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Prediction of Cake Texture during Conventional Baking Based 

on AdaBoost Algorithm 

Sediqeh Soleimanifard1*, Nafiseh Jahanbakhshian2, and Somayeh Niknia1 

ABSTRACT 

The present study investigates the effect of baking temperatures (140, 160, 180, 200, and 

220℃) on texture kinetics. It also explores a statistical classification meta-algorithm, 

called Adaptive Boosting (AdaBoost), to predict texture changes during conventional cake 

baking. The experimental results indicated that texture properties were significantly 

affected by baking temperature and time. As time and temperature increased, there was 

an increase in hardness, cohesiveness, gumminess, and chewiness and a decrease in 

springiness. However, the impact of time and temperature on resilience was inconsistent, 

as it was maximum in the last quarter of the process. The predicted results revealed that 

the AdaBoost algorithm accurately predicted the texture properties with a high coefficient 

of determination (R2> 0.989) and minimal root mean square error (RMSE< 0.0019) across 

all textural properties. Therefore, it can serve as an efficient tool for predicting the 

texture properties of cakes during baking. Furthermore, the proposed methodology can 

be extended to predict the texture properties of other baked goods.

Keywords: Adaptive Boosting, Conventional baking, Machine learning, Texture profile 

analysis.

INTRODUCTION 

Cakes are bakery products that are widely 

consumed worldwide. Regardless of the 

variety of cakes, which are attributed to 

various formulations and process conditions, 

achieving the desired texture in the product 

is still challenging. 

Understanding the textural characteristics 

of the cake improves quality control. 

However, determining these properties 

requires expensive equipment and 

significant time (Crispín-Isidro et al., 2015). 

The use of predictive algorithms based on 

mathematical models is recommended. 

Researchers have developed various 

algorithms to predict the texture of food 

materials. Some of these approaches include 

Artificial Neural Network (ANN) (Abbasi et 

al., 2012; Ahmad et al., 2014; Batista et al., 

2021; Khawas et al., 2016; Lee et al., 2024; 

Meng et al., 2012; Pan et al., 2015; Qiao et 

al., 2007; Vásquez et al., 2018), Bayesian 

Extreme Learning Machine (BELM) (Lee et 

al., 2024), Random Forest (RF)(Lee et al., 

2024; H. Lin et al., 2024; Sun et al., 2021; 

Zhou et al., 2024), Support Vector Machine 

(SVM) (Lin et al., 2024; Zhu et al., 2017), 

Genetic Algorithm (GA) (Abbasi et al., 

2012; Lin et al., 2024; Zhu et al., 2017), 

Partial Least Squares Regression (PLSR) 

(Darnay et al., 2017; Polak et al., 2019; Sun 

et al., 2021; Vásquez et al., 2018; Zhu et al., 

2017), Monte Carlo Cross (MCC) (Darnay 

et al., 2017), Weighted Regression (WR) 

(Zhu et al., 2017), Successive Projections 

Algorithm (SPA) (Zhu et al., 2017), 

Gaussian Process Regression (GPR) 
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(Barzegar et al., 2024), eXtreme Gradient 

Boosting algorithm (XGBoost) (Zhou et al., 

2024). 

The AdaBoost is a powerful algorithm that 

can select properties during learning (Chuan 

et al., 2021). Furthermore, since increasing 

the sample size requires reasonable speed 

and accuracy, this method can be useful and 

efficient when dealing with large amounts of 

data. The AdaBoost algorithm also offers 

numerous advantages, including ease of use, 

simple and interpretable classification rules, 

and having only one regularization 

parameter (i.e., the number of algorithm 

repetitions), resulting in a high level of 

automation. Also, this algorithm is 

compatible with unbalanced training data 

and offers great flexibility compared to 

many other algorithms (Chen et al., 2014; 

Freund and Schapire, 1997). In addition, it 

has various applications in food products, 

including ripe fruit detection (Lin and Zou, 

2018), sweetness prediction (Bouysset et al., 

2020), camellia oil fraud detection (Kuang et 

al., 2022), food glycemic index prediction 

(Khan et al., 2022), wheat varieties, and 

mixing ratio detection and classification 

(Jiang et al., 2023).  

