of visual quality control of grains, promoting digital transformation and 94 

agribusiness 4.0. 95 

 96 
2. MATERIAL AND METHODS 97 

2.1 Image Acquisition 98 

Figure 1 shows the experimental setup used for this work for images and videos acquisition.  99 

 100 

Figure 1. Experimental setup used in this work. (a) HeNe laser source at λ = 633 nm; (b) Beam 101 
expander; (c) Sample holder, (d) Image acquisition camera. 102 
 103 

The laser bean was expanded to encompass uniform illumination throughout the entire sample 104 

while providing ample luminosity to activate the sensor of the photographic system, as outlined in 105 

[9].  106 

The experimental setup was designed to enable non-invasive detection of early germination 107 

defects in bean grains using laser speckle imaging. A Helium-Neon (HeNe) laser emitting at 633 108 

nm was chosen as the illumination source due to its high spatial and temporal coherence, stable 109 

output, and suitability for biological materials, making it ideal for generating high-contrast speckle 110 

patterns. To ensure uniform illumination across the entire surface of each bean sample, a beam 111 
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expander was employed, preventing localized intensity variations that could compromise speckle 112 

pattern formation and contrast quality. 113 

As illustrated in Figure 1, image acquisition was carried out using a ThorLabs DCC1645C 114 

camera equipped with a sensor offering a resolution of 1280 × 1024 pixels, covering a physical 115 

area of 4.61 mm × 3.69 mm, with a pixel size of 3.6 µm². This high-resolution sensor enabled 116 

precise capture of spatial speckle features essential for detailed analysis. Since the laser source 117 

operated at a peak wavelength of λ = 633 nm, only the red channel of the camera sensor was used 118 

in processing to maximize the signal-to-noise ratio and ensure spectral compatibility. Importantly, 119 

no binning was applied during image acquisition, preserving the full spatial resolution of the sensor 120 

and enhancing the reliability of both spatial and temporal contrast computations.  121 

For LASCA (Laser Speckle Spatial Contrast Analysis), a single static image was captured with 122 

an exposure time of 100 ms. For LASTCA (Laser Speckle Temporal Contrast Analysis), dynamic 123 

image sequences were recorded over 2 minutes at 25 frames per second, resulting in 3000 frames 124 

per sample, from which 120 frames were extracted for temporal analysis. Bean samples were 125 

prepared by exposing them to moisture using wet cotton pads for 6, 12, and 24 hours to induce 126 

progressive stages of germination, while the 0h group (control) remained dry to represent non-127 

germinated grains.  128 

This sample preparation protocol was designed to simulate real-world post-harvest scenarios 129 

while capturing subtle biological activity indicative of early germination. The resulting speckle 130 

contrast maps—whether spatial (LASCA) or temporal (LASTCA)—were used to extract 50×50-131 

pixel regions of interest (ROIs), which were then fed into a convolutional neural network (CNN) 132 

for automated classification of germinated versus non-germinated beans. Every step in this 133 

process—from equipment selection to data acquisition—was carefully tailored to maximize 134 

speckle quality, reduce external noise, and support accurate, scalable, and real-time 135 

implementation of visual quality control in the agroindustry. 136 

Figure 2 illustrates representative images of bean samples under two illumination conditions: (a) 137 

white light and (b) laser illumination, for each of the germination intervals investigated in this 138 

study. The time labels associated with the samples—0h, 6h, 12h, and 24h—correspond to the 139 

duration for which the beans were subjected to the germination process prior to image acquisition. 140 

Specifically, the 0h sample represents the control group, consisting of non-germinated beans that 141 

were not exposed to moisture, thereby serving as the reference condition. In contrast, the 6h, 12h, 142 
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and 24h samples correspond to beans undergoing progressive stages of germination, induced by 143 

controlled hydration over the specified time intervals. These images form the basis for subsequent 144 

speckle pattern analyses, enabling the assessment of dynamic biological activity associated with 145 

the germination process. 146 

For each sample, a static image was acquired with an exposure duration of 100 milliseconds, 147 

followed by a video recording at 25 frames per second, with a total duration of 2 minutes. To 148 

optimize computational resources and focus solely on pertinent regions, we judiciously identified 149 

and processed exclusively the Regions of Interest (ROIs). 150 

 151 

Figure 2. Samples under white illumination (a) and its laser speckle image counterpart (b) for 152 
germination intervals considered. 153 

