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ABSTRACT 

 Intraguild predation and cannibalism (conspecific predation) of two generalist 

phytoseiid mites were determined in this study. Adult females and protonymphs of 

Neoseiulus californicus (McGregor) and Amblyseius andersoni Chant were considered as 

intraguild and cannibalistic predators, provided with eggs, eggs+larvae and protonymphs 

as intraguild or conspecific prey. A side from predator species and prey type (IG prey 

versus conspecific prey), females exhibited lowest predation rates on eggs. Not including 

prey type, the highest predation rate was recorded in A. andersoni and N. californicus 

when provided with eggs+ larvae. Female predators were not interested in the first 

nymphal stage of prey and there was no significant difference in consumption rates and 

oviposition when provided with conspecific or intraguild prey. Feeding on intraguild 

larval prey did not only increase mortality of A. andersoni immatures, but also decreased 

their consumption rates. For N. californicus immatures, predation on IG larval prey was 

higher than on conspecific larvae. Therefore, it seems that the predator species are able to 

survive on both con- and heterospecific prey. 
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INTRODUCTION

 The two-spotted spider mite, Tetranychus 

urticae is known as one of the economically 

most important pests in greenhouse production 

and field crops (Zhang, 2003). It has the 

highest pesticide resistance among arthropods 

(Van Leeuwen et al., 2010). Repetitive 

applications of chemicals to control insect and 

mite pests lead to environmental pollution and 

serious health problems for consumers 

(Çalmaşur et al., 2006). Therefore, biological 

agents and IPM Management (Integrated Pest 

Management) are taken into account to help or 

even to substitute the synthetic insecticides 

and acaricides.  

 Competition, cannibalism, and IntraGuild 

Predation (IGP) may influence the success of 

natural enemies including phytoseiid species 

in management methods, since they may co-

occur in the environment or may be released 

simultaneously in greenhouse crops 

(Schausberger and Walzer, 2001). Knowledge 

on the strength and direction of competition 

and intraguild predation and their 

consequences at the population level is 

important to evaluate the success of pest 

control (Walzer and Schausberger, 1999a; 

Schausberger and Walzer, 2001; Walzer et al., 

2001). Some studies have indicated positive 

effects of combined release of phytoseiid mites 

in suppression of pests (Mori et al., 1990; 

Schausberger and Croft, 2000 a,b; 
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Schausberger and Walzer, 2001; Walzer et al., 

2001; Onzo et al., 2003; Hatherly et al., 2005; 

Cakmak et al., 2006, 2009; Walzer et al., 

2009), while others have shown that intraguild 

predation (IGP) may reduce the control of the 

target pests (Polis et al. 1989, Rosenheim et al. 

1995; Holt and Polis, 1997; Arim and 

Marquet, 2004; Walzer et al. 2001; Hatherly et 

al. 2005; Negloh et al. 2012). 

 Neoseiulus californicus (McGregor) and 

Amblyseius andersoni Chant are predators of 

phytoseiid family, which are used 

commercially as biocontrol agents. Neoseiulus 

californicus, which is classified in type II 

group of Phytoseiidae (McMurtry et al., 2013), 

can feed on spider mites, tarsonemid mites, 

small arthropods, pollen (Castagnoli et al., 

1999, Khanamani et al., 2017), fungi 

(McMurtry et al., 2013) and Thrips tabaci 

(Rahmani et al., 2009). It is distributed around 

the world and considered as a cosmopolitan 

species (Gotoh et al., 2004; Canlas et al., 

2006; McMurtry et al., 2013; Barbosa and de 

Moraes, 2015). Efficient functional and 

numerical response to spider mites (Song et 

al., 2016) is the other trait of this predator.  

 Amblyseius andersoni is a generalist 

predator; belongs to subtype III-b phytoseiid 

mites, that have the ability to feed on fungi. In 

addition, it is abundant as a predator of spider 

mites on grape varieties (McMurtry et al., 

2013). The red spider mite, Panonychus ulmi 

(Koch) was controlled effectively by this 

species (Koveos and Broufas, 2000). It is 

cosmopolitan but widespread in Europe 

(Tixier et al., 2016).  

