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Identification of Possible Mechanisms of Chickpea (Cicer
arietinum L.) Drought Tolerance Using cDNA-AFLP

M. Pouresmael "> * J. Mozafari 2, R. A. Khavari—Nejadl’ 3, F. Najafil, and F. Moradi®

ABSTRACT

Drought sensitivity is considered as a major concern for chickpea (C. arietinum) seed
production. Determination of drought adaptation mechanisms is an essential constituent
of this crop breeding programs. With this purpose, the present research was conducted to
distinguish the molecular basis of chickpea drought tolerance using cDNA-AFLP
approach. The expression profile was compared between drought tolerant (ICCV2 and
FLIP9855C) and susceptible lines (ILC3279) of chickpea under three drought treatments
including well-watered, intermediate, and severe stress; where soil water content was kept
at 85-90%, 55-60%, and 25-30% of Field capacity, respectively. Totally, 295 transcript-
derived fragments (TDFs) were visualized. Among the differentially expressed TDFs, 72
TDFs were sequenced. Sequenced cDNAs were categorized in different functional groups
involved in macromolecules metabolism, cellular transport, signal transduction,
transcriptional regulation, cell division and energy production. Based on the results,
ribosomal protein S8, mitochondrial chaperone, proteases, hydrolases, UDP -glucuronic
acid decarboylase, 2-hydroxyisoflavanone dehydratase, NADPH dehydrogenase, chloride
channels, calmodulin, ABC transporter, histone deacetylase and factors involved in
chloroplast division were among genes that were affected by drought stress. Similarity
search in data base showed that cell wall elasticity, isoflavonoids, maintenance of
structure and function of proteins through increase in expression of mitochondrial
chaperones, programed cell death, and remobilization of storage material from leaves to
seeds were among mechanisms that distinguished differences between drought tolerant
and drought susceptible lines.

Keywords: Drought stress, cDNA- amplified fragments length polymorphism, Transcript
derived fragments (TDFs), Gene expression.

INTRODUCTION

Identification  of  drought  tolerance
mechanism(s) is one of the most important
subjects in  plant  science.  Several
physiological, biochemical, and molecular
changes result from exposure of plants to
biotic and abiotic stress. Hence, an improved
understanding of adaptive and general

protective mechanisms conferring enhanced
tolerance to plants becomes an important issue
in stress physiology and is necessary to ensure
optimal growth and yield of crop (Jayaraman
et al., 2008). Screening of the genes
expression profile under stress condition is one
of the most straightforward approaches to
reveal the molecular basis of a biological
system (Wang et al., 2009). Induction of these
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molecular responses necessitates up- and
down-regulation of specific genes (Nimbalkar
et al., 2006).

These specific genes products are classified
into three major groups: (1) the products that
directly protect plant cells against stresses such
as chaperones, LEA proteins, osmoprotectants
and detoxification enzymes, (2) factors
involved in signaling cascades and in
transcriptional regulation, such as protein
kinases, phospholipases and transcriptional
factors, (3) transporters involved in water and
ion uptake and their transport (Rodriguez et
al., 2006).

Investigation  of  possible  regulatory
responses in an organism to environmental
challenges through gene expression profile can
define both tolerant and sensitive genotypes
(Rodriguez et al., 2006). There are several
transcript profiling techniques that allow the
examination of gene expression. cDNA
amplified fragments length polymorphism
(cDNA-AFLP) is a gel-based transcript
profiling method to analyze mRNA
populations (Vuylsteke et al., 2007). This
technique was first recognized by Bachem et
al. (1996) for the study of differential gene
expressions during potato tuber formation.
Since then, it has been used to study transcript
profile in a huge range of organisms. The most
advantageous of cDNA-AFLP is that it is an
open system and does not require specific
sequence information (Vuylsteke et al., 2007).
In this method, differences in band intensity
reflect fluctuations in transcript levels and
allow the determination of the relative
expression profile of the corresponding gene
(Breyne et al., 2003).

The objective of this study was to identify
candidate genes that may be differentially
expressed or exhibit a modulated expression
following drought stress treatments in drought
tolerant (ICCV2 and FLIP9855C) and drought
sensitive (ILC3279) lines of chickpea. To this
end, cDNA-AFLP analysis was employed,
several differentially expressed cDNA
fragments were isolated, sequenced, and their
possible functions were discussed. Finding
drought-related candidate genes provides
further insight into elucidating the underlying
mechanisms of drought tolerance in this crop.
Besides, it could be helpful to give a good
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picture of relationship between gene
expression and extent of drought tolerance and
to find correlation between phenotypic drought
adaptations and gene expression.