 154 
 2.2 Laser speckle image analysis  155 

The speckle phenomenon results from the interference of coherent light, such as a laser, scattered 156 

by a rough or dynamic surface. When the illuminated sample contains biological or biochemical 157 

activity—such as intracellular motion, water uptake, or metabolic activity—this leads to subtle, 158 

often imperceptible, temporal variations in the speckle pattern. The LASTCA method capitalizes 159 

on these dynamic changes by tracking the intensity fluctuations of individual pixels over time, 160 
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providing a temporal contrast map that reflects localized activity levels. 161 

This approach builds upon findings in previous studies by Deana et al., who demonstrated the 162 

capacity of laser speckle imaging to reveal subsurface or microstructural alterations in biological 163 

tissues and explain in detail the speckle phenomena [24 – 26]  164 

 165 
Laser speckle contrast analysis 166 

The Laser Speckle Spatial Contrast Analysis (LASCA) technique is a foundational method in 167 

speckle image processing, designed to quantify localized spatial variations in speckle patterns that 168 

arise from biological activity or structural heterogeneity on or beneath the surface of a sample. 169 

Unlike LASTCA, which explores intensity fluctuations over time, LASCA is based purely on the 170 

spatial distribution of intensity in a single speckle image, making it a suitable option for real-time 171 

or low-latency imaging scenario The laser speckle contrast analysis (LASCA) allows for the 172 

determination of various degrees of biological activity without the need for expensive equipment 173 

or extensive computational resources [23, 27]. 174 

The fundamental concept underpinning the LASCA method entails the partitioning each image 175 

into non overlapping square cells (or windows) of size 4×4 pixels (W=4). For each cell we 176 

calculate the mean and standard deviation, followed by the computation of contrast values 177 

(standard deviation divided by the mean). Each contrast was assigned to the central pixel of its 178 

corresponding cell generating a contrast map.  179 

The LASCA method is implemented as follows: 180 

1. Image Acquisition: A single static speckle image is acquired under laser illumination (λ 181 

= 633 nm). No temporal sequence is required. 182 

2. Image Partitioning: The speckle image, with dimensions M×NM \times NM×N pixels, is 183 

divided into non-overlapping square windows of size W×WW \times WW×W pixels. In 184 

this study, a window size of 4×4 pixels was adopted, following the recommendations from 185 

prior biomedical applications by Deana et al.[24] 186 

3. Statistical Contrast Calculation: For each window, the spatial mean intensity μ and 187 

standard deviation σ are computed. The speckle contrast C is then defined as: 188 

𝐶(𝑥, 𝑦) =
𝜎(𝑥, 𝑦)

𝜇(𝑥, 𝑦)
 189 



Journal of Agricultural Science and Technology (JAST), 28(2) 

In Press, Pre-Proof Version 
 

8 

 

4. This dimensionless ratio quantifies the relative variation of intensity within the window, 190 

reflecting the degree of activity or heterogeneity in that region. 191 

5. Contrast Map Generation: The computed contrast value is assigned to the central pixel 192 

of the corresponding window. Repeating this operation across all windows produces a 193 

spatial contrast map, where brighter areas correspond to higher contrast (i.e., greater local 194 

activity or scattering variability), and darker areas indicate lower contrast (more uniform 195 

or static regions). 196 

6. Map Interpretation and Classification: The resulting LASCA map is used to extract 197 

50×50-pixel regions of interest (ROIs), which are then classified by the CNN. These maps 198 

serve as the input for training and evaluating the deep learning model’s ability to detect 199 

early-stage germination. 200 

 201 
Laser Speckle Temporal Contrast Analysis (LASTCA) 202 

The Laser Speckle Temporal Contrast Analysis (LASTCA) method shares similarities with 203 

LASCA, with a key distinction being its dynamic nature. In LASTCA, the contrast map is derived 204 

from a sequence of images acquired at different time intervals from each other. These time-205 

separated images enable the assessment of how contrast values change over time, allowing for the 206 

observation of dynamic processes and temporal variations within the sample. This temporal aspect 207 

enhances the capability of LASTCA to capture and analyze dynamic phenomena, making it 208 

particularly valuable in applications where the temporal evolution of contrast is of interest, such 209 

as monitoring blood flow, particle dynamics, or other time-dependent processes [23].  210 

