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ABSTRACT 

Micromorphological characteristics of seed sculpturing might be effective in 
circumscribing the infra-specific taxa in the genus Vicia. The present study was conducted 
to determine whether microstructural and seed coat texture data obtained from SEM 
images can serve as sufficient tools for delimiting Vicia genus. Other than visual 
inspections, a variety of texture-based methods, including the four conventional 
approaches of GLCM, LBP, LBGLCM, and SFTA, and the four pre-trained 
convolutional neural networks, namely, ResNet50, VGG16, VGG19, and Xception models 
were employed to extract features and to classify the species of Vicia genus using SEM 
images. In a subsequent step, the four unsupervised k-means, Mean-shift, agglomerative, 
and Gaussian mixture classification methods were used to group the identified Vicia 
spices based on the underlying features thus extracted. Moreover, the three supervised 
classifiers of Multilayer Perceptron Network (MLP), Support Vector Machine (SVM), 
and k-Nearest Neighbor (kNN) were compared in terms of capability in discriminating 
the different visually-identified classes. SEM results showed that three classes might be 
identified based on the micromorphological character-species connections and that the 
differences among the species in the Vicia genus and the validity of Vicia sativa could be 
confirmed. Regarding the performance of the classifiers, SFTA textural descriptor 
outperformed the GLCM, LBP, and LBGLCM algorithms, but yielded a decreased 
accuracy compared with deep learning models. The combined Xception model and a MLP 
classifier was successful to discriminate the species in the Vicia genus with the best 
classification performances of 99 and 96% in training and testing, respectively.  

Keywords: Convolutional neural networks, Micromorphology, Plant taxonomy, Seed 
sculpturing, Scanning Electron Microscope (SEM). 

INTRODUCTION 

Taxonomy identification methods involve 
destructive sampling followed by physical, 
physiological, biochemical, and molecular 
determinations (Luo et al., 2021). Scanning 
Electron Microscopy (SEM) and Light 
Microscopy (LM) have recently been used 
as important non-destructive taxonomic 
delimitation tools for various families and 
genera (Ilakiya and Ramamoorthy, 2021; 

Jalal et al., 2021). SEM analysis of the seed 
coat surface has revealed genetic diversity 
among Astragaleae and Trifolieae (Rashid et 
al., 2021), Vicieae (Rashid et al., 
2018), Geranium (Aedo, 2016), 
Brassicaceae (Gabr, 2018), Hypericum 
(Szkudlarz and Celka, 2016), and so on. 
More recently, visual assessment of SEM 
images has been coupled with computer-
aided image processing for better 
interpretation of SEM images to attain 
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precise and automatic identification of 
genera.  

Seed surface ornamentation may be a 
useful and rich source of data for clustering 
or classification based on feature 
determination. SEM coupled with image 
analysis offers a powerful tool for evaluating 
microstructural changes (Pieniazek and 
Messina, 2016). However, the question 
remains whether species delimitation and 
identification can be solely based on 
microstructural data and seed coat texture 
traits.  

From among the few detailed studies 
reported on seed species identification using 
SEM coupled with image analysis, one is 
Prasad et al. (2014), in which an image 
processing software was used to analyze the 
seed coat structure of 23 cultivated and six 
wild sesame germplasms obtained from 
digital and SEM images. The results 
indicated that the seeds of wild sesame 
species could be well differentiated from 
those of the cultivated varieties based on 
shape and architectural analyses. Pieniazek 
and Messina (2016) conducted SEM image 
analysis as an alternative to the analysis of 
the effects of freeze-drying on the 
microstructure and texture of legume and 
vegetables. Results revealed the success of 
the combined SEM and classical texture 
analysis methods as a useful tool for the 
investigation of quality parameters.  

