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Assessment of the Impacts of Climate Change on Soybean 
Yield and Water Requirement Using Crop Models 

A. Dehghan Moroozeh1, B. Farhadi Bansouleh1*, and M. Ghobadi2 

ABSTRACT 

Climate change can have significant impacts on crop growth, yield, water requirement 
and, consequently, crop water productivity. In this study, the effect of climate change 
under RCP2.6, RCP4.5, and RCP8.5 projection scenarios of the CanESM2 model on 
soybean yield and water requirement was investigated in Kermanshah, west of Iran. Crop 
growth was simulated using crop growth simulation models (DSSAT and AquaCrop) 
based on historical (1985-2015) and projected (2025-2064) weather data. Using the 
AquaCrop model in RCP2.6, RCP4.5, and RCP8.5 scenarios, the average increase in 
seasonal crop evapotranspiration (ETc) was estimated to be 9.4, 11, and 14.9%, 
respectively. The results of the DSSAT model showed 4.1, 8.5, and 12.1% increase in 
seasonal ETc under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Based on 
the AquaCrop and DSSAT models, soybean yield decreases by 5.3, 3.7, and 2% and by 
5.7, 4.8, and 1.6% for the RCP8.5, RCP4.5, and RCP2.6 scenarios, respectively. The 
results also show a decrease in crop water productivity under climate change scenarios as 
a result of increased ETc and reduced grain yield. According to AquaCrop and DSSAT 
models, the maximum daily ETc that should be used for the design of irrigation systems 
will increase by 11.5 and 10.2%, respectively.  

Keywords: AquaCrop, CanEsm2, Crop yield, DSSAT. 

INTRODUCTION 

Climate plays a crucial role in crop water 
productivity in rainfed and irrigated areas. 
Climate change is expected to affect 
agriculture worldwide (Figueiredo Moura da 
Silva et al., 2021) and especially in Iran, 
where water is the major constraint of crop 
production (Sharafati et al., 2022). 
Increasing rainfall intensity, rising 
temperatures, drought, and other types of 
climatic hazards can affect the quantity and 
quality of agricultural products. So far, 
several models have been presented to 
project weather data under climate change 
scenarios. Most climate projections are 
based on general climate change and 

simulations of General Circulation Models 
(GCM).  

The output of GCM models should be 
spatially downscaled for the study area. 
Statistical downscaling has been more 
widely applied in impact studies (Trzaska 
and Schnarr, 2014) due to its simplicity in 
design and implementation and 
computational efficiency (Muluye, 2012). In 
statistical downscaling models, based on 
historical data, a relationship is established 
between large-scale model output (predictor) 
and local-scale variables (predictant), then, 
this relationship will be implemented for 
downscaling of large-scale data (Laflamme 
et al., 2016; Muluye, 2012). Although there 
are several statistical downscaling models in 
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the literature (Tabari et al., 2021), SDSM 
(Statistical DownScaling Model) (Wilby et 
al., 2002) is one of the commonly used 
models for this purpose (Baghanam et al., 
2020). SDSM has been used to downscale 
various climate parameters (such as 
maximum temperature, minimum 
temperature, precipitation) in different parts 
of the world (Muluye, 2012; Phuong et al., 
2020; Saymohammadi et al., 2017; Shahriar 
et al., 2021; Souvignet et al., 2010; Stennett‐
Brown et al., 2017). 

There are different varieties of crop 
modeling software such as the Decision 
Support System for Agrotechnology 
Transfer (DSSAT) that has specific models 
to simulate the growth of various plants 
(Jones et al., 2003). CROPGRO-Soybean 
model (Boote et al., 2018) has been 
developed by the DSSAT software makers 
to simulate the growth of soybean. This 
model uses experimental equations to 
describe the developmental phenological 
processes, canopy development, organ 
formation, photosynthesis, allocation of 
photosynthetic materials, and soil water 
content (Jones et al., 2003). This model can 
simulate the effects of climate on crop 
growth and yield using daily weather data.  