MATERIALS AND METHODS
Plant Material and Drought Treatment

This study was carried out in a greenhouse
using three breeding lines of cultivated
chickpea including ICCV?2 and FLIP9855C, as
tolerant, and ILC3279, as susceptible,
genotypes. Growth conditions and three
drought treatments including well-watered
(T1), intermediate (T2), and severe (T3) stress
were applied based on what was recommended
by Pouresmael et al. (2013). Leaf sampling
was done three times (one, three, and five
weeks after exposure to drought stress
treatments), then, immediately frozen in liquid
nitrogen and stored at -80 °C prior to
extraction of total RNA.

RNA Extraction and cDNA Preparation

Total RNA was isolated from drought
treated and the control plants using RNeasy
Plant Mini kit (Qiagene, Cat. No. 74904)
based on kit manual. RNA quantity was tested
using the NanoDrop™ 1000
spectrophotometer (Thermo Fisher Scientific,
USA). About 3 pug of RNA was treated with
DNasel (Fermentas, ENO0521) to remove
genomic DNA. After that, DNase-treated total
RNA and 1 pL of oligo-dT primer (0.5 pg uL
") was used to synthesize first strand cDNA by
RevertAid™ first strand cDNA synthesis kit
(Fermentas, K1622) as instructed by the
manufacturer. Double-stranded cDNA was
synthesized immediately using 20 pL first
strand cDNA, DNA polymerase I (10 units pL’
1) and RNaseH (5 units/uL) (Fermentas).

cDNA-AFLP Analysis and Sequencing

The cDNA-AFLP protocol was applied as
recommended by Bachem er al. (1998). The
cDNA was digested with ECORI (ER0271)
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and Msel (ER0981) restriction enzymes.
T4DNA ligase (Fermentase, EL0014) and
adapters (ECORI-Forw: 5-CTC GTA GAC
TGC GTA CC-3'; ECORI _Rev:5'-AAT TGG
TAC GCA GTC TAC-3'; Msel-Forw: 5'-
GACGAT GAG TCC TGA G-3'; Msel-Rev:
5-TAC TCA GGA CTCAT-3') for ligation.
Pre-amplification was performed with Msel
and ECORI primers carrying no additional
nucleotide at the 3' end (Msel0: 5'-GAT GAG
TCC TGA GTA A-3'; ECORIO: 5'-GAC TGC
GTA CCA AT TC-3"). Pre-amplification PCR
conditions were as follows: 4 min initial
denaturation at 94 °C and then 15 cycles 30 s
denaturation (94 °C), 60 s annealing (56 °C),
60 s extension (72 °C ), followed by 10 min
final extension at 72 °C.

After preamplification, the mixture was
diluted 50 fold and 3 pL was used for selective
amplification with six primer combinations.
Selective amplification was done with primers
which carried two selective additional
nucleotides at their 3' end (Msel: AT, CC, GG;
ECORI: AC, CT). Touch-down PCR
conditions for selective amplifications were as
follows: 5 min initial denaturation at 94 °C,
followed by 30 s denaturation at 94 °C, 30 s
annealing at 65 °C, 60 s extension at 72 °C (13
cycles, scale down of 0.7 °C per cycle in
annealing step); 30 s denaturation at 94 °C, 30
s annealing at 56 °C, 60 s extension at 72 °C
(23 cycles) and 10 min at 72 °C.

Selective  amplification products were
separated on a 6% denaturing polyacrylamide
gel (acrylamide to bisacrylamide ratio 29: 1)
containing 7 M urea in a Sequi-Gen (Bio-Rad)
running for 2.5 h at 100 W and 50+2 °C. After
silver staining, the expression profile visually
was compared between tolerant and
susceptible genotypes based on presence or
absence of the band or expression pattern
intensity. In fold intensity change criterion,
expression level in control treatment of each
line was used as threshold for differential
expression. The bands of interest were cut
using a surgical blade and eluted in 50 pL of
distilled water and kept at 4° C overnight. An
aliquot of 5 pul. was used as a template for
reamplification using primers which were used
for selective amplification. PCR products were
purified using QIAquicke Gel Extraction Kit
(QIAGENE, Q28704) after running on 0.7%
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agarose gel and sequenced. In addition, the
images of gels were quantitatively analyzed
using image J 1.46 software based on band
intensities for quantitative measurements of
expression profiles.