According to the studies presented in the 

research literature, no study was found that 

could predict the Texture Profile Analysis 

(TPA) characteristics of the cake using the 

existing algorithms. Therefore, we chose the 

AdaBoost algorithm to predict the cake’s 

fundamental textural properties (i.e., 

hardness, springiness, cohesiveness, 

chewiness, gumminess, and resilience) 

during conventional baking. Also, a split-

plot based on complete block design was 

applied for TPA experiments. 

Based on the mentioned points, the main 

contributions of this paper are as follows: 

For the first time, the AdaBoost algorithm 

is used to model the textural properties of 

food and applied RMSE, R2, and QC  

Time and temperature are used 

simultaneously to enhance the model’s 

accuracy. 

MATERIALS AND METHODS 

Experimental Data 

Baking Procedure 

 In this step, a vanilla cake batter including 

sugar (21.1 g), milk powder (1.6 g), 

emulsifier (0.25 g), salt (0.45 g), baking 

powder (1.35 g), flour (21.1 g), vanilla (0.45 

g), liquid egg (24.7 g), vegetable oil (14.5 

g), and water (14.5 g) was prepared by 

stirring the liquid egg using a mixer (Bosch-

CNCM57,1100 W, Slovenia) at high speed 

for 10 min and mixing with water and 

vegetable oil. Finally, other ingredients of 

batter were added and mixed until 

uniformity in the cake batter was obtained 

(Soleimanifard et al., 2024). The moisture 

content of the batter was 49% on a dry basis. 

About 100 g of vanilla batter was baked in 

a conventional oven (Butane MR-1, Iran) at 

140, 160, 180, 200, and 220 ℃ for 1.59, 

0.81, 0.66, and 0.63 hour, respectively. The 

total process time at each temperature was 

divided into 17 parts, where all textural 

parameters were measured. 

Texture Profile Analysis 

 A Texture Analyzer (TA Plus, Lloyd 

Instruments, UK) with a 50 N load cell was 

used to conduct double-compression TPA on 

cake crumbs. A cylindrical probe (40 mm in 

diameter) was used to compress cylindrical 

samples with a diameter of 24.5 mm and a 

height of 20 mm to 50% compression at a 

speed of 60 mm (Bourne, 2002; Zareifard et 

al., 2009). TPA was designed to simulate the 

mastication processes.  

As shown in Figure 1, the force peak 

height on the first compression cycle is 

defined as hardness (N). The ratio of the 

positive force areas under the first and 

second compressions (A2/A1) was used to 

measure cohesiveness (N/N). This ratio 

indicates the extent to which a sample can 

be deformed before it ruptures. Springiness 
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(s/s) is defined as the time index it takes for 

the sample to return to its original shape or 

size after being partially compressed. The 

parameter was calculated as 

distance2/distance1. Moreover, resilience 

(N.s/N.s), i.e., the degree to which the 

sample returns to its original shape and 

elasticity, was calculated as A4/A3. Two 

additional parameters were derived from the 

measured parameters. Here, gumminess (N) 

was defined by multiplying hardness by 

cohesiveness, while chewiness (N) was 

calculated by multiplying gumminess by 

springiness (Bourne, 2002; Zareifard et al., 

2009). All experiments were performed in 

five replications. 

Statistical Analysis 

 The experimental data was analyzed by 

analysis of variance (ANOVA) using a split-

plot design based on complete block design 

with the SAS statistical program (version 

9.4). Means of treatments were separated 

using the Dunkan test (p\0.05). 

 AdaBoost Modeling 

This research applies the AdaBoost 

algorithm to predict textural changes in cake 

samples during baking under various 

conditions. AdaBoost was chosen for its 

ability to improve productivity and address 

the problem of imbalanced categories in 

other learning algorithms. This algorithm 

can upgrade a weak classifier with a better 

classification effect than random 

classification to a strong classifier with high 

classification accuracy (Chuan et al., 2021). 