 At high prey densities, there is no problem 

about simultaneous use of predators, but 

predation may take place between different 

predatory mite species among various life 

stages within a guild (IGP) and/or within each 

species (cannibalism) in the absence of the 

main food. Consequence of these interactions 

is vital for having sustainable control (Walzer 

et al., 2001).  

 There are many studies about interactions of 

N. californicus with other phytoseiids (Walzer 

and Schausberger, 1999a,b; Schausberger and 

Croft, 2000a; Schausberger and Walzer, 2001; 

Walzer et al., 2004; Cakmak et al., 2006, 

2009; Rhodes et al., 2006; Mendel and 

Schausberger, 2011; Farazmand et al., 2015; 

Kazak et al., 2015; Rahmani et al., 2015). 

Some studies also assessed the interaction 

between A. andersoni and the other members 

of this family (Duso, 1989; Zhang and Croft, 

1995; Schausberger, and Croft; 2000a,b; 

Ahmad et al., 2015).  

 Both A. andersoni and N. californicus are 

efficient biocotrol agents for spider mite 

species (Escudero and Ferragut, 2005; Jolly, 

2000; Gotoh et al., 2006; Amano and Chant, 

1977; Duso, 1992) when used separately, but 

no study has been conducted on interaction 

between them at the simultaneous use. These 

two predators may co-exist in an environment, 

or may be deployed at the same time for better 

pest management at greenhouses. Therefore, 

the objective of this study was to compare 

predation of adult females and protonymphs of 

the two predator species when offered 

conspecific or IntraGuild (IG) prey. The 

hypothesis tested was predators consume more 

heterospecific than conspecific prey in a 

closed cage with no choice situation. 

MATERIALS AND METHODS 

Origin of Predatory Mites, Rearing, and 

General Methods 

 Neoseiulus californicus was obtained 

from a commercial producer (Koppert). 

Amblyseius andersoni was taken from the 

laboratory population in the University of 

Natural Resources and Life Sciences, 

Vienna, Austria. The colonies of each 

species were separately held on artificial 

arenas (half-filled plastic boxes containing 

water-saturated foam cubes with plastic 

tiles) and fed with mixed stages of T. 

urticae, by adding infested common bean 

leaves (Phaseolus vulgaris L.) on the arenas 

(Walzer and Schausberger 1999a, b). 

 Eggs, larvae, and protonymphs of the two 

predatory mite species were used as con- 

and heterospecific prey. For this purpose, 

even-aged cohorts were obtained by 

transferring gravid females from the rearing 
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units to 6 cm Petri-dishes containing 

detached bean leaves and fed with spider 

mites. After 24 h, newly laid eggs were 

collected and used for experiments or 

transferred to the separate arenas for having 

other required stages.  

 Closed cages were used as experimental 

units. Each cage consisted of rectangular 

pieces of an acrylic glass (6×3×0.6 cm) with 

circular cavities (Ø= 2.0 cm) closed at the 

bottom by gauze and covered with a 

microscope slide at the upper side. The 

microscope slide was fixed with a rubber 

band (Schausberger, 1997). Rearing and 

experimental units were maintained in a 

climate chamber at 25±2°C, 70±5% RH and 

16:8 L:D hours photoperiod. 

Experimental Procedures 

Gravid females of both species were chosen 

randomly from rearing arenas and, after 24 

hours starvation, used as IG predators. Each 

single female was placed into the experimental 

cage (one female predator, (A. andersoni or N. 

californicus) in each experimental cage) and 

provided with: (a) 6 eggs of < 24 hours age, 

(b) 4 eggs of 24 to 48 hours age+4 newly 

hatched larvae, and (c) 4 protonymphs of con- 

and/or heterospecifics at separate treatments 

(in each treatment just one type of mentioned 

prey was offered to a female predator). Every 

24 hours, experimental units were observed 

and some parameters such as predation rates, 

survival and oviposition were recorded for 10 

consecutive days. The eggs laid by the female 

predator were removed and predator was 

transferred to the new experimental cage with 

fresh food on daily basis. Replication was 16-

20 times for each experiment and species.  