Depending on the method used for 
extracting textural features, classical texture 
analysis techniques can be quite diverse and 
varied (Ribas et al., 2020). In recent years, 
new methods based on transfer learning with 
deep Convolutional Neural Networks 
(CNNs) have emerged that outperform the 
classical texture analysis in terms of the 
significantly better results they yield (Liu 
and Aldrich, 2022).  

CNNs used to classify seeds have been 
extensively reported on in the literature in 
order to illustrate their applications in 
recognizing an individual barley kernel 
variety with satisfactory accuracy 
(Kozłowski et al., 2019), determining the 

viability of mechanically scarified Quercus 
robur L. seeds (Przybyło and Jabłoński, 
2019), identifying Chickpea (Cicer 
arietinum L.) seed varieties (Taheri-
Garavand et al., 2021), assessing seed 
germination in three different crops (namely, 
Zea mays, Secale cereale, and Pennisetum 
glaucum) (Genze et al., 2020), and obtaining 
high-throughput soybean seed phenotypes 
with efficient calculation of morphological 
parameters (Yang et al., 2021). So far, the 
application of CNNs in classifying varieties 
based on SEM images of seed coat has been 
mentioned in only one study, in which five 
different network architectures were trained 
for classifying Allium seed walls based on 
recognizing SEM images (Ariunzaya et al., 
2023). Nonetheless, no study has yet been 
reported on the application of CNNs in 
classifying varieties based on SEM images 
of seed coat surfaces.  

 It is the objective of the present work to 
investigate the potential of seed coat 
sculpturing in the taxonomy of the genus 
Vicia, describe seed coat sculpturing at a 
specific level among the Iranian species, and 
evaluate the diagnostic value of this 
character in terms of variability among 
populations of Vicia. Moreover, the current 
study endeavors to examine the architecture 
of deep learning convolutional neural 
networks and some classical texture analysis 
methods with respect to their capabilities in 
categorizing Vicia species. 

MATERIALS AND METHODS 

The methodology used in this work 
consists of the following five stages: (1) 
SEM image acquisition, (2) visual 
observation of the SEM images thus 
acquired, (3) classical and deep feature 
extraction, (4) feature dimensionality 
reduction, and (5) clustering and 
classification. The block diagram illustrating 
the image processing and data mining steps 
involved in the proposed methodology is 
presented in Figure 1.  
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Plant Material 

For the purposes of this study, ninety seed 
samples belonging to 18 Vicia species were 
collected mostly from different locations in 
Iran. Voucher specimens of the wild 
specimens and those obtained from the 
herbarium were deposited at the Herbarium 
Conservation Center of Isfahan University 
of Technology (Table 1). In order to provide 
samples with herbarium specimen labels, the 
accessions were grown in Chah-Anari 
Research Farm of Isfahan University of 
Technology.  

SEM Image Acquisition  

A minimum number of three mature, 
clean, and perfect seeds from each accession 
were used for taking SEM images and the 
subsequent analyses. The seeds were 
mounted on a twin-walled conductive metal 
stand and prepared without any dehydration, 
using a gold grain of approximately 8-30nm 
thick and a BAL-TEC (Baizers) SCD 005 
Sputter Coater. SEM photos from the lateral 
and frontal views were then taken at 

different magnifications (SEM, Model 
XL30, PHILIPS – EDAX). The density of 
the projections per square mm of the area at 
a given magnification (9 cm2 at a 
magnification of 1000, representing 900 m) 
was determined thoroughly on the display 
screen. Other useful specifications such as 
projection height, form, number, and ridge 
sharpness were measured and recorded. 
Stern (1983) terminology was used to 
describe the SEM images. 

Extracting Classical Texture Features  

Classical image texture analysis was 
carried out using Open CV and Scikit-image 
libraries of the Python programming 
language. Texture features were extracted 
from thirty-six distinctive frontal and lateral 
SEM images taken at different 
magnifications from eighteen different Vicia 
species. Image augmentation was used to 
generate new transformed versions of 
images to increase the size and diversity of 
the dataset. The images were initially read 
and converted to grayscale before they were 
split up into six equal square blocks. Each 

 

Figure 1. Block diagram of the proposed methodology. 