 AquaCrop is a water-driven crop growth 
simulation proposed by FAO (Food and 
Agriculture Organization of the United 
Nations) (Raes et al., 2009). The AquaCrop 
simulates the effect of the environment and 
management on crop production. The model 
has two types of crop parameters: (i) 
Conservative parameters, which do not need 
to calibrate because these are valid for all 
cultivars in all environments, and (ii) 
Cultivar specific parameters, which are 
affected by field management, planting 
mode, soil profile conditions, and climate-
related parameters. The basic principles of 
the model for simulating the crop growth 
process are presented by Steduto et al. 
(2009). This model is inferred from the 
equation by Doorenbos and Kassam (1979). 
The use of AquaCrop model due to the need 
for low input parameters and adequate 
simulation accuracy has made this model a 

valuable tool for crop growth simulation 
under irrigation scenarios (Heng et al., 
2009).  

A study of the effects of climate change on 
water requirement in Judalkavir River Basin, 
Spain, showed that crop water requirement 
in 2050 would increase by 15-20% 
(Rodríguez Díaz et al., 2007). Woznicki et 
al. (2015) projected soybean irrigation 
demand under climate change scenarios in 
the Kalamazoo River watershed, Michigan, 
USA. Their results showed an 11% increase 
in irrigation demand in 2020-2039 and a 9% 
decrease in 2060-2079 compared to the base 
period (1980-1999). Voloudakis et al. 
(2015) provided climate change data using 8 
climate simulation models, predicted cotton 
yield using AquaCrop model and stated that, 
considering the increasing temperature in the 
future, the results of climate change models 
and crop models would be useful for 
irrigation management. 

Soddu et al. (2013) studied the adaptation 
of durum wheat to climate change using 
AquaCrop model in southern Sardinia, 
Greece. They stated that in the coming years 
there would be an increase in precipitation, 
temperature, and CO2 concentration in their 
study area. The projected weather data were 
used as the input of AquaCrop model and 
they found that potential crop yield and 
productivity would be increased in their 
study area. Yang et al. (2017) investigated 
the response of maize yield to climate 
change scenarios in Portugal. They used 
ESM-RCA4 climate change model under 
RCP4.5 and RCP8.5 scenarios – 
(Representative Concentration Pathway) 
during 2021-2080. They used AquaCrop and 
STICS models to project crop yield. Their 
results showed a 17% reduction in crop 
yield. Abd-Elmabod et al. (2020) studied the 
effect of climate change on crop yield 
reduction of sunflower and wheat in a 
Mediterranean region using two agricultural-
environmental sub-models. The results 
showed that the yield of sunflower 
decreased more compared to wheat. Kothari 
et al. (2022), while stating that the accurate 
estimation of crop yield under climate 
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change scenarios is necessary, found 
considerable variability among models in 
simulated soybean yield responses to climate 
change (increasing temperature and 
CO2). Figueiredo Moura da Silva (2021) 
using the CROPGRO-Soybean model found 
an increase in soybean yield and water 
productivity in Brazil, under climate change 
scenarios of RCP4.5 and RCP8.5 
(2040−2069) compared to the base period 
(1987-2017). They stated that the positive 
effect of increasing CO2 on crop water 
productivity overcomes the negative effects 
of temperature and water stress increases on 
rainfed Brazilian soybeans. 

The results of climate change studies using 
the UKMO model in Iran showed that the 
average temperature increase in all studied 
stations in the spring season would be 3.1 
and 3.9ºC; 3.8 and 4.7ºC in summer; 2.3 and 
3ºC in autumn, and 2 and 2.4ºC in winter, 
respectively, in 2025 and 2050 (Koocheki et 
al., 2007). Saymohammadi et al. (2017) 
used the A2 scenario of the HadCM3 model 
and predicted an increase of 1.99 and 2.58°C 
in Kermanshah in the minimum and 
maximum temperature in the period of 
2040-2059 compared to the base period 
(1990-1961).  