In most phytoseiid mites, larvae reach the 

protonymphal stage without consumption, and 

protonymph is usually the first developmental 

stage starting to prey and act as IG predator 

(Walzer et al., 2015) or cannibal. Larvae are 

facultative feeders in N. californicus 

(Schausberger and Croft, 1999) and A. 

andersoni (Zhang and Croft, 1995; Amano 

and Chant, 1977), hence, the first nymphal 

stage of < 24 hours of each species was placed 

singly in the experimental cages as IG predator

or cannibal. Six conspecific and/or six 

heterospecific larvae were regarded as prey 

(each prey offered to one protonymph in the 

experimental cage of each treatment). Dorsal 

shield of the predators (protonymphs) were 

marked with a tiny watercolor point in order to 

make them distinguishable from larva prey, 

which may enter the next stage. Predation, 

survival, and development of the predators 

were checked twice daily in intervals of 10 and 

14 hours until the predator reached adulthood 

or died. Prey larvae were replenished daily. 

Each treatment (con- or heterospecific prey) 

was replicated 20 times for each experiment 

and species.  

Statistical Analysis 

 All data were analyzed using SPSS ver. 

18.0.1. The number of preys consumed and 

number of laid eggs by adult females 

provided with either con- or heterospecific 

prey during 10 days were compared by one-

way ANOVA for each predator, separately. 

Differences between treatments were 

compared using Tukey’s multiple range 

tests. t tests were used to compare the 

predation rate and oviposition of female 

predators between conspecific and IG prey. 

The same method was used to analyze 

effects of con- or heterospecific larvae on 

developmental time of immatures and the 

juvenile predation rates. Mortality of 

immatures and adult females was analyzed 

for each species separately using Pearson 

Chi-square tests. 

RESULTS 

Adult Females Feeding on Con- and 

Heterospecific Eggs 

 Predation on eggs regardless of prey was 

very low for both predators (Tables 1 and 3). 

Ambelyseius andersoni females consumed 

no conspecific eggs during 10 days, whereas 
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Table 1. Predation and oviposition (Mean±SE) of adult A. andersoni and N. californicus females caged singly 

and provided with conspecific or heterospecific prey for 10 consecutive days. 
a
 

  Predation  Oviposition 

Prey species Stage A. andersoni N. californicus  A. andersoni N. californicus 

A. andersoni Egg 0
a
±0 0.05

 b
 ±0.050 

 
0.3

 b
 ±0.128 0.5

 a
 ±0.170 

N. californicus Egg 0.15
a
±0.0820 0.45

 a
 ±0.153 0.7

 a
 ±0.147 0.4

 a
 ±0.134 

A. andersoni Egg+Larva 3.53
b
±0.448 5.75

 a
 ±0.479 

 
1.16

 a
 ±0.245 1.44

 a
 ±0.223 

N. californicus Egg+Larva 7.80
a
±0.890 6.80

 a
 ±0.565 1.4

 a
 ±0.254 0.10

 b
 ±0.069 

A. andersoni Protonymph 5.20
a
±0.592 6.45

 a
 ±0.673 

 
0.05

 a
 ±0.050 0.23

 a
 ±0.113 

N. californicus Protonymph 5
a
±0.465 4.48

 b
 ±0.506 0.1

 a
 ±0.069 0.22

 a
 ±0.108 

a 
Means followed by different letters are significantly different for each predator, between two types of prey, in 

each stage (P< 0.05, t test). 

 

Table 2. Mortality of adult A. andersoni and N. californicus females caged singly and provided with 

conspecific or heterospecific prey for 10 consecutive days.
 a

 

Prey species  Stage 
Mortality (percent) 

A. andersoni  N. californicus 
 

A. andersoni  Egg 25
a
  20

 a
 

N. californicus  Egg 10
b
  15

 a
  

A. andersoni  Egg+Larva 27
a
  7

 a
  

N. californicus  Egg+Larva  14
b
  15

 a
  

A. andersoni  Protonymph 25
a
  31

 a
  

N. californicus  Protonymph  30
a
  32

 a
  

a 
Means in columns (two prey for one predator in each stage) followed by the different letters are 

significantly different (Chi square test).  