 



Table 1. Voucher specimens and herbarium data of the selected species of Vicia used in the SEM study 
of seed micromorphology.  

No. Species/Section 
Herbarium 
number Location/Province 

Currently herbarium 
nomenclature 

 Sect. Anatropostylia    
1 V. koeieana 2510 Bakhtaran V. koeieana Rech. F. 
 Sect. Cracca    
2 V. aucheri 5698 Mazandaran V. aucheri Boiss. 
3 V. cracca 99 Isfahan Vicia cracca (L.) 
4 V. akhmaghanica 3774 West Azarbayegan V. akhmaghanica Kazar 
5 V. cappadocica 19571 West Azarbayegan V. cappadocica Boiss & Bal. 
6 V.ciceroidea 12292 Tehran V.ciceroidea Boiss 
7 V. cinerea 49536 BandarAbbas V. monantha Retz. subsp. 

monantha Retz. 
8 V. crocea 12781 Gorgan V. crocea (Desf.) B. Fedstch. 
9 V. multijuga 51707 Tehran V. multijuga (Boiss.) Rech. 

f.,V. 
10 V. variabilis 45924 Fars V. variabilis Grossh. 
11 V. villosa 26316 Lorestan V. villosa Roth 
 Sect. Ervilia    
12 V. ervilia 63125 Khozestan V. ervilia (L.) Willd 
13 V. tetrasperma 28867 Islamshar V. tetrasperma (L.) Schreb. 
 Sect. Vicia    
14 V. angustifolia 60254 Gilan V. sativa subsp. nigra (L.) 

Ehrh. 
15 V. hyrcanica 7/4 Isfahan V. hyrcanica Fisch & C. A. 

Mey. 
16 V. michauxii 20/2 Isfahan V. michauxii Spreng 
17 V. pregrina 24/2 Isfahan V. pregrina 
18 V. sativa 8714 Mazandaran V. sativa L. 
 

Table 2. Number of features extracted by the different classical image texture analysis methods. 

Classical image texture 
analysis method  

No. of features 
extracted  

Variance ratio (%) 
PC1  PC2  PC3 Overall 

GLCM  20  50.1  32.6  - 82.7 
LPB  26  64.32  20.98  - 85.3 
LBGLCM  20  70.15  19.98  - 90.13 
SFTA  48  36.54  25.64  19.65 81.83 
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ResNet50, VGG16, VGG19, and Xception) 
had been trained on features from ImageNet 
database and were 50, 16, 19, and 71 layers 
deep, respectively (Table 3), with network 
depth defined as the largest number of 
sequential convolutional or fully-connected 
layers on a path from the input layer to the 
output one. The last fully-connected layer of 
each network was removed, the model weights 
were frozen, and the networks were used as 
feature extractors. 

Dimensionality Reduction 

The dimensionality of the feature space 
was reduced by Principal Component 
Analysis (PCA) as an unsupervised 
dimensionality reduction technique. The 
number of PCs was selected to reach a 
minimum variance of 80% of the data 
(Tables 2 and 3). Given the large number of 
principal components, the data were 
visualized using the t-SNE dimensionality 
reduction method for better performance of 
the deep feature extractors.  

Clustering and Classification  

The conventional and deep feature sets were 
used as input to the centroid-based (i.e. k-
means), density-based (i.e. mean shift), 
probabilistic (i.e. Gaussian mixture), and 
hierarchical (i.e. agglomerative) clustering 
methods.  

In this study, the above clustering methods 
were examined with respect to their 
performance against three supervised 
similarity indices: (1) A peer-to-peer 
correlation metric (i.e. Jaccard coefficient), (2) 

An information theoretic-based approach (i.e. 
Normalized Mutual Information (NMI)), and 
(3) A matching set similarity measurement 
index (accuracy).  