The aim of this study was to predict the 
impact of climate change on soybean yield 
using a specific model of CROPGRO-
Soybean and a generic model of AquaCrop 
under RCP2.6, RCP4.5, and RCP8.5 
scenarios of CanESM2 model (Canadian 
Earth System Model) in Kermanshah, Iran. 

 MATERIALS AND METHODS 

Two years (2013 and 2015) of field 
experiment data were used to calibrate and 
validate the crop growth simulation models. 
The results of the study in 2013 (Esmaeili, 
2014) were used for models calibration. The 
results of the second study in 2015 
(performed in this study) have been used to 
validate the models. For validation, a field 
experiment was conducted in the Research 
Farm of Razi University, Kermanshah, Iran, 

with an altitude of 1,320 m above sea level, 
the longitude of 47° 6' 12" E, and latitude of 
34° 19' 33" N (Figure 1). The average 
annual rainfall and temperature in the study 
area are 456 mm and 14°C, respectively. 
Monthly values of weather parameters 
during the field experiment are presented in 
Table 1.  

Hobbit cultivar of soybean, which is a 
limited-growth type, was studied. Rows 
were made by furrower at a distance of 50 
cm. Soil's physical properties are shown in 
Table 2. During the growing period, weeds 
and pests were controlled. The amount of 
fertilizer was determined based on the soil 
test results and in consultation with 
agricultural experts (150 kg ha-1 of triple 
superphosphate and 200 kg ha-1 of urea 
fertilizer). This experiment was performed 
in a Randomized Complete Block Design 
(RCBD) with eight irrigation treatments and 
three replications. The characteristics of 
irrigation treatments are presented in Table 
3.  

The design consisted of 24 plots with 
dimensions of 4×4 m, in which seven rows 
were planted in each plot. The final harvest 
was done on September 6, 2015, and the 
yield and yield components were 
determined. The water requirement of the 
control treatment with full irrigation (T1) 
was calculated using the daily weather data 
recorded at an automatic weather station, 
near the research field. The daily potential 
evapotranspiration of the reference crop 
(ETo) was calculated based on the FAO 
Penman-Monteith equation (Allen et al., 
1998). Crop water requirement (ETc) was 
calculated by multiplying ETo by crop 
coefficient (Kc). Crop coefficient was 
obtained from Iran's national document for 
Kermanshah Plain. The water requirement 
of other treatments was determined based on 
the stated percentage of T1 treatment. 
Irrigation interval was determined to be 
seven days according to the soil physical 
properties (Table 2). The amount of 
irrigation in each treatment is reported in 
Table 3. The reason for selecting over-
irrigation treatment (T2: 120%) was 



 

Figure 1. Location of study area in Kermanshah Province, Iran. 

 
Table 1. Monthly values of weather parameters during the field experiment. 

Weather Parameter Unit May June July August September 

Maximum temperature ℃ 32 35 38 39.1 35 
Minimum temperature ℃ 6.7 13 17 17.1 14.1 

Sunshine hours h 8.3 9.7 10 9.9 10.3 
Wind speed at 2 m m s-1 0.9 1.4 1.2 1.1 1.1 
Relative humidity % 22.9 19.6 19 17.2 22.1 
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historical and projected weather data. Crop 
water productivity was calculated as the 
ratio of grain yield (kg ha-1) to seasonal 
evapotranspiration (m3 ha-1). 

The statistical indicators of Standard Error 
(SE) and the coefficient of 
determination (R2) were used to assess the 
goodness-of-fit measures of the statistical 
downscaling model (Emami and Koch, 
2018). The normalized Root Mean Square 
Error (nRMSE), and Efficiency Factor (EF) 
were used for the evaluation of the 
performance of crop models in the 
calibration and validation stages (Equations 
1 and 2). 