Table 3. Predation and oviposition (Mean±SE) of adult A. andersoni and N. californicus females caged 

singly and provided with conspecific or heterospecific prey for 10 consecutive days.
a
 

  Predation  Oviposition 

Prey species Stage A. andersoni N. californicus  A. andersoni N. californicus 

A. andersoni Egg 0
c
±0 0.05

 c
 ±0.050 

 
0.3

 c
 ±0.127 0.55

 b
 ±0.169 

N. californicus Egg 0.15
c
±0.081 0.45

 c
 ±0.153 0.7

 bc
 ±0.146 0.4

 b
 ±0.134 

A. andersoni Egg+Larva 3.53
b
±0.448 5.75

 ab
 ±0.479 

 
1.16

 ab
 ±0.244 1.44

 a
 ±0.223 

N. californicus Egg+Larva 7.80
a
±0.890 6.80

 a
 ±0.565 1.4

 a
 ±0.254 0.1

 b
 ±0.069 

A. andersoni Protonymph 5.20
b
±0.592 6.45

 a
 ±0.673 

 
0.05

 c
 ±0.050 0.23

 b
 ±0.112 

N. californicus Protonymph 5
b
±0.464 4.48

 b
 ±0.506 0.1

 c
 ±0.068 0.22

 b
 ±0.108 

a
 Means in columns followed by different letters are significantly different at P< 0.05 (ANOVA, Tukey). 

 

N. californicus females consumed more 

conspecific eggs than heterospecific (t tests 

for independent samples: N. californicus: T= 

-2.4, df= 38, P= 0.01). Cannibalism was also 

significantly higher for N. californicus than 

A. andersoni (Table 1).  

 Oviposition was negligible for both 

predators and could be due to primary feeding 

(Tables 1 and 3). Ambelyseius andersoni 

females laid more eggs when fed on 

heterospecific eggs during 10 days (t tests for 

independent samples: T= -2.05, df= 38, P= 

0.04) (Table 1). There was no significant 

difference in oviposition of N. californicus 

females fed on con- or heterospecific eggs (t 

tests for independent samples: T= 0.69, df= 

38, P= 0.5) (Table 1).  

 A. andersoni had higher survival on IG 

prey. Only 10 percent of A. andersoni females 

could not survive the experimental period 

when supplied with heterospecific eggs as 

prey (P< 0.05) (Table 2). Percentage of 
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Table 4. Predation and mortality of immature A. andersoni and N. californicus caged singly and provided 

with conspecific or heterospecific larvae over 10 days.
a
 

  Parameters 

Predator species Prey Predation 
b
  Mortality (Percent) 

c
 

A. andersoni 
A. andersoni 0.6

a
±0.17 20

b
 

N. californicus 0.25
a
±0.09 55

a
 

N. californicus 
A. andersoni 1.3

 a
±1.3 35

a
 

N. californicus 0.8
 a
±0.7 20

b
 

a
 Means followed by different letters are significantly different for each predator, between two types of prey.  

b 
(Predation: P< 0.05, t test), 

c
 (Mortality: Chi-square test). 

 

mortality was similar for N. californicus 

females in both treatments (Table 2). 

Adult Females Feeding on Con- and 

Heterospecific Eggs+ Larvae 

 Mean predation rate of the two predators 

increased by adding larval stage of the prey 

(Tables 1 and 3). Consumption of IG 

eggs+larvae was greater in A. andersoni than 

cannibalism (t tests for independent samples: 

T= -4.5, df= 32, P= 000) (Table 1), but 

oviposition rate was similar between the two 

types of prey (t tests for independent samples: 

T= -0.67, df= 32, P= 0.5) (Table 1). Predation 

rate of con- and heterospecific eggs+larvae 

was similar for adult females of N. californicus 

(t tests for independent samples: T= -1.37, df= 

34, P= 0.17) (Table 1). These females laid 

more eggs while feeding on IG prey (t tests for 

independent samples: T= 6.27, df= 34, P= 

000) (Table 1).  