This algorithm integrates many weak 

classifiers (e.g., simple decision trees and 

neural networks) and transforms them into 

strong ones (Tharwat et al., 2018) during 

both the training and testing phases. The 

process was performed in the following 

steps: 

In the training step, observation weights 

were initialized to be equal and were used 

for the first classifier: 𝑤𝑗
1 =

1

𝑁
, j=1, …, N. 

The weights of the first classifier were (𝑤𝑗
1). 

Afterward, they were determined through 

the error rates of weak learners (𝑪𝒕), as 

follows: 

 𝜖𝑡 = ∑ 𝑤𝑗
𝑡𝑙𝑗

𝑡𝑁
𝑗=1  and 𝑙𝑗

𝑡 = 1 

Where, training samples were 

misclassified; otherwise, 𝑙𝑗
𝑡 = 0. If 𝜖𝑡 ≥

0.5, the weights were readjusted so the 

misclassified samples were classified more 

accurately in the next learning step by 

increasing their weights. Therefore, weak 

learner weights (𝛼𝑡) were calculated as 

follows: 

 𝛼𝑡 =
𝜖𝑡

1−𝜖𝑡
. (Gaber et al., 2016) 

Finally, the previous steps were repeated 

until the best classifier was achieved (Li and 

Li, 2020). 

In the testing step, all weak learners of the 

algorithm were used to classify the testing 

sample (xtest) as follows: 

𝜇𝑡 = ∑ ln (
1

𝛼𝑡
),   ∀𝑡 =𝐶𝑡(𝑥𝑡𝑒𝑠𝑡)=𝜔𝑡

1, 2, … , 𝑇, 

where 𝜇𝑡 is the score of a class 𝝎𝒕. 

Moreover, T, . N, and 𝝐𝒕 are the total 

number of iterations,  the total number of 

samples in the training set, and the minimum 

error, respectively. 

Eventually, the unknown sample was 

devoted to the highest score class (Gaber et 

al., 2016; Tharwat et al., 2018). 
 

 

Figure 1. The textural parameters of the 

TPA curve. 
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Validation Criteria 

The model was validated using statistical 

parameters such as the followings: R2 = 1 −
∑ (𝑥𝑖_𝑒𝑥𝑝−𝑥𝑖_𝑝𝑟𝑒)𝑁

𝑖

2

∑ (𝑥𝑖_𝑒𝑥𝑝−𝑥̅𝑒𝑥𝑝)𝑁
𝑖

2 , ),  

𝑅MSE = √
∑ (𝑥𝑖_𝑒𝑥𝑝−𝑥𝑖_𝑝𝑟𝑒)2𝑁

𝑖=1

𝑁
,  

 Quality coefficient as QC =
Rtrain

2 +Rtest
2

RMSEtrain
2 +RMSEtest

2  (Batista et al., 2021b; Niu 

et al., 2020). 

Where, N, xi_pre, xi_exp, and x̄exp represent 

the number of data sets, the predicted values, 

the experimental values, and the average 

experimental data, respectively. Generally, a 

model with the maximum R2 value (close to 

1) and the minimum RMSE value (close to 

0) would exhibit the best relative 

performance. 

RESULTS 

Experimental Analysis 

Hardness 

Figure 2-A illustrates the effects of baking 

time and temperature on the hardness of the 

baked cakes. As can be seen, hardness 

increased by increasing the baking time. 

This behavior is attributed to the role of 

water as a plasticizer. By reducing the 

amount of moisture content during the 

process, hardness will increase accordingly. 

In other words, when the moisture content 

decreases, the gelatinization or 

retrogradation of starch and protein 

interactions are accelerated, resulting in a 

harder texture. Hence, the moisture content 

had a negative correlation with hardness. 