The three supervised classifiers of Multilayer 
Perceptron (MLP), Support Vector Machine 
(SVM), and k-Nearest Neighbor (kNN) were 
compared in terms of their ability to recognize 
three visually grouped species. In the back-
propagation multilayer perceptron classifier, the 
number of neurons in the input layer was set 
equal to the number of features chosen while that 
of the output ones was set to 3 (equal to the three 
visually specified classes) with the logistic 
sigmoid functions used in the hidden layer. The 
MLP was trained using the Stochastic Gradient 
Descent (SGD) with the learning rate (𝜂), the 
exponent for inverse scaling learning rate, and 
the momentum coefficient (𝜇) being set to 0.001, 
0.5, and 0.6, respectively. Finally, the network 
was trained and tested for 1000 epochs. In 
addition, in the methodology proposed in this 
paper, the training datasets were classified using 
SVM with a Gaussian Radial Basis Function 
(RBF) kernel.  

To develop classifiers, the dataset consisting of 
768 sliced blocks was randomly split into 
training and testing (at a split ratio of 80:20) 
datasets. Within the training set, the 10-fold 
cross-validation was employed to optimize the 
parameters and estimate the prediction 
performance of the models.  

RESULTS AND DISCUSSION 

Visually Identified Clusters 

Despite a generally more or less similar 
sculpturing pattern, the seed characters of 

Table 3. Specifications of the pre-trained CNNs. 

Pretrained 
CNNs 

Network 
depth 

Image size 
Non-trainable 

parameters 
No. of output 

features 
No. of PCs to reach 80% 
variance of the dataset 

ResNet50 50 2242243 23,587,712 2048 117 
VGG16 16 2242243 14,714,688 512 117 
VGG19 19 2242243 20,024,384 512 117 
Xception 71 2292293 20,861,480 2048 68 
 



  

(a) (b) 

Figure 2. (a) A typical primary projection in V. koeieana seen as a Tuberculate type of the rounded or 
irregular shape on the seed, and (b) Primary projections in V. ervilia seen as Colliculate projections of the 
short type with elliptical to irregular forms (side- and front-view images are placed in the top and bottom 
rows, respectively). 

   

(a) (b) (c) 

Figure 3. Primary projections in (a) V. akhmaghanica, (b) V. craca, and (c) V. peregrina. The projections 
in all these species originate from below the peak to form an Aculeate and the proximal part of the 
projections exhibit a vertical profile of acute Aculeate (side- and front-view images are placed in the top 
and bottom rows, respectively). 
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proximal part of the projections showed a 
vertical profile of acute or obtuse retusus, 
truncate, or pungens, but either curved or 
erect when seen from a lateral view. The tip 
of the projections in the images taken from 
above appeared rounded, elliptical, or 
satellite within the texture configuration. 
Based on the samples studied, three main 
projection type groups were recognized. The 
first group included seed coats in which the 
seed surface projections originated from the 
projection tips and continued to the 
background surface to form Colliculate or 
Tuberculate projections (Figure 2 a). This 
group included the species V. koeieana, V. 
tetrasperma, and V. crocea. Those seeds on 
which the projections originated from below 
the peak to form an Aculeate were in the 
second group, which included the species V. 
angustifolia, V. villosa, V. pregrina, V. 
sativa, V. cappadocica, V. cinerea, V. 
ciceroidea, V. multijuga, V. akhmahgancia, 
V. aucheri, V. cracca, and V. ervilia (Figures 
2b and 3). Finally, the third group that 
contained the species V. hyrcanica, V. 
variabilis, and V. michauxii had projections 
starting from below the peak, but formed 
Tuberculate projections (Figure 4). Figure 5 

shows some of the salient seed coat 
topographic characters of the various species 
studied for use in developing the key.   