 Comparison of all treatments showed that 

adult A. andersoni and N. californicus 

consumed IG eggs+larvae and conspecific 

eggs+larvae, respectively, more than other 

foods during 10 days (Table 3).  

 Mortality percentage was higher in A. 

andersoni when fed on conspecific prey, but 

was similar to N. californicus females for the 

two types of prey (conspecific and IG prey) 

(Table 2).  

Adult Females Feeding on Con- and 

Heterospecific Protonymphs 

Amblyseius andersoni consumed the same 

amount of both protonymphs species 

(conspecific and IG prey) (t tests for 

independent samples: T= 0.26, df= 38, P= 

0.7) (Table 1). For N.californicus, mean 

predation of heterospecific protonymphs 

was higher than conspecific one (t tests for 

independent samples: T= 2.3, df= 43, P= 

0.02) (Table 1).  

Oviposition rate of both female predators 

was not significantly different between 

conspecific and IG protonymphs (t tests for 

independent samples: A. andersoni: T= -

0.58, df= 38, P= 0.56; N. californicus; T= -

0.63, df= 43, P= 0.9) (Table 1). 

 Feeding protonymphal stage of the 

intraguild preys had negative effect on 

survival, as the number of both predators not 

completing the experimental period was 

higher compared to other types of prey. 

Almost 30 percent of female predators died 

when fed on either con- or heterospecific 

protonymphs (Table 2).  

Immatures Feeding on Con- and 

Heterospecific Larvae 

 Feeding on heterospecific larvae not only 

increased the mortality percentage of A. 

andersoni immatures, but also decreased the 

consumption rates (Table 4). Almost 50 

percent of immatures died before reaching 

adulthood, which was significantly higher 

than other prey species (Table 4). 

Protonymph (t tests for independent 

samples: T= 0.46, df= 38, P= 0.6), 

deutonymph (t tests for independent 

samples: T= -0.25, df= 25, P= 0.7) and total 

developmental time of A. andersoni (t tests 
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Table 5. Developmental times (days) (Mean±SE) of A. andersoni and N. californicus caged singly and 

provided with conspecific or heterospecific larvae. 
a
 

  Predators 

Prey species Stage A. andersoni N. californicus 

A. andersoni Protonymph 3.6
a
±0.24 2.9

 b
 ±0.15 

4
 a
 ±0.16 N. californicus Protonymph 3.4

a
±0.02 

A. andersoni Deutonymph 3.75
a
±0.29 4

 a
 ±0.26 

4.41
 a
 ±0.39 N. californicus Deutonymph 3.86

a
±0.3 

A. andersoni Total
b
 6.57

a
±0.5 5.52

 b
 ±0.51 

7.75
 a
 ±0.56 N. californicus Total

b
 5.55

a
±0.6 

a
 Means followed by different letters are significantly different for each stage, between two types of prey 

(P< 0.05, t test). 
b 
(Protonymph+Deotonymph). 

 

for independent samples: T= 1.3, df= 38, P= 

0.1) were not affected by prey type 

(conspecific larvae vs. heterospecific larvae) 

(Table 5).  

 Immatures of N. californicus consumed 

1.30 heterospecific larvae during the 

experiment that was higher than predation 

on conspecific prey (0.8 larvae) (Table 4). 

Consumption of conspecific or IG larvae 

influenced protonymphal period (t tests for 

independent samples: T= 4.72, df= 38, P= 

000) and total developmental time (t tests for 

independent samples: T= 2.92, df= 38, P= 

0.006), but not deotonymphal period (t tests 

for independent samples: T= 0.81, df= 28, 

P= 0.4) of N. californicus. Accordingly, total 

developmental times were two days shorter 

when feeding on IG prey vs. conspecific 

prey (Table 5).  