In this particular case, rather than analyzing a square cell with neighboring pixels, the focus of 211 

analysis is on the statistical properties of an individual pixel at a specific position across different 212 

timeframes. In our study, a total of 16 images were acquired and overlapped for this purpose. This 213 

approach allows for the assessment of how the statistical characteristics of a single pixel at a fixed 214 

location evolve over time, providing valuable insights into the temporal dynamics and changes 215 

occurring within the sample. Figure 3 showcase de difference between LASCA and LASTCA. 216 
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(a) (b) 

Figure 3. Way of analyzing statistical properties in LASCA (a) and LASTCA (b). 217 
 218 
The implementation of LASTCA in this work follows these core steps: 219 

1. Image Sequence Acquisition: A sequence of 120 frames is acquired using a 220 

monochromatic (633 nm) laser source and a high-resolution CMOS sensor. Only the red 221 

color channel is analyzed to match the laser wavelength. 222 

2. Temporal Contrast Computation: For each pixel at a fixed spatial coordinate (x, y), the 223 

temporal contrast Ct is computed over the intensity values It across all frames using: 224 

𝐶𝑡(𝑥, 𝑦) =
𝜎𝑡(𝑥, 𝑦)

𝜇𝑡(𝑥, 𝑦)
 225 

where σt and μt denote the temporal standard deviation and mean intensity of the pixel over 226 

time, respectively. 227 

3. Contrast Map Generation: The resulting temporal contrast values are then assembled into 228 

a full-frame LASTCA map, where each pixel encodes the localized dynamic behavior over 229 

time. 230 

4. Region Extraction and Classification: Sub-images (50×50 pixels) are extracted from the 231 

LASTCA maps and used to train a CNN, enabling automatic classification of germinated 232 

versus non-germinated grains 233 

 234 

 235 
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2.3 Proposed Method 236 

The method proposed in this research receives as its input a collection of speckle images stored 237 

in an AVI file, representing frames (F) within a video, as visually depicted in Figure 4. The initial 238 

processing stage involves the isolation of the red band (R-band) from each individual frame (image 239 

of M×N pixels). Following this, the application of the LASTCA technique, which demonstrated 240 

notably superior performance in contrast to LASCA within comparative assessments, is executed 241 

on the ensemble of images representing the R-band across the frames. This process culminates in 242 

the derivation of detailed LASTCA maps calculated from batches of 120 frames (B=120), offering 243 

a refined depiction of the data's characteristics, and which feed the CNN to identify the defects in 244 

the grains. 245 

 

Figure 4. Flow of the proposed method. 246 

Deep Learning 247 

 The CNN implemented in this study follows a sequential architecture and receives as input 248 

grayscale contrast maps of 50×50 pixels, as illustrated in Figure 5. The architecture begins with a 249 

rescaling layer to normalize pixel values to the [0,1] range, followed by two convolutional layers. 250 

The first convolutional layer uses 32 filters with a 3×3 kernel, 'same' padding, and ReLU 251 

activation, followed by a Batch Normalization and a MaxPooling2D layer to reduce spatial 252 

dimensions. The second convolutional layer includes 64 filters, also with a 3×3 kernel and ReLU 253 

activation, again followed by batch normalization and max pooling. The resulting feature maps are 254 

then flattened and passed through a dense layer with 128 neurons and ReLU activation, followed 255 

by a dropout layer with a rate of 0.2 to reduce overfitting. The final output layer consists of two 256 

neurons with sigmoid activation, for classification task. The model was compiled using the Adam 257 
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optimizer with a learning rate of 0.0001, and trained using cross entropy loss function with 258 

accuracy as the primary evaluation metric.  259 

All training hyperparameters, including learning rate and other configuration choices, were 260 

defined based on preliminary experiments aimed at ensuring stable convergence, robustness, and 261 

generalization performance. In the data augmentation scenario, the number of training epochs was 262 

increased from 20 to 100 to ensure that the network had sufficient exposure to the significantly 263 

larger and more diverse dataset, as augmentation increases both the variability and volume of 264 

training data, which typically requires more iterations for the model to effectively learn and 265 

generalize the augmented patterns. 266 

 267 

Figure 5. Architecture of the employed CNN. 268 

After conducting the CNN training using the sets of sub-images with 50×50 pixels, as detailed 269 

in Table 1, the trained models were saved into files for subsequent use in predictions. These 270 

predictions involved the utilization of separated test images to evaluate and assess the performance 271 

of the proposed method. 272 

Tabel 1. Sets of sub-images used in the training of the CNN. 273 

 

Germination stages 

Class 
Total number of sub-

images 
Normal Defect (germinated) 