A review of the literature reveals the rival 
theories on how to classify species into 
sections. For example, Boissier (Boissier 
and Buser, 1888) divided the genus Vicia 
into two sects; namely, Sec. Euvicia and 
Sec. Cracca (as reported in Cronquist, 1988) 
while Engler (1892) divided it into the four 
Sec. Euvicia, Sec. Cracca, Sec. Euvicia 
(link) WDKOH, and Sec. Euvicia (L.) SF 
Grag. Other classifications have also been 
proposed (Fedchko, 1948). No satisfactory 
agreement was observed between the images 
taken from seed coat ornamentation in this 
study and the four-way classification 
proposed in Flora Iranica; hence, the latter 
cannot be reliably used as a standard 
reference descriptor for the classification of 
Vicia species (Chrtková-Žertová, 1979). 

While most efforts on the classification of 
this genus have been based on such 
morphological characters as shape, size, and 
hilum location (Gunn, 1971; Voronchikhin, 
1981), analysis of more species of the genus 
may reveal a greater variety in seed coats. 
This has been shown by Rashid et al. (2018) 

  

(a) (b) 

Figure 4. Primary projections in (a) V. michauxii, and (b) V. variabilis. Features in the two species are 
seen as Tuberculate (side-view and front-view images are placed in the top and bottom rows, 
respectively). 
 



 
Figure 5. The description key for the seed coat ornamentation using Stern’s terminology (Stern, 1983). 
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characters could be utilized as the taxonomic 
key in plant sciences.  

Clustering Performance 

Not all the proposed clustering approaches 
can generally yield satisfactory clustering 
results. Indeed, accuracy and Jaccard indices 
of less than 0.55 were recorded for all the 
clustering methods (Table 4). With all the 
conventional and deep feature sets, the 
visually classified species could not be 
reasonably discriminated; this was 
evidenced by the accuracy values ranging 
from 0.36 to 0.55. While the mean-shift 
clustering method failed to recognize the 
visually identified clusters so that most of 
the CNNs feature sets were partitioned into 
less than three clusters, higher values of 
accuracy and Jaccard indices have been 
reported for this method. It might be that 
Jaccard and accuracy similarity indices 
provide incorrect information when the 
numbers of cluster members are dissimilar. 
NMI index fixes this problem by 
normalization. The results in the present 
case indicated that the three k-means, 
agglomerative, and Gaussian mixture 
clustering methods attained their highest 
NMI index values with the SFTA feature set 
(Table 4). Moreover, when these same 
clustering methods were used, the silhouette 

coefficient, which is an internal evaluation 
metric, was greater than 0.5 with all the 
feature spaces (Figure 6), confirming the 
existence of a clustering structure in the 
data.  

Chuang et al. (2006) mentioned that image 
clustering with the use of spatial information 
such as image textural features mostly leads 
to undesirable results. Generally, common 
image clustering draws upon image 
segmentation based on pixel colors. 
Moreover, better clustering results can be 
achieved by combining color and texture 
features (Wei Tan et al. 2018). This is while 
SEM images are usually described as 
grayscale images and are colorless so that 
color features cannot be extracted. 

Although the clustering based on SEM 
images was not successful in this study, it 
revealed the clustering structure inherent in 
the data. It also showed that SEM images of 
the same magnification and taken from a 
specified angle could surely improve the 
clustering performance since image 
resolution, magnification, and angle of view 
greatly affect clustering performance. 

In conclusion, using a larger dataset with 
SEM images taken from a predefined 
direction and at known magnification ratios 
might be recommended if improved 
clustering performance and detection of the 
proposed method are sought.  
  