(1) nRMSE

=

ට(
1
n

∑ (O୧ − P୧)
ଶ)୬

୧ୀଵ

Oୟ୴ୣ
   

(2) 
EF = 1 −

∑ (O୧ − P୧)
ଶ୬

୧ୀଵ

∑ (O୧ − Oୟ୴ୣ)ଶ୬
୧ୀଵ   

 

Where, Oi is the Observed data, Pi is the 
simulated data, Oave is the average of the 

Observed data, and n is the number of 
observed data. 

RESULTS AND DISCUSSION 

The SDSM model evaluation indicators in 
the calibration and validation stages are 
presented in Tables 4 and 5. The low 
standard error and relatively high correlation 
between simulated and observed data in 
calibration and validation indicate the 
model's effectiveness in downscaling 
weather data. The correlations were higher 
than the values of 0.29 for rainfall and 0.6 
and 0.57 for maximum and minimum 
temperature reported by Fiseha et al. (2012).  

Crop models were calibrated based on the 
results of previous studies in the study area 
(Esmaeili et al., 2015). The performance of 
calibrated models was evaluated based on 
the field experiments conducted in the 
current study. Based on statistical indices of 
nRMSE and EF, it can be said that DSSAT  
  

Table 2. Soil physical characteristics of the research farm 

Soil 
depth (cm) 

Available 
water (mm 
per meter) 

Soil 
texture 

Volumetric soil moisture (%) 
Bulk 

density (g 
cm-3) Saturation 

Field 
capacity 

Permanent 
wilting point 

0-30 160 Clay loam 48.4 34 20 1.3 

30-60 140 Clay loam 48.7 37 23 1.31 

60-90 130 Clay 47.9 39 25 1.25 

 

Table 3. Specifications of the irrigation treatments 

Treatment 
Period of deficit 

irrigation 

% Irrigation in 
the reproductive 

stage 

% Irrigation in the 
vegetative stage 

Total water 
application (mm) 

T1 --- 100 100 842 

T2 --- 120 120 960 

T3 Whole period 80 80 724 

T4 Whole period 60 60 605 

T5 Vegetative phase 100 80 827 

T6 Vegetative phase 100 60 797 

T7 Reproductive phase 80 100 746 

T8 Reproductive phase 60 100 650 

 



Table 4. Performance evaluation indicators of SDSM model in calibration and validation stages (Predictants: 
Maximum temperature, minimum temperature, and wind speed). 

Month 
Maximum temperature Minimum temperature Wind speed 

Calibration Validation Calibration Validation Calibration Validation 
SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 

Jan 1.90 0.75 2.01 0.71  2.88 0.68 2.78 0.67  2.17 0.68 2.24 0.70 
Feb 2.10 0.71 2.30 0.69  2.26 0.81 2.66 0.68  2.28 0.60 1.97 0.64 
Mar 2.20 0.68 2.40 0.63  2.45 0.78 2.50 0.61  2.16 0.65 2.10 0.55 
Apr 2.01 0.61 2.51 0.65  2.21 0.72 2.61 0.71  2.57 0.55 2.03 0.51 
May 2.30 0.63 2.45 0.65  2.36 0.76 2.56 0.65  2.20 0.58 2.07 0.55 
Jun 2.15 0.70 2.31 0.70  2.84 0.79 2.74 0.60  2.24 0.74 1.96 0.57 
Jul 2.12 0.62 2.20 0.72  2.26 0.60 2.66 0.60  2.54 0.51 2.87 0.53 

Aug 2.14 0.64 2.25 0.68  1.98 0.64 2.10 0.64  2.85 0.66 2.72 0.57 
Sep 2.11 0.70 2.30 0.71  1.83 0.73 2.02 0.68  2.29 0.57 2.56 0.53 
Oct 2.10 0.71 2.26 0.73  2.10 0.84 2.32 0.63  2.54 0.70 2.34 0.57 
Nov 2.15 0.68 2.30 0.69  1.89 0.83 2.15 0.72  2.46 0.60 2.00 0.54 
Dec 1.89 0.72 2.12 0.67  1.76 0.77 2.01 0.76  1.89 0.78 2.29 0.67 

 
 

Table 5. Performance evaluation indicators of SDSM model in calibration and validation stages (Predictants: 
Sunshine hours, relative humidity, and precipitation). 