0h 6h 12h 24h 

No data augmentation  300 300 300 300 1200 

With data augmentation 1200 1200 1200 1200 4800 

 274 
In the experiment, 70% of the images in each set were used for training, 15% for validation, and 275 

15% for testing the CNN. 276 

 277 
Data augmentation  278 

To implement data augmentation, two primary image processing operations were applied: 279 

rotation and mirroring. The application of this technique substantially increased the number of 280 

sub-images available for training, enhancing dataset diversity and significantly improving the 281 
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CNN’s ability to generalize patterns, ultimately strengthening its capacity to learn from a broader 282 

range of examples, as explained in [28, 29]. In our implementation, each original image underwent 283 

horizontal and vertical mirroring, along with a fixed-angle rotation of either +90° or –90°, 284 

randomly selected. As a result, each original sample produced three distinct augmented variants, 285 

leading to a fourfold increase in data volume per category. The amount of augmentation was 286 

empirically defined through preliminary experiments, in which we assessed model performance 287 

with different augmentation factors. The selected configuration provided a favorable balance 288 

between dataset diversity and training stability, effectively enhancing the network's generalization 289 

capacity without introducing redundancy or overfitting.  290 

 291 

3. RESULTS 292 

The effectiveness of the proposed methodology was evaluated using both LASCA and LASTCA 293 

speckle image analysis techniques, followed by CNN-based classification. The results are 294 

presented through representative contrast maps, confusion matrices, and quantitative performance 295 

metrics. A comprehensive comparison was carried out between the two methods, considering 296 

models trained with and without data augmentation. 297 

Figure 6 displays representative LASCA maps in false color for each of the four germination 298 

stages analyzed: 0, 6, 12, and 24 hours. These maps illustrate spatial variations in speckle contrast 299 

across the surface of the bean samples. Notably, beans at 24 and 12 hours exhibit pronounced 300 

changes in spatial contrast patterns, indicative of elevated biological activity related to the 301 

germination process. However, the map corresponding to the 0-hour stage shows elevated noise 302 

and ambiguous patterns, which may lead to misclassification of non-germinated beans as 303 

germinated. 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 
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(a) 24h (b) 12h (c)  6h (d) 0h 

    

    

  
  

Figure 6. Typical LASCA map of the samples for each germination period. 313 

Figure 7 presents corresponding LASTCA maps, derived from temporal contrast analysis across 314 

120 frames. These maps reveal dynamic variations in speckle intensity over time and offer superior 315 

visual discrimination of germination stages. Beans at 24 and 12 hours display regions of high 316 

temporal activity, represented by blue and green hues, while the 0-hour sample shows minimal 317 

variation, denoted by darker regions. These temporal maps enable more accurate differentiation 318 

between germinated and non-germinated grains, particularly at early germination stages. 319 

 320 

(a) 24h (b) 12h (c) 6h (d) 0h 

    

    

    

Figure 7. Typical LASTCA map of the samples for each germination period. 321 

Table 2 presents the performance metrics of the CNN classifier trained on LASCA-based speckle 322 

images. In this experimental stage, the dataset was segmented by germination intervals to evaluate 323 

the classifier's ability to distinguish between non-germinated (0h control group) and germinated 324 

beans at each specific stage (6h, 12h, and 24h). Additionally, a final experiment was conducted 325 
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using the full set of germination intervals combined (0h, 6h, 12h, and 24h) to assess the model's 326 

overall generalization capacity. All tests were carried out under two conditions: with and without 327 

the application of data augmentation techniques. 328 

In the absence of data augmentation, the classification accuracy exhibited notable variation 329 

depending on the specific germination interval pair analyzed. The most favorable outcome under 330 

this condition was observed in the comprehensive experiment encompassing all germination 331 

stages, which yielded an overall accuracy of 85.56%, a precision of 82.76%, and a specificity of 332 

96.30%. These results highlight the increased robustness of the CNN model when exposed to a 333 

more diverse dataset, even without synthetic data expansion. 334 

When data augmentation was applied—using rotation and mirroring to expand the training 335 

dataset—the performance markedly improved. For instance, using only the 0h and 12h samples, 336 

the CNN achieved an accuracy of 93.78%, a precision of 96.17%, and a specificity of 96.51%, 337 

demonstrating the significant benefit of data augmentation in enhancing model generalization. 338 