DISCUSSION 

 Walzer and Schausberger (1999a) 

demonstrated that adult females and 

immatures of N. californicus had higher IGP 

rates than cannibalism. Neoseiulus 

californicus also discriminate between con- 

and heterospecific prey and consume 

heterospecific larvae when it has a choice 

(Walzer and Schausberger, 1999b), whereas 

in this study, females fed more 

heterospecific protonymphs and conspecific 

egg+larva. Mean predation rate of A. 

andersoni was higher on egg+larva of N. 

californicus among different types of prey. 

Preferential predation on larva rather than 

egg and nymph has been demonstrated in 

different species of Phytoseiidae (e.g. Croft 

and McMurtry, 1972; Schausberger, 1997; 

Walzer and Schausberger, 1999a, 

Ghasemloo et al., 2016; Maleknia et al., 

2016). Protonymphs feature including bigger 

body size, more sclerotinized tegument and 

better ability to escape or defense would 

force IG predators to ignore the probable 

more nutritional benefit of the first nymphal 

stage and select larval stage as prey 

(Schausberger, 1999; Schausberger and 

Croft 2000a; Meszaros et al., 2007; Walzer 

and Schausberger, 2011; Moghadasi and 

Allahyari, 2017). It is in accordance with 

lower predation on both conspecific and IG 

protonymphal prey in A. andersoni, although 

for N. californicus, consumption of IG 

protonymphal prey was high. van der 

Hoeven and van Rijn (1990) demonstrated 

that capture success ratio of Neoseiulus 

barkeri Hughes was decreased by increasing 

size of the larval prey (Frankliniella 

occidentalis Pergande). This relation 

between ability of predation and prey size 

may be true for protonymphs and the reason 

of less predation on them in A. andersoni in 

this study.  

 Adult females of Typhlodromus pyri and 

Kampimodromus aberrans are able to 

distinguish con- and heterospecific larvae 

and protonymphs and they prefer to feed on 

heterospecifics when given the choice 

(Schausberger, 1997). Iphiseius degenerans 

is another example for having this ability 

(Montserrat et al., 2006). Amblyseius 

andersoni is also among the same type of 
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phytoseiid mite group (MCMurtry et al., 

2013) and the same behavior is expected. In 

no choice situation, adult females of A. 

andersoni had more predation on other 

species egg and egg+larva, but predation on 

protonymphs was higher on conspecific 

(predation was slightly greater on 

conspecific prey and there was no 

significant difference between consumption 

of con- or heterospecific protonymphs for 

this predator). 

 Both females of phytoseiid species had the 

lowest amount of predation on IG eggs. This 

observation agrees with Farazmand et al. 

(2015) who determined the predation rate of 

N. californicus and T. bagdasarjani on IG prey 

eggs, larvae, and protonymphs on cucumber 

leaf discs. The same result was reported for A. 

swirskii and N. cucumeris (Buitenhuis et al., 

2010), however, P. persimilis and T. 

bagdasarjani preferred egg stage and 

consumed more heterospecific eggs when 

placed singly on cucumber leaf discs in both 

absence and presence of extraguild prey, T. 

urticae (Moghadasi and Allahyari, 2017).  

 Oviposition rate of the two predatory mite 

species was higher when feeding on egg+larva 

(both con- and heterospecific). It seems that 

piercing eggs and overwhelming protonymphs 

is difficult for adult females and predation on 

them was only for survival and not producing 

offspring. (Schausberger and Croft, 2000b; 

Meszaros et al., 2007). Momen and Abdel-

Khalek (2009) indicated that cannibalizing 

Amblyseius swirskii females did not lay eggs, 

whereas in our study both female predators 

sustained oviposition on conspecific prey.  

 Developmental duration of immature could 

be affected by consumption. Total 

developmental period of immature N. 

californicus when fed on T. urticae was 

reported almost 3 (Uddin et al., 2016) and 6 

days (Escudero and Ferragut, 2005) at 25°C, 

but cannibalism and intraguild predation 

increased developmental period and adults 

emerged after 10 and 7 days, respectively. 

Moreover, in the presence of preferred prey, 

93% of N. californicus could survive to 

adulthood (Uddin et al., 2016; Escudero and 

Ferragut, 2005), whereas in the present study, 

80 and 65% of N. californicus immatures 

could reach adulthood by feeding conspecific 

prey and IG prey, respectively. Amano and 

Chant (1977) stated that adult A. andersoni 

reached adulthood after 7 days. It was longer 

in our study (9 and 8 days) for nymphs that 

consumed con- and heterospecific prey. 