Month 
Sunshine Relative humidity Precipitation 

Calibration Validation Calibration Validation Calibration Validation 
SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 

Jan 2.89 0.61 2.45 0.77  2.05 0.79 2.49 0.70  2.19 0.79 2.90 0.45 
Feb 2.94 0.62 2.02 0.80  2.95 0.74 2.70 0.58  2.71 0.76 2.37 0.57 
Mar 2.53 0.64 2.08 0.66  2.40 0.73 2.15 0.65  1.46 0.47 1.26 0.45 
Apr 2.59 0.75 2.85 0.65  2.06 0.78 2.74 0.51  1.48 0.42 2.05 0.49 
May 2.72 0.78 2.53 0.60  2.02 0.69 2.58 0.55  1.69 0.63 2.42 0.60 
Jun 2.80 0.65 2.53 0.79  2.72 0.69 2.30 0.76  1.63 0.80 1.88 0.67 
Jul 2.92 0.64 1.97 0.71  2.82 0.70 2.30 0.64  1.64 0.55 1.12 0.43 

Aug 2.21 0.77 2.33 0.65  2.46 0.72 2.47 0.60  1.56 0.72 1.19 0.56 
Sep 2.15 0.79 2.86 0.62  2.72 0.67 2.93 0.74  1.45 0.68 1.10 0.61 
Oct 2.65 0.76 1.86 0.63  2.88 0.65 2.28 0.67  2.13 0.78 1.12 0.62 
Nov 2.11 0.72 2.77 0.67  2.24 0.71 1.91 0.55  1.66 0.76 2.36 0.68 
Dec 1.86 0.78 2.86 0.62  2.12 0.76 2.40 0.50  1.45 0.42 0.94 0.58 
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increase in relative humidity will be 2.8% in 
February under the RCP8.5 scenario. This 
increase will be 0.2 and 1.4% for RCP4.5 
and RCP2.6 scenarios, respectively. The 
highest reduction in relative humidity under 
the RCP8.5 scenario would be 3.9% in May, 
which would be 3.2 and 2.8% for the same 
month under RCP4.5 and RCP2.6 scenarios, 
respectively (Figure 2).  

Precipitation is another weather parameter 
that was projected under climate change 
scenarios. Although the mean precipitation 
decreases under climate change, in some 
months (October and November) 
precipitation is predicted to increase (Figure 
2). The greatest reduction of rainfall in 
March for RCP8.5, RCP4.5, and RCP2.6 
scenarios will be 44, 44, and 40 mm, 
respectively. Solar radiation under all 
emission scenarios shows an increasing 
trend in the future. The highest increase will 

be under the RCP8.5 scenario, followed by 
RCP4.5 and RCP2.6. The highest increase in 
solar radiation under all scenarios would 
occur in April. The mean increase under 
RCP8.5, RCP4.5, and RCP2.6 scenarios 
would be 0.9, 0.7, and 0.6 MJ m-2 per day 
(Figure 2). 

 The results also indicate an increase in 
wind speed in the future. The highest wind 
speed increase will occur in July under 
RCP8.5 scenarios at 0.6 m s-1. In the same 
month, under RCP4.5 and RCP2.6 scenarios, 
this increase will be 0.4 and 0.3 m s-1, 
respectively (Figure 2). 

ETo increases with increasing air 
temperature, wind speed, radiation, and 
decreasing relative humidity. Due to the 
increase in air temperature, wind speed, 
solar radiation and decrease in relative 
humidity (except in winter) in the climate 
change conditions, ETo will increase. The  

 
Table 6. Performance evaluation of AquaCrop and DSSAT models in the validation stage. 