 339 
Table 2. CNN classifier results obtained by proposed method using LASCA. 340 

 Periods Precision Sensitivity Specificity Accuracy 

W
it

h
o

u
t 

d
a

ta
 a

u
g

m
en

ta
ti

o
n

 

0h and 6h 66.67% 61.54% 66.67% 64.00% 

     

0h and 12h 51.72% 57.69% 41.67% 50.00% 

     

0h and 24h 52.38% 42.31% 58.33% 50.00% 

     

0h, 6h, 12h, 

and 24h 
82.76% 53.33% 96.30% 85.56% 

      

W
it

h
 d

a
ta

 a
u

g
m

en
ta

ti
o

n
 

0h and 6h 80.82% 91.24% 79.83% 85.33% 

     

0h and 12h 96.17% 90.95% 96.51% 93.78% 

     

0h and 24h 81.28% 83.96% 82.77% 83.33% 

     

0h, 6h, 12h, 

and 24h 
80.00% 59.65% 94.94% 86.00% 

 341 
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Table 3 presents the classification outcomes using LASTCA-derived maps. Even without data 342 

augmentation, the model trained on the complete set of germination periods attained a high 343 

accuracy of 91.67%, with a precision of 91.10% and sensitivity of 98.52%. These results 344 

underscore the advantage of incorporating temporal information into the contrast analysis, 345 

enabling better characterization of dynamic biological activity related to germination. 346 

In scenarios with data augmentation, LASTCA further improved classification performance. The 347 

model trained with the full germination set (0h, 6h, 12h, and 24h) achieved the highest overall 348 

accuracy of 92.33%, with 98.21% sensitivity, 92.05% precision, and 75.00% specificity. These 349 

metrics indicate a strong capacity to correctly identify germinated beans (true positives) while 350 

minimizing false negatives. 351 

 352 
Table 3. CNN classifier results obtained by proposed method using LASTCA. 353 

 Periods Precision Sensitivity Specificity   Accuracy 

W
it

h
o

u
t 

d
a

ta
 a

u
g

m
en

ta
ti

o
n

 

0h and 6h 66,67% 69,57% 70,37% 70,00% 

     

0h and 12h 62,50% 86,96% 55,56% 70,00% 

     

0h and 24h 63,33% 76,00% 56,00% 66,00% 

     

0h, 6h,12h, 

and 24h 
91,10% 98,52% 71,11% 91,67% 

      

W
it

h
 d

a
ta

 a
u

g
m

en
ta

ti
o

n
 

0h and 6h 73,36% 88,16% 67,12% 77,78% 

     

0h and 12h 69,28% 98,15% 59,83% 78,22% 

     

0h and 24h 58,22% 76,23% 46,26% 61,11% 

     

0h, 6h,12h, 

and 24h 
92,05% 98,21% 75,00% 92,33% 

 354 

Figures 8 and 9 provide visual comparisons of CNN classification accuracy across different 355 

germination intervals, with and without data augmentation. Figure 8 highlights that LASTCA 356 

consistently outperformed LASCA in models trained without data augmentation. Conversely, 357 

Figure 9 shows that when data augmentation was applied, LASCA maps approached the accuracy 358 
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levels of LASTCA, suggesting that sufficient training data can partially compensate for the lack 359 

of temporal information. 360 

Figure 8 shows the plot of the accuracy of CNN in experiments considering both laser speckle 361 

methods, using only the experimental data.  362 

 363 
Figure 8. Comparative analysis with the CNN trained without data augmentation. 364 

 365 
Figure 9 shows the plot of the accuracy of CNN in experiments considering both laser speckle 366 

methods, using only the augmented data. 367 

 368 
Figure 9. Comparative analysis with the CNN trained with data augmentation. 369 
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In addition to the previous experiments, we employed the t-distributed Stochastic Neighbor 370 

Embedding (t-SNE) projection method, developed by [30], to visualize the separability of the 371 

contrast maps generated by the LASCA and LASTCA approaches. The corresponding 372 

visualizations are presented in Figures 10 and 11. For this experiment, the 50×50 pixel sub-images 373 

of the training set were vectorized and used as input for t-SNE, which projects the data into a two-374 

dimensional space while preserving the similarity relationships from the original high-dimensional 375 

space. The idea is that the feature vectors associated with germination will cluster closely together, 376 

thereby enabling a clear visual separation between normal and germinated grain samples. 377 

 378 
Figure 10. t-SNE clustering of feature vectors extracted from LASCA. 379 

 380 
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 381 
Figure 11. t-SNE clustering of feature vectors extracted from LASTCA. 382 