Fragments Characterization

A total of 72 TDFs were recovered from
gels, reamplified and sequenced in two way
read by FAZA Biotec Co. (Tehran, Iran). After
sequencing, sequences were identified based
on their similarity with protein sequences in
the database
(http.//www.ncbi.nlm.nih.gov/BLAST) using
the BLASTX algorithms and were classified
into different functional groups. The biological
activity of these TDFs and their role in drought
tolerance mechanisms were predicted from
their sequence homology to known proteins.
E-value of le-5 was used for acceptance of
similar functions. All the TDF sequences were
submitted to NCBI as collection of ESTs. The
alignments of TDF sequences with their
homologues were generated using the Clustal
w algorithm
(http://www.genome.jp/tools/clustalw).

RESULTS AND DISCUSSION

cDNA-AFLP Analysis and Detection of
Differentially Expressed Transcripts

Generally using six primer combinations, a
total of 295 TDFs were amplified and
visualized as band. The number of TDFs
ranged from 41 to 56 per primer pair and their
sizes were verified from 100 to 700 bp. Figure
1 shows an example of the expression patterns
in ECORI+AC/ Msel+GG primer pair.
Totally, 46 fragments showed constitutively
differential expression between tolerant and
susceptible lines. Among these TDFs, 22
TDFs were present only in tolerant lines. One
TDF was present only in susceptible line.
Twenty two TDFs had more expression levels
in tolerant lines and one TDF had more
expression level in the susceptible line.

A total of 158 TDFs showed quantitative
variants, which means that their expression
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Figure 1. Representative amplification pattern of three lines of chickpea, ICCV2 (drought tolerant),
ILC3279 (drought sensitive) and FLIP9855C (drought tolerant), under different drought treatments at
thel® (S1), 3 (S3) and 5™ (S5) weeks of drought stress displayed by cDNA-AFLP visualized on 6%
polyacrylamide gel using silver staining. T1, T2, and T3 show the control, intermediate, and severe
drought stress treatments, respectively. Arrows indicates the position of some bands that were affected
by drought stress. Lane M represents the molecular weight marker.

levels was affected by drought treatments. Of
these TDFs, 106 were up-regulated and 52
were down-regulated. Among these TDFs, 130
fragments showed up- or down-regulation in
tolerant lines and 28 TDFs showed up- or
down-regulation in the susceptible line (Figure
2). This gene expression flexibility in tolerant
lines can be involved in the compatible
process of these lines. In addition, there were a
total of 13 TDFs with alteration between three
lines, with 3 TDFs commonly up- regulated
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and 10 contra-regulated (a mixture of
regulation polarities at least between two
lines).

Functional Categories of Transcripts

The size of sequenced fragments ranged
between 81-540 bp. The percentages of
chickpea genes assigned to different functional
categories have are in Figure 3. The results of
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Figure 2. Venn diagram showing the number of TDF(s) affected by drought in three chickpea lines.
Italic, under lined and normal text format shows up- down- or contra- regulated (a mixture of
regulation polarities)TDFs in each line or intersection, respectively.
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Figure 3. Functional category of the transcript derived fragments of chickpea leaves based on their
homology. The pie chart is color-coded as per gene categories colors and represents the percentages of
gene transcripts in each group.

BLAST searching database indicated that the in putative functions. Unknown TDFs may
majority of the sequenced TDFs were likely represent new drought induced genes that have
from C. arietinum (Table 1). not been previously characterized and could
Comparison of the homologies of these contribute to future understanding of drought
sequences and those in the database revealed stress tolerance.
that about half of them belonged to either no Among the sequences that were classified in
hit (35%) or unknown proteins (13%), and the later groups, different levels of homology with
rest (52%) had homology with genes involved an E value ranging from 6e-51 to 13 were
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observed. The homology of 38% of TDFs were
reliable and the similarity of the remaining TDFs
(14%) were unreliable, because the homology
scores of these sequences were lower than 50
and their E value was more than 10 'S(Claveri
and Notredame, 2007). Sequences with reliable
similarity score had homology with genes
involved in functions like protein biosynthesis,
cellular transport, signal transduction, energy
production, transcription regulation and cell
division (Table 2). The majority of these TDFs
(22%) were involved in macromolecular
metabolisms including chaperones, protease,
hydrolase, UDP glucuronic acid decarboxylase,
and hydroxy isoflavanone dehydratase.

Most of the known transcript categories were
up-regulated under drought treatments in tolerant
lines or had more expression in tolerant lines in
comparison with the susceptible line. The only
exception was the energy production category,
where differentially-expressed TDF was down-
regulated in ICCV2.