During the baking process, evaporation of 

water from the surface creates a crust that 

increases hardness. This increase may 

explain the surge in hardness observed after 

the crust (1,000-2,000 s, depending on 

temperature). As the baking temperature 

rises, water evaporation and pressure 

gradients increase considerably, leading to 

rapid moisture loss. In this respect, many 

studies have reported an increase in hardness 

in bread (Das et al., 2012; Içöz et al., 2004; 

Matos and Rosell, 2012), cake (Al-Muhtaseb 

et al., 2013), and Chhana Podo (Kumari et 

al., 2015) with an increase in baking time 

and temperature. 

Cohesiveness 

 Figure 2-B illustrates the effects of baking 

time and temperature on the cohesiveness of 

the cake during baking. As also reported by 

Clarke and Farrell (2000), the cohesiveness 

of the cake increased by prolonging the 

baking time. Furthermore, this parameter 

increases with the temperature rise at a 

constant time. Final mean cohesiveness 

values ranged from 0.48 to 0.63 in the 

temperature range of 140 to 220℃. During 

the baking process, a stronger and more 

cohesive structure will develop by 

decreasing the moisture content, thereby 

increasing the hardness. In addition, as the 

temperature increases, the sample absorbs 

more energy over time, reducing the 

processing time needed to achieve the final 

strong structure. 

While cohesiveness increased slowly 

during the baking process at lower 

temperatures, this behavior was significantly 

different at higher temperatures, showing 

rapid growth initially and then reaching a 

plateau over time. 

Springiness 

Springiness is the time index to which the 

cake returns to its original state after 

removing the compression force. This 

parameter, which is controlled by the crumb 

network’s strength, is thought to be a good 

predictor of staling initiation (Cauvain and 

Young, 2009). Springiness significantly 

increased with time and decreased with 

temperature during baking using a 
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conventional oven (Figure 2-C). One of the 

most significant changes at the beginning of 

baking is the increase in dough temperature. 

This factor fills the pores and transforms the 

product from a liquid batter or semi-viscous 

dough into a solid alveolar structure by the 

end of the baking process, thereby 

increasing springiness. Similar results have 

been reported by Gond et al. (2023) and 

Osman et al. (2017).  

By increasing the temperature from 140 to 

220℃, the cake hardness negatively 

correlated with the cake’s springiness, where 

higher hardness led to lower springiness. As 

the temperature increases, the cake absorbs 

more heat during baking. Consequently, it 

increases water evaporation inside the cake 

batter and the pressure gradient between the 

dough surface and core, resulting in crumb 

softening (Shahapuzi et al., 2015). This 

outcome is probably the reason for the 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 2. The effect of temperature and time on hardness (A), cohesiveness (B), springiness (C), 

chewiness (D), gumminess (E), and resilience (F). 
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decrease in springiness. Moreover, as the 

processing time increases at a constant 

temperature, porosity exhibits an upward 

trend. Consequently, as porosity increases 

and the sample swells, the formation of 

additional air pore during baking enhances 

the return to the initial state. Therefore, the 

observed increase in springiness appears 

reasonable, despite the rise in hardness. In 

this respect, similar results have been 

reported in a study on pizza (Clarke and 

Farrell, 2000; Chhana Podo Kumari et al., 

2015). 

Chewiness and Gumminess 

 Cake baked in the conventional oven 

showed an overall increase in chewiness and 

gumminess by prolonging the baking time 

(Figures 2-D and -E). One possible 

explanation for this result could be the rise 

in cake hardness over time and with 

temperature (Figure 2-A). Therefore, the 

energy required to break down and chew the 

samples would increase. The decrease in 

moisture content might be another reason for 

the increase in gumminess during baking. 

Similar conclusions have been proposed for 

cake Al-Muhtaseb et al. (2013b) and for 

Chhana Podo Kumari et al. (2015). 

Resilience 

 Figure 2-F shows the changes in 

resilience during cake baking in a 

conventional oven. As can be seen, 

resilience increased, reaching a peak at 

about the last quarter of the process time, 

and then decreased.  

The cohesiveness and hardness of the cake 

increased during baking (Figures 2-A and -

B). These modifications, along with the 

differences in height, as shown in Figure 3-

A, led to favorable results that improved the 

formation and stability of the structure. 