Statistical index Treatment 
Biomass Grain Leaf area index Crop canopy 

DSSAT AquaCrop DSSAT AquaCrop DSSAT AquaCrop 

nRMSE (%) 

T1 17.18 10.67 15.02 34.36 14.88 17.1 

T2 21.05 24.79 8.52 26.23 11.87 17.45 

T3 21.71 13.83 24.66 27.89 15.98 23 

T4 25.26 62.27 28.28 45.86 14.44 18.36 

T5 22.16 35.58 11.72 41.9 13.56 32.65 

T6 17.37 24.25 8.43 31.52 7.72 29.59 

T7 23.41 26.44 7.47 28.14 17.35 15.66 

T8 19.71 38.56 23.82 35.59 17.22 22.46 

Average 20.98 29.55 15.99 33.94 14.13 22.03 

EF 

T1 0.95 0.97 0.97 0.48 0.94 0.75 

T2 0.92 0.86 0.98 0.72 0.96 0.76 

T3 0.92 0.94 0.96 0.54 0.94 0.59 

T4 0.88 0.39 0.96 0.45 0.94 0.69 

T5 0.92 0.73 0.98 0.68 0.95 0.55 

T6 0.95 0.88 0.98 0.6 0.99 0.41 

T7 0.91 0.79 0.98 0.44 0.92 0.79 

T8 0.93 0.4 0.97 0.41 0.92 0.46 

Average 0.92 0.75 0.97 0.54 0.95 0.63 

 
 



Table 7. Calculated ETo in the base and future periods (mm). 

Month Base RCP2.6 RCP4.5 RCP8.5 

Jan 39.1 42.2 45.6 46.8 

Feb 48.2 50.7 52.9 54 

Mar 87.7 88.7 89.6 91.8 

Apr 119.7 125.4 128.1 129.6 

May 167.1 176.1 179.2 185.7 

Jun 229.5 241.2 243.6 251.4 

Jul 259.8 275 279.6 290.5 

Aug 249.2 261 267.2 279 

Sep 192.6 201 204.3 212.7 

Oct 130.5 126.8 130.8 135.2 

Nov 68.4 71.4 71.7 73.8 

Dec 44.3 46.8 47.7 49 

Sum 1636.1 1706.2 1740.4 1799.4 
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Figure 2. Monthly values of meteorological parameters in the base (1985-2015) and the future (2025-2064) periods.  
 



 

 
Figure 3. Average of monthly evapotranspiration (mm d-1).  

Table 8. The seasonal Evapotranspiration (ETc), biological yield, and grain yield estimated by AquaCrop 
and DSSAT. 

Parameter Unit Model 
Base period 

 (1985-2015) 

Future period (2025-2064) 

RCP2.6 RCP4.5 RCP8.5 

Seasonal evapotranspiration mm 
AquaCrop 672 735 746 772 

DSSAT 705 734 765 790 

Biological yield Kg ha-1 
AquaCrop 9180 8890 8750 8540 

DSSAT 11130 10890 10780 10560 

Grain yield Kg ha-1 
AquaCrop 2460 2410 2370 2330 

DSSAT 3160 3110 3010 2980 

Crop water productivity g m-3 
AquaCrop 366 328 318 302 

DSSAT 448 424 393 377 
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soybean for irrigated cultivation will 
decrease slightly under climate change 
scenarios in Gorgan, Iran, while Rostami 
Ajirloo et al. (2021) reported an increase in 
the yield of this crop in the Parsabad Plain of 
Moghan, Iran. As a result of increasing the 
seasonal crop water requirement and 
decreasing crop yield, crop water 
productivity decreases (Table 8).  