Predicted Function of AFLP-TDFs
Homologues with Known Genes

In this study, we focused on TDFs which
differentially expressed during drought
treatments, had definite function
corresponding to previously annotated protein
encoding genes, their homology scores were
more than 50, and their E value were lower
than 10 7 (Table 1). These TDFs belonged to
different functional group including:

Macromolecular Metabolisms

Enzymes like UDP glucuronic acid
decarboxylase (C124, C125, C132 and Cl133
TDFs), protease (D16, D21 and AS56 TDFs),
hydroxy isoflavanone dehydratase (C122 TDF)
and chaperones, were assigned to this functional
group.

UDP glucuronic acid decarboxylase, which
has been reported in a wide range of flowering
plants, including mung bean, wheat, soybean,
parsley, pea, tobacco, Arabidopsis and rice, is
responsible for the synthesis of UDP xylose from
UDP glucuronate (Zhang et al., 2005). Since the
decarboxylation reaction catalyzed by this
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enzyme is essentially irreversible; its activity
changes it and would be a target for regulatory
control of cell wall composition through
partitioning glycosyl residues between the
synthesis of polysaccharides comprised of
hexosyl residues and those containing pentosyl
residues (Zhang et al., 2005). .

A mechanical property of the cell wall is
known to be modulated in response to
environmental stress (Hoson, 1998). High
expression of arabinogalactan like proteins,
which are abundant in the plant cell wall and
plasma membrane, have been identified in the
ICC 4958_drought_field library (Varshney et al.,
2009). Zwiazek  (1991) reported  that
preconditioning treatment by subjecting white
spruce seedlings to three cycles of a mild and
severe drought stress increased hemicellulose
content of the «cell walls. Increase in
hemicelluloses and reduction of pectins was
observed in the root apex of the drought tolerant
durum wheat cultivar subjected to water stress
(Leucci et al., 2008). Deokar et al. (2011)
reported up-regulation of UDP galactose
transporter in drought tolerant chickpea.

UDP-xylose is an important sugar donor in the
synthesis of hemicelluloses (Suzuki et al., 2003).
A fraction of cell wall that is important for
controlling its strength and extensibility. Cell
wall elasticity (CWE) and osmotic adjustment
(OA) are important factors involved in turgor
pressure  maintenance under low  water
availability. More elastic cell walls would allow
a reduction in cell volume and avoiding the
plasma membrane to pull away from the wall
inducing plasmolysis (Martinez et al., 2007).
Jones and Corlett (1992) reported that plant
metabolic processes are more sensitive to
intermolecular distances. Hence, in comparison
with absolute water potential, turgor and cell
volume are critical factors in maintenance of
metabolic activity. Martinez et al. (2007)
indicated that CWE variations in common beans
cultivars could be a genetic component of the
water stress resistance. In contrast, Clifford et al.
(1998) found that in Ziziphus mauritiana,
maintenance of cell volume at low water
potentials resulted from combination of solute
accumulation and increased wall rigidity. These
results suggest that CWE and OA are not present
at the same time in a given plant. Taken together,
the finding that UDP glucuronic acid
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decarboxylase gene has more expression in
tolerant lines of chickpea in response to drought
treatment suggests a possible role in protecting
cells from water deficit by changing cell wall
composition. Proteases are involved in all
aspects of the plant life cycle ranging from the
mobilization of storage proteins during seed
germination to the initiation of cell death and
senescence programs (Schaller, 2004). D16 and
D21 TDFs which expressed in, respectively,
drought tolerant genotype ICCV2 and drought
sensitive line (ILC3279), showed homology to
proteins similar to presequence protease. The
expression of D16 TDF up-regulated under
drought stress in ICCV2. The expression of D21
TDF increased up to two fold in ILC3279 under
intermediate drought stress (T2) and then
decreased to its expression level in the control
under the severe drought stress treatment.
Presequence protease or stromal processing
peptidase (SPP) is an essential component of the
chloroplast protein import machinery. The
majority of chloroplast proteins are encoded in
nucleus, translated in the cytosol as a protein
precursor, then imported into the plastids. Import
of the precursor proteins relies on post
translational removing of transit peptide by SSP;
the phenomenon that is necessary for chloroplast
biogenesis and plant survival (Schaller, 2004).

Considering the frequency of chloroplast
proteins, the importance of plastids for
photosynthesis and the biosynthetic capacity of
plants; removal of the transit peptide may be the
most  important  posttranslational  protein
modification in the plant cell (Schaller, 2004).
Up-regulation of this protease under drought
stress probably helps plants to maintain their
photosynthetic apparatus intact.