Overall, short pre-adult period, higher 

predation, and mortality were the 

consequences of IGP for N. californicus. It is 

similar to what we have found for A. 

andersoni, although mean predation rates of 

immatures were higher on conspecific prey.  

 Some phytoseiid mites could lay eggs and 

survive when fed with heterospecific prey. For 

example, Farazmand et al. (2015), Ghasemloo 

et al. (2016), and Moghadasi and Allahyari 

(2017) reported oviposition by T. 

bagdasarjani on intraguild prey stages. Also, 

adult females of K. aberrans, T. pyri, A. 

andersoni, and Phytoseius finitimus were able 

to survive and oviposit when fed with 

heterospecific larvae (Ahmad et al., 2015). It 

seems that generalist phytoseiids are stronger 

predators than specialists on intraguild 

predation and can outcompete them 

(Schausberger, 1997; Walzer and 

Schausberger, 1999a; Hatherly et al. 2005; 

Meszaros et al. 2007; Momen and Abdel-

Khalek, 2009; Moghadasi and Allahyari, 

2017). 

 In this study, two phytoseiid species could 

survive and feed on conspecific prey as well as 

on IG prey. Since they were given no choice, 

this may affect their ability to distinguish 

between preys and avoid cannibalism. 

Moreover, predators might have different 

behavior in the small experimental units 

compared to situations in greenhouses or the 

field. As a result, additional choice 

experiments are needed in natural condition 

and at the population level. 
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 Neoseiulusای ي َمخًاری بیه دي کىٍ شکارگر فیتًزییذ، شکارگری درين گًوٍ

californicus  ي Amblyseius andersoni 

 ح. رحماوی، ي ن. افشاری

 چکیذٌ

گًَِ( در دٍ کٌِ شکارگز اس ای ٍ ّوخَاری )تغذیِ اس ّندر ایي هطالعِ بِ شکارگزی درٍى گًَِ 

 Neoseiulusّای سي اٍل دٍ کٌِ ّای هادُ بالغ ٍ پَرُت. کٌِخاًَادُ فیتَسییذُ پزداختِ شذُ اس

californicus  ٍAmblyseius andersoni ّا هَرد استفادُ قزار بِ عٌَاى شکارگز در آسهایش

گًَِ ًیش بِ عٌَاى طعوِ استفادُ شذ. گًَِ ٍ غیز ّنگزفتٌذ. اس تخن، تخن+ لارٍ ٍ پَرُ سي اٍل ّن

تزیي ٍ گًَِ(، کنای ٍ یا ّنگز ٍ طعوِ هَرد استفادُ ) طعوِ درٍى گًَِصزف ًظز اس ًَع گًَِ شکار

گًَِ ٍ ّای هادُ بِ تزتیب اس تخن ٍ تخن+لارٍ ثبت شذ. پَرُ سي اٍل ّنتزیي هیاى شکارگزی کٌِبیش

. ّا هشاّذُ ًشذداری در تغذیِ اس آى در تیوارّای هادُ ًبَدُ ٍ تفاٍت هعٌیگًَِ هَرد تَجِ کٌِغیز ّن

هیز ٍ کاّش ًزخ شکارگزی در ٍای )هزحلِ لارٍی( باعث افشایش هزگگًَِتغذیِ اس طعوِ درٍى

، هیشاى تغذیِ ًابالغیي اس لارٍ  N. californicus شذ. در خصَص کٌِ A. andersoni ًابالغیي کٌِ

کٌِ شکارگز قادر بِ رسذ کِ ّز دٍ طَر بِ ًظز هیبٌابزایي ایي گًَِ بَد.تز اس لارٍ ّنگًَِ بیشغیز ّن

  باشٌذ.گًَِ هیگًَِ ٍ غیز ّنسًذُ هاًذى ٌّگام تغذیِ اس طعوِ ّن

 