 383 
In Figure 10, it can be observed that the data derived from LASCA do not form well-defined 384 

clusters between normal and germinated samples, showing considerable overlap between the two 385 

classes in the two-dimensional space. In contrast, Figure 11 reveals a clearer separation between 386 

the groups, with dense regions of points corresponding to each class and reduced overlap between 387 

normal and germinated data. This result indicates that the use of LASTCA, by incorporating 388 

temporal information from speckle activity, provides greater discriminative power in 389 

distinguishing patterns associated with germination. 390 

Overall, the results demonstrate that LASTCA provides the most robust and accurate 391 

classification of germinated defects. Moreover, the effectiveness of the CNN architecture in 392 

processing 50×50 pixel sub-images, and its sensitivity to temporal contrast patterns, reinforces the 393 

viability of the proposed approach as a non-invasive, automated tool for quality control in 394 

agroindustrial applications. 395 

 396 

4. DISCUSSION 397 

In Figure 6, maps representing time intervals of 24, 12, 6, and 0 hours in the developmental 398 

stages of beans under laser illumination are displayed, alongside their corresponding false color 399 

representations. The false colors aim to enhance visual interpretability and comprehension of 400 
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germination dynamics by emphasizing contrast patterns observed in the LASCA (Laser Speckle 401 

Contrast Analysis) maps. 402 

It is imperative to underscore the nuanced interpretation divergence between LASCA-derived 403 

maps and those generated through the LASTCA (Laser Speckle Temporal Cluster Analysis) 404 

method. Within LASCA, the resulting maps signify spatial intensity variations, where decreased 405 

activity regions exhibit higher contrast and, consequently, brighter areas. Conversely, regions of 406 

heightened activity demonstrate reduced contrast, manifesting as darker zones [23]. 407 

The LASTCA-derived maps depicted in Figure 7 delineate temporal intensity fluctuations across 408 

120 frames extracted from an AVI file. These images distinctly showcase areas of differential 409 

activity levels—bluish regions denote heightened activity, while the greener areas indicate 410 

negligible or dormant activity. LASTCA accentuates areas of increased contrast in more active 411 

zones, which consequently portray higher values in the final image. 412 

The comparative analysis between LASCA and LASTCA methods reveals distinct performance 413 

in visualizing germination across different time frames. LASCA effectively depicts grain 414 

germination in the frames captured at 24, 12, and 6 hours, but encounters challenges in the frames 415 

at 0 hours due to noise, causing ambiguity in distinguishing germination from non-germination. 416 

Conversely, LASTCA outperforms LASCA, offering clearer, less noisy representations, 417 

facilitating visual interpretation, and significantly enhancing the differentiation between 418 

germinated and non-germinated grains within the speckle maps derived from 120 frames. 419 

In spatial contrast analysis, the interpretation of maps should consider the signal-to-noise ratio, 420 

involving the relative standard deviation of intensities within specific regions. The LASCA maps 421 

(Figure 6) exhibit a nuanced challenge: the non-germinated bean area (0h) appears slightly active, 422 

potentially leading to misinterpretation and false positives (FP) when analyzing such regions 423 

inattentively. 424 

Contrastingly, the LASTCA map (Figure 7) accurately portrays low activity in non-germinated 425 

beans, owing to its accumulation of images over time. This temporal aggregation empowers 426 

LASTCA to discern and represent actual activity levels more accurately, thus distinguishing 427 

germinated from non-germinated regions with higher precision, reducing the occurrence of FP and 428 

enhancing the method's reliability in characterizing germination. 429 

The outcomes from the CNN models are delineated through confusion matrices illustrated in 430 

Tables 2 and 3, providing insights into the method's accuracy and misclassifications across various 431 
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classes. One model was trained without data augmentation, achieving a 91.67% accuracy by 432 

correctly predicting 165 out of 180 tests. In contrast, the model trained with data augmentation 433 

improved accuracy to 92.33%, with 831 correct predictions out of 900 tests. 434 

The training and validation of models relied on LASTCA-generated maps from 120 frames due 435 

to their consistent and higher accuracies observed in experiments, particularly evident when data 436 

augmentation was not utilized. Furthermore, the method demonstrated commendable sensitivity, 437 

correctly identifying defective grain samples with 98.51% accuracy (133 out of 135) without data 438 

augmentation, and 98.21% accuracy (660 out of 672) with data augmentation. 439 

Yet, in experiments employing a set of sub-images of 50×50 pixels derived from LASTCA maps, 440 

a noticeable enhancement in the CNN's pattern recognition was observed using the augmented 441 

dataset. This discernible improvement is depicted in Table 3, showing improved classification 442 

performance. Table 3 further illustrates some classification results with data augmentation, 443 

representing normal grains as class 0 and defective (germinated) grains as class 1. 444 