 
Figure 6. Computed Silhouette coefficient in evaluating the different clustering methods (KM: K-Means, 
AG: Agglomerative, and GM: Gaussian Mixture). 
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Classification Results 

Based on the classification performances 
reported in Table 5, the best results were 
recorded for SFTA feature space. When both 
side-view and front-view images were used 
for the classification, a MLP with two 
hidden layers of 10 and 5 neurons achieved 
the best accuracy values of 90 and 85% in 
the training and testing processes, 
respectively. However, classification 
accuracy rose just when side-view images 
were used. In this case, a MLP with two 
hidden layers of 6 and 3 neurons achieved 
its best accuracy values of 96% and 88% in 
the training and testing sets, respectively. 
Results also revealed that the accuracy index 
values of SVM and kNN were not 
significantly different from those obtained 

with MLP.   
The classification performances of 

different deep feature extraction models are 
summarized in Table 5. Clearly, three 
classes were better separated in the deep 
feature sets than they were in the 
conventional ones. Xception yielded the best 
classification result. As reported in Table 5, 
the deep feature extraction methods 
outperformed the SFTA traditional textural 
descriptors. The features yielded by 
Xception and a neural network with two 
hidden layers of 10 and 5 neurons led to 
better classification results with the high 
accuracy values of 99% and 96% in the 
training and testing sets, respectively. In 
agreement with these results, Wei Tan et al. 
(2018) reported that the best method for the 
classification of plant species would be a 

Table 4. Clustering results with classical texture and CNN selected features when both side-view and front-
view images were used.a 

  
ACC JAC NMI 

   
ACC JAC NMI 

GLCM 

KM 0.39 0.24 0.02 
 

ResNet50 

KM 0.54 0.37 0.10 

AG 0.45 0.29 0.02 
 

AG 0.42 0.26 0.10 

GM 0.38 0.23 0.02 
 

GM 0.42 0.26 0.10 

MS 0.39 0.24 0.02 
 

MS 0.5* 0.33* 0.00* 

LBP 

KM 0.41 0.26 0.03 
 

VGG16 

KM 0.42 0.26 0.07 

AG 0.37 0.23 0.01 
 

AG 0.50 0.33 0.05 

GM 0.39 0.24 0.02 
 

GM 0.37 0.25 0.05 

MS 0.4 0.25 0.02 
 

MS 0.5* 0.33* 0.00* 

LBGLCM 

KM 0.47 0.31 0.06 
 

VGG19 

KM 0.42 0.27 0.08 

AG 0.44 0.28 0.05 
 

AG 0.5 0.33 0.05 

GM 0.38 0.23 0.09 
 

GM 0.36 0.19 0.06 

MS 0.38 0.23 0.06 
 

MS 0.50* 0.33* 0.00* 

SFTA 

KM 0.44 0.28 0.15 
 

Xception 

KM 0.33 0.2 0.07 

AG 0.50 0.33 0.16  
AG 0.55 0.37 0.14 

GM 0.48 0.32 0.12 
 

GM 0.40 0.26 0.09 

MS 0.47 0.31 0.08   MS 0.44 0.29 0.1 

 a KM: K-Means, AG: Agglomerative, GM: Gaussian Mixture, MS: Mean-Shift, ACC: Accuracy index, JAC: 
Jaccard index, NMI: Normalized Mutual Information index. 
* Mean-shift clustering method failed to recognize the visually identified clusters, feature sets were 
partitioned into less than three clusters. 
 



Table 5. Classification results with classical texture and CNNs selected features when both side-view and 
front-view images were used.a 