Hence, they ultimately increased the cake’s 

resilience and height, allowing it to return to 

its original state. After a while, when the 

center temperature of the cake reaches starch 

gelatinization and protein coagulation (85-

90℃), expansion stops, but evaporation 

continues. The end of the cake’s expansion 

can be demonstrated by the open structure of 

the cake, which occurs due to the formation 

of bubbles and the significant release of 

gases. Finally, the cake shrinks at the end of 

its expansion due to water evaporation 

(Lostie et al., 2002). The texture would be 

so hard that it could not recover to its 

original shape after removing the 

compression. As a result, resilience would 

decrease (Figure 3-B). 

Results showed that the resilience 

increased as the temperature rose from 140 

to 220℃. Also, the increase in the slope of 

(A) 

 

(B) 

 

Figure 3. Relationship between height (A) and center temperature (B) with resilience of the cake at 

180 °C. 
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the hardness curve in the final steps had a 

positive correlation with its resilience. 

Model Analysis 

The cake texture properties during 

conventional baking were predicted by 

performing AdaBoost modeling in Python 

(version 3.6). The selected estimator must 

have the highest R2 and the lowest RMSE 

for the mean values of each temperature in 

both the training and validation phases 

(Table 1), resulting in a higher quality 

coefficient value. Here, the best-estimated 

number was 50, with the highest quality 

coefficient among all textural properties 

(Figure 4). 

Therefore, a model of textural properties 

containing two inputs (i.e., time and 

temperature), 50 estimators, 5 folds, and 6 

outputs was selected (Figure 5). 

The efficiency of the composite models 

was verified using AdaBoost. As it turned 

out, the maximum differences between 

hardness, cohesiveness, springiness, 

resilience, chewiness, and gumminess were 

0.38, 0.01, 0.05, 0.02, 0.26, 0.21, and 0.41, 

respectively, suggesting the effectiveness of 

the proposed model. Figure 6 compares the 

experimental and predicted values to 

demonstrate the efficacy of models in 

predicting textural properties. These graphs 

indicate the proximity of the values obtained 

by the models to the TPA data.

Table 2 demonstrates the effect of 

different cooking temperatures on the 

prediction of the AdaBoost algorithm. In 

fact, we only included the average values of 

textural properties during cooking at each 

temperature in this table to demonstrate that, 

as the process temperature increased from 

140 to 220°C, the total time and, 

consequently, the time intervals (at which 

samples were taken) decreased, leading to 

potentially higher measurement errors. As a 

result, the differences between the predicted 

and experimental values would increase, 

resulting in lower R2 and higher RMSE. This 

indicates a gradual decrease in the accuracy 

of predictions. Another reason for lower 

model accuracy may be the increased 

chemical reactions at higher temperatures, 

which could affect the textural properties. 

By all means, the least amount of R2 was 

0.989, and the maximum amount of RMSE 

was 0.034, proving the ability of AdaBoost 

in predicting the textural properties of food. 

Also, there are several studies on predicting 

food properties using the AdaBoost 

algorithm. The following research examples 

demonstrate that AdaBoost is a powerful 

algorithm in this context. 

Khan et al. (2022) obtained food glycemic 

index by data extracted from pictures using 

five Machine Learning (ML) algorithms, i.e. 

AdaBoost, Random Forest, Decision Tree, 

K-Nearest-neighbor Classifier, and Naive 

Bayes Classifier. They divided food into 

three categories: high, low, and moderate 

sugar. The results demonstrated the better 

accuracy of the AdaBoost model in the 

classification of the food glycemic index. 

Bambil et al. (2020) collected 40 leaves of 

30 varieties of trees and shrubs from 19 

families concerning the plant species 

detection from its morphology. The studied 

features from the collected pictures were 

color, shape, and texture. Also, the models 

employed for detecting the plant 

morphology were three ML algorithms, 

namely, AdaBoost, random forest, and 

Support Vector Machine (SVM), and a deep 

learning ANN model. The least correlation 

factor was 0.93, representing the model’s 

efficiency. 