Figures 8 and 9 offer comparative analyses between LASCA and LASTCA methodologies 445 

across various germination times. The results highlight the classifier's notably superior 446 

performance in identifying grains with shorter germination times, signifying its capability to 447 

discern and classify varying germination stages more effectively. This is attributed to the extended 448 

germination periods, which result in the prolonged development of the radicle—the part of the 449 

bean that centralizes most activity after a specific duration. Consequently, the remainder of the 450 

bean becomes less active. The window method utilized in this study might select a region of the 451 

bean that is distant from the radicle, potentially causing higher misclassification. 452 

It is crucial to highlight a further increase in accuracy when the LASCA method was combined 453 

with data augmentation. This observed enhancement could be attributed to CNN inherently relying 454 

on a significant volume of data for robust training. The LASTCA method inherently provides a 455 

larger dataset, yet when trained with an identical quantity of data, the network demonstrated 456 

superior performance when utilizing the LASCA method. This showcases the heightened contrast 457 

achieved by LASCA in characterizing the degree of germination. 458 

An additional advantage of the LASCA method lies in its ability to function with a single image, 459 

as opposed to the movie-based requirement of the LASTCA method. In a real production line 460 

scenario, this single-image capability could significantly impact the time needed to perform 461 

analyses on multiple grains, potentially streamlining the process. Moreover, it's essential to 462 
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underscore the method's efficacy in making accurate predictions across different time periods. This 463 

robustness indicates that the classifier (CNN) can adeptly manage variations in germination time, 464 

establishing itself as a promising tool for identifying germination defects across diverse scenarios. 465 

A computer vision system (CVS) capable of detecting surface-level defects in bean grains, such 466 

as fractures, scorched regions, deformation, and mold, was proposed by Belan et al. [4], as noted 467 

in the introduction of this study. However, that system explicitly excluded the detection of 468 

germinated beans, particularly in their early stages. This limitation stems from a fundamental 469 

constraint of traditional CVS: it relies solely on visible surface characteristics captured under 470 

standard illumination conditions (e.g., RGB imaging). In the early stages of germination, beans 471 

typically exhibit no observable external changes—radicle protrusion and structural deformation 472 

are not yet apparent. Consequently, visual-based methods cannot access the internal biological 473 

activity, such as cellular metabolism or moisture absorption, that precedes external manifestations 474 

of germination. 475 

The approach proposed in this study overcomes that deficiency by employing laser speckle 476 

imaging (LSI), which is highly sensitive to micro-movements and internal dynamics at the tissue 477 

level. Speckle patterns generated under coherent laser illumination contain rich information about 478 

subsurface physiological activity, and when analyzed temporally using the LASTCA method, they 479 

reveal dynamic fluctuations associated with early germination processes. Unlike CVS, which 480 

depends on surface patterns, this technique captures time-resolved biological signals that precede 481 

any visible alteration—enabling true non-invasive early detection. 482 

Other studies have applied LSI in agricultural contexts, particularly for viability assessment and 483 

fungal contamination monitoring. For example, Singh et al. [19] and Thakur et al. [20] used 484 

biospeckle activity analysis to evaluate seed vigor and the effects of moisture and temperature on 485 

germination in beans and soybeans. Similarly, Rabelo et al. [22] demonstrated the use of laser 486 

speckle imaging to differentiate bean seeds inoculated with fungi. However, these studies either 487 

required manual interpretation of speckle patterns or used classical statistical approaches, lacking 488 

automation and robustness for industrial applications. Furthermore, none of them addressed the 489 

non-destructive detection of early germinated defects in post-harvest grains, which is critical for 490 

consumer-facing quality control. 491 

In contrast, our method introduces several innovations: (1) the use of temporal speckle contrast 492 

analysis (LASTCA) to enhance sensitivity to internal activity, (2) the application of convolutional 493 
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neural networks (CNNs) for automated classification, and (3) a system architecture that can be 494 

scaled for use in industrial grain inspection pipelines. To the best of our knowledge, this is the first 495 

study to non-invasively detect early germination defects in beans using deep learning applied to 496 

speckle imaging, achieving high accuracy (92.33%) and sensitivity (98.21%) even when no visible 497 

signs are present. These contributions represent a significant advancement beyond both traditional 498 