Accuracy index     Accuracy index   
Test Train    Test Train  
0.74 0.96 MLP 

ResNet50 
 0.65 0.66 MLP 

GLCM 0.73 0.97 SVM  0.63 0.65 SVM 
0.71 0.84 KNN  0.54 0.75 KNN 
0.75 0.99 MLP 

VGG16 
 0.70 0.74 MLP 

LBP 0.72 0.97 SVM  0.70 0.72 SVM 
0.70 0.86 KNN  0.62 0.81 KNN 
0.75 0.96 MLP 

VGG19 
 0.67 0.71 MLP 

LBGLCM 0.71 0.96 SVM  0.66 0.71 SVM 
0.75 0.84 KNN  0.57 0.81 KNN 
0.96 0.99 MLP 

Xception 
 0.85 0.90 MLP 

SFTA 0.94 0.99 SVM  0.80 0.88 SVM 
0.94 0.98 KNN  0.81 0.91 KNN 

a MLP: Multilayer Perceptron, SVM: Support Vector Machine, KNN: K-Nearest Neighbors. 
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Image analysis of Vicia species coupled with 
clustering and the classification of this genus 
based on morphological characters (micro-
taxonomy) could efficiently differentiate the 
Vicia species. All the pre-trained CNNs deep 
feature extractors were found to perform 
equally well or better than the traditional 
algorithms (GLCM, LBP, LBGLCM, and 
SFTA). Of the four CNNs used in this study, 
Xception yielded the most reliable features 
and the best classification results were 
obtained using a MLP classifier. Transfer 
learning was exploited to reduce the labor-
intensive aspects of the taxonomic 
classification of the genus based on seed 
coat surfaces. However, the scientific impact 
of this research should be augmented by 
studying more samples to develop a more 
accurate and robust classifier. 
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بافت تصاویر  تحلیل و تفسیرایرانی با استفاده از  Vicia طبقه بندی برخی از گونه های
SEM و یادگیری عمیق به روش مرسوم  

  مهرنوش جعفری، سید علی محمد میرمحمدی میبدی، و محمد حسین اهتمام

  چکیده

های جنس  های روی سطح دانه ممکن است در شناسایی گونههای میکرومورفولوژیکی برجستگی ویژگی
Vicia های ریزساختاری و تزئینات پوشش دانه  د. مطالعه حاضر به منظور تعیین اینکه آیا دادهنمؤثر باش

استفاده شوند، انجام  Viciaتوانند به عنوان ابزار کافی برای شناسایی جنس  می SEMآمده از تصاویر  دست به
، GLCM ،LBP شد. به غیر از بررسی بصری، انواع روش های مبتنی بر بافت، از جمله چهار روش مرسوم

LBGLCM و ،SFTA و چهار شبکه عصبی کانولوشن از پیش آموزش دیده (یعنی ،ResNet50 ،VGG16 ،
VGG19 و ،Xception برای استخراج ویژگی ها و دسته بندی گونه های جنس (Vicia  با استفاده از تصاویر

SEM بندی  استفاده شد. در مرحله بعدی، چهار روش طبقهk-means ،Meanshift ،agglomerative  و
Gaussian mixture های بندی گونه بدون نظارت برای گروهVicia های  شده بر اساس ویژگی شناسایی

کننده با نظارت شامل شبکه پرسپترون  بندی برداری قرار گرفتند. همچنین، سه طبقه شده، مورد بهره استخراج
) از نظر قابلیت در تمایز kNNرین همسایه (ت نزدیک-k) و SVM)، ماشین بردار پشتیبان (MLPچندلایه (

نشان داد که ممکن است سه  SEMشده به روش بصری، مقایسه شدند. نتایج  های مختلف شناساییدسته
 Viciaها در جنس  گونه شناسایی شود و تفاوت بین گونه-کلاس بر اساس پیوندهای ریزمورفولوژیکی صفت

از  SFTAها، عملکرد توصیفگر بافتی  کننده بندی با توجه به نتایج طبقهقابل تأیید است.  Vicia sativaو اعتبار 
های یادگیری  تری نسبت به مدلبهتر بود اما عملکرد ضعیف LBGLCMو  GLCM ،LBPهای  الگوریتم

با بهترین عملکرد  Viciaها در جنس  در تفکیک گونه MLPو  Xceptionعمیق، نشان داد. مدل ترکیبی 
  % در آموزش و آزمون موفق بود.٩٦% و ٩٩یب بندی به ترت طبقه
 

 