In another study, Kuang et al. (2022) used 

the AdaBoost algorithm to improve camellia 

oil fraud detection. They employed this 

algorithm to optimize the back-propagation 

neural network model to distinguish the fake 

and pure camellia oil by applying NI-Raman 

spectroscopy data. The results showed a 

great accuracy with R2= 0.999 and RMSE= 

0.01. 

Lin and Zou (2018) used the AdaBoost 

algorithm to diagnose ripe fruit and their 

spatial positioning for mechanized 

harvesting. The number of pictures used in 

this research was 120, of which 20 were for 
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the training part and the rest for the test step. Also, the lowest model accuracy was 0.867. 

          Table 1. R2 and RMSE values in the training and validation phase. 

 Training  Validation 

 R2 RMSE  R2 RMSE 
Hardness 0.99 0.068  0.99 0.167 

Cohesiveness 0.99 0.002  0.98 0.003 

Springiness 0.99 0.005  0.98 0.013 

Resilience 0.99 0.002  0.97 0.005 

Chewiness 0.99 0.035  0.99 0.089 

Gumminess 0.99 0.043  0.99 0.103 

 

 

 
 

Figure 4. The effect of estimator number on AdaBoost algorithm performance in the training and 

testing phase. 

 
Figure 5. AdaBoost topology for Texture prediction. 
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Figure 6. Predicted and experimental values of TPA characteristics at the phases of training (left column) and test 

(right column). 

Table 2. The effect of process temperature on models’ accuracy for different textural properties. 
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CONCLUSIONS 

The effect of conventional baking on 

textural properties were investigated, 

followed by using AdaBoost model to 

predict textural properties during the 

conventional baking of cakes. The results 

indicate that hardness, cohesiveness, 

chewiness, gumminess, and resilience 

increased, while springiness decreased when 

higher operating temperatures were applied. 

Model results confirmed that both baking 

temperature and time significantly influence 

the textural properties. Also, R2> 0.989 and 

RMSE< 0.0019 for the predicted texture 

characteristics revealed that the AdaBoost 

model was an effective tool for predicting 

the textural properties of baking products 

during the process. 
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 پیش بینی بافت کیک طی پخت سنتی برپایه الگوریتم آدابوست

 بخشیان، و سمیه نیک نیا صدیقه سلیمانی فرد، نفیسه جهان

 چکیده 

( پخت  دمای  تأثیر  بررسی  به  حاضر  درجه    220و    200،  180،  160،  140پژوهش 
میسانتی بافت  سینتیک  بر  همگراد(  به پردازد.  آماری  بندی  طبقه  متاالگوریتم  یک  نام چنین 

می بررسی  کیک  سنتی  پخت  طول  در  بافت  تغییرات  بینی  پیش  برای  را  نتایج آدابوست  کند. 
گیرد.  داری تحت تأثیر دما و زمان پخت قرار میطور معنیتجربی نشان داد که خواص بافت به

فنری  افزایش و  قابلیت جویدن  و  بافت، چسبندگی، صمغی بودن  افزایش زمان و دما، سفتی  با 
و در یک چهارم  پذیری متناقض بودبودن کاهش یافت. با این حال، تاثیر زمان و دما بر انعطاف 

های بافت را  شده نشان داد که الگوریتم آدابوست ویژگیبینیپیشانتهایی فرآیند حداکثر بود. نتایج  
( بالا  تعیین  ضریب  ) 0.9892R <با  خطا  مربعات  میانگین  ریشه  حداقل  و   )RMSE< 

کند. بنابراین، می تواند به عنوان یک بینی میهای بافتی به دقت پیش( در تمام ویژگی0.0019
ابزار کارآمد برای پیش بینی خواص بافت کیک در حین پخت عمل کند. علاوه بر این، روش 

 توان برای پیش بینی خواص بافت سایر محصولات پخته شده گسترش داد.پیشنهادی را می
 