CVS and earlier LSI-based research, establishing a new benchmark for intelligent quality control 499 

in the agroindustry. 500 

 501 

Limitations of the study 502 

Despite the promising results obtained in this study, some limitations related to method 503 

validation must be acknowledged. The experiments were conducted under controlled laboratory 504 

conditions using a fixed-wavelength laser (633 nm), and the influence of variations in ambient 505 

lighting, bean varieties, and environmental humidity was not extensively explored. However, it is 506 

important to highlight that laser speckle imaging (LSI) is inherently a coherent and active optical 507 

technique, meaning that the speckle pattern depends solely on the properties of the laser source 508 

and the sample, rather than on ambient lighting. In fact, laser light is much brighter than ambient 509 

light which contributes negligibly to the back-scattered light captured by the camera. The speckle 510 

contrast—both spatial (LASCA) and temporal (LASTCA)—is dictated by the microstructural 511 

dynamics and scattering properties of the sample, which are modulated by biological activity rather 512 

than environmental illumination. This makes LSI particularly robust and reproducible, even under 513 

moderately varying acquisition environments, provided that laser alignment and imaging geometry 514 

are maintained. 515 

Regarding the generalization to different bean varieties and growth environments, it is indeed 516 

true that optical scattering properties may vary between cultivars due to differences in seed coat 517 

thickness, pigmentation, or hydration response. Nonetheless, the biological mechanisms 518 

underlying germination—including water absorption, metabolic activation, and intracellular 519 

motion—are physiologically conserved across legume species. Although the timing of the 520 

germination process varies across different species or even withing different types of beans, these 521 

processes generate dynamic fluctuations in refractive index and intracellular movement, which 522 

manifest as measurable speckle activity regardless of variety. Prior studies in biospeckle imaging 523 
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of maize, soybean, and bean seeds (e.g., Singh et al. [19]; Silva et al. [13]) have confirmed the 524 

universality of this principle. 525 

 526 
Future works 527 

Further validation using multi-varietal datasets, as well as acquisition under field-like conditions, 528 

is a logical next step to confirm the CNN model's transferability. Future studies should aim to 529 

assess intra- and inter-species generalization, test the system's tolerance to changes in humidity 530 

and temperature, and evaluate the stability of contrast metrics in semi-industrial environments. 531 

However, it is worth emphasizing that the core optical signal—the speckle fluctuation caused by 532 

biological activity—is fundamentally robust, and the integration with deep learning allows for 533 

adaptive pattern recognition that is, by design, capable of learning variation across samples. 534 

Therefore, while further validation is necessary for large-scale deployment, the current findings 535 

provide a strong foundation and demonstrate the feasibility, sensitivity, and industrial potential of 536 

the method. 537 

 538 

5. CONCLUSIONS 539 

The integration of speckle image analysis with CNNs led to the development of a cost-effective 540 

and computationally efficient approach to identify early stages of germinated defects in bean 541 

grains. Throughout the conducted experiments, with and without data augmentation, the method 542 

achieved high accuracy rates (91.67% and 92.33%) and sensitivity (98.51% and 98.21%) in 543 

identifying the inspected defects. This suggests the method's potential for enhancing the quality 544 

control process of beans, providing an alternative to traditional, more expensive automatic 545 

inspection equipment. However, it's essential to note that to enhance feasibility and scalability, the 546 

method relies on compact hardware comprising a laser, camera, and processor—a potential 547 

inspiration for future research endeavors in engineering and computing domains. Finally, by 548 

promoting improvements in the agricultural grain quality inspection process, the proposed method 549 

contributes to global efforts to achieve the United Nations Sustainable Development Goals 550 

(SDGs), in particular SDGs 2 (Zero Hunger), 9 (Industry, Innovation and Infrastructure) 12 551 

(Sustainable Consumption and Production). 552 

 553 
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The dataset used in this study is publicly available at the following GitHub repository: 555 

https://github.com/eliveigajr/Speckle-Images. This repository contains speckle sub-images with 556 

dimensions of 50×50 pixels extracted from contrast maps generated by LASCA and LASTCA 557 

techniques, as described in Section 2.1. The Python code developed in this study can be provided upon 558 

reasonable request. 559 
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