CONCLUSIONS 

According to the results, based on 
downscaling of the CanEsm2 climate change 
model, the air temperature in the study area 
will increase under climate change 
scenarios. This increase in RCP2.6, RCP4.5, 
and RCP8.5 was estimated to be 0.3, 0.6, 
and 0.95°C, respectively. This increase will 
reduce the crop growth period in this area. 
The length of soybean growth period in the 
future will decrease between 3 and 5 days in 
different emission scenarios. An increase in 
air temperature, wind speed, and solar 
radiation and a decrease in relative humidity 
in climate change conditions cause 
evapotranspiration and crop yield to change 
as well. RCP8.5 and RCP2.6 scenarios had 
higher and lower changes in weather 
parameters, ETo, seasonal crop water 
requirement, and crop yield, respectively. 
The RCP4.5 scenario was intermediate 
between the two mentioned scenarios. ETo 
will increase between 5.8 and 11.8 % under 
the studied climate change scenarios. 
Seasonal crop evapotranspiration increases 
by 9.4-15% in the AquaCrop model and 4.1-
12% in the DSSAT model. The estimated 
reduction in soybean yield based on the 
AquaCrop and DSSAT models will be 2-5.3 
and 1.6-5.7%, respectively. In the future, the 
maximum evapotranspiration, which is the 
basis of the design of irrigation systems, will 
increase by an average of 11.8 and 8.2% 
based on AquaCrop and DSSAT models. If 
this issue is not included in the designs of 
irrigation networks, in the future, we will 
have to apply less irrigation or reduce the 
area under cultivation. The results of this 

type of studies can be used in water resource 
development programs by agricultural water 
planners. 
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  گیاهی های ارزیابی اثرات تغییر اقلیم بر عملکرد و نیاز آبی سویا با استفاده از مدل

  و م. قبادی ع. دهقان موروزه، ب. فرهادی بانسوله،

  هیدچک

تغییر اقلیم می تواند تأثیرات قابل توجهی بر رشد ، عملکرد، نیاز آبی و در نتیجه بهره وری مصرف آب 
 RCP8.5و  RCP2.6 ،RCP4.5گیاهان داشته باشد. در این مطالعه، تأثیر تغییر اقلیم تحت سناریوهای انتشار 

ران بررسی شد. رشد گیاه با بر عملکرد و نیاز آبی سویا در کرمانشاه، واقع در غرب ای CanESM2مدل 
وهوایی دوره  های آب ) بر اساس دادهAquaCropو  DSSATسازی رشد گیاهی ( های شبیه استفاده از مدل

سازی شد. میانگین افزایش تبخیر و تعرق فصلی  ) شبیه۲۰۲۵ - ۲۰۶۴شده ( بینی ) و پیش۱۹۸۵ - ۲۰۱۵گذشته (
)ETc(  با استفاده از مدلAquaCrop ی در سناریوهاRCP2.6 ،RCP4.5  وRCP8.5  و  ۱۱، ۹.۴به ترتیب

فصلی تحت  ETcدرصد افزایش در  ۱۲.۱و  ۸.۵، ۴.۱به ترتیب  DSSATدرصد برآورد شد. نتایج مدل  ۱۴.۹
، DSSATو  AquaCropبر اساس مدل های  را نشان داد. RCP8.5و  RCP2.6 ،RCP4.5سناریوهای 

و  RCP8.5 ،RCP4.5٪ در سناریوهای ۱.۶، و ۴.۸، ۵.۷٪ و ۲، و ۳.۷، ۵.۳عملکرد سویا به ترتیب 
RCP2.6 وری مصرف آب را تحت سناریوهای تغییر اقلیم در  کاهش می یابد. نتایج همچنین کاهش بهره

حداکثر  DSSATو  AquaCropهای  دهد. طبق مدل و کاهش عملکرد دانه نشان می ETcنتیجه افزایش 
ETc یابد. % افزایش می۱۰.۲% و ۱۱.۵شود به ترتیب  های آبیاری استفاده می روزانه که برای طراحی سیستم  

 
  