Up- and down-regulation of this TDF in the
sensitive line indicated that this protein could
have a positive role in  maintaining
photosynthetic apparatus of this line under mild
drought stress, but not during the severe stress.

In plants, programmed cell death (PCD) is
responsible for removal of redundant, misplaced,
or damaged cells. This process is involved in
various developmental events, such as
differentiation of xylem, programmed abortion
of floral organ in unisexual plants, and suspensor
degeneration during embryonic development
(Tian et al., 2000). Hyper sensitive response
(HR) to pathogen attack is the most characterized
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kind of PCD in plants. However, recently it has
been proved that abiotic stresses including
salinity, cold stress, hypoxia, and waterlogging
causes PCD, too (Shabala, 2009).

CASP like proteins are special kind of
proteases called caspases (cystein aspartate
specific proteases) and involved in apoptosis-like
phenomenon and programmed cell death
(Segovia and Berges, 2005). Although the role of
caspase orthologues in plants was controversial
for decades, recently it was demonstrated that
proteolytic activity of caspase like protease leads
to PCD. Tian et al. (2000) found that heat shock-
induced apoptosis in tobacco suspension cells
occurred after activation of caspase-3-like
protease. Wang et al. (2010 a) also showed that
the PCD in halophyte Thellungiella halophila
under salt stress occurred through a caspase 3-
like dependent pathway.

Leaf senescence is another example of PCD,
although PCD feature in leaf senescence differs
from its feature in other processes (Lim et al.,
2007). Liu et al. (2007) indicated that the
difference in osmotic and salt induced cell death
play an important role in drought tolerance
difference  between two rice ecotypes.
Arabidopsis mutants with high level of ROS are
more sensitive to drought stress and show
accelerated leaf senescence and cell death (Lee
and Park, 2012). Leaf senescence is a
developmental process in plant life cycle. In
addition to developmental age, this phenomenon
is affected by various internal and external
factors. This process, which is a coordinated
action at the cellular, tissue, organ, and organism
levels has been controlled by regulated genetic
program (Lim et al., 2007).

In annual crops, leaf senescence happens along
with maturity and grain filing. During
senescence, changes in cell structure,
metabolism, and gene expression occurr and
catabolic activity increase. Increase in catabolic
activity convert the leaf accumulated cellular
material into the exportable nutrients needed for
seed development or for growing other organs.
Therefore, although leaf senescence is a
destructing cellular process for leaves, it is an
altruistic process for other organs that ensures
optimal production of a plant under adverse
condition (Lim et al, 2007). Hence, leaf
senescence is the final stage of leaf development
and is critical for relocation of nutrients from
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leaves to seeds. Leaf senescence has been
controlled by presence or absence of
reproductive organs in soybean and pea and
removal of reproductive organs reversed
senescing leaves fate to juvenile (Lim er al.,
2007).

Taken together, more expression of CASP like
protein TDF (A56) in tolerant line of chickpea in
comparison with sensitive line provided new
convincing evidence for the involvement of PCD
and leaf senescence in relocation of nutrients
from leaves to other organs, especially to seeds.
In line with this result, Pouresmael et al. (2013)
demonstrated that harvest index and partitioning
of assimilates to developing seeds is one of
possible mechanisms that influenced drought
tolerance in chickpea genotypes. Expression of
CASP like protein transcripts under drought
stress have been demonstrated in rice by Fu et al.
(2007), too.

CI122 TDF with maximum similarity to
hydroxyl isoflavanon dehydratase amino acid
sequence up regulated in FLIP9855C under
drought stress. The sequence of this TDF
contains Abhydrolase conserved domain. 2-
hydroxyisoflavanone dehydratase (HID)
catalyzed dehydration of 2-
hydroxyisoflavanones to produce isoflavones.
Isoflavonoids, which are characteristic
metabolites of the legumes, play significant roles
in plant adaptation to different biological
environments (Shimamura et al., 2007). In line
with this result, application of low concentration
of soybean isoflavones significantly reduced
injury of rape seedlings growth under drought
stress (Ye et al., 2008). Deokar et al. (2011) also
reported up-regulation of flavonoid biosynthetic
process in roots of drought tolerant chickpea.

C129 and C130 TDF showed high similarity to
mitochondrial chaperone. The expression of
C129 TDF in tolerant line (FLIP9855C) was
about 1.5 fold more than that in sensitive line.
The expression of C130 TDF decreased to less
than half with increase in drought severity in
sensitive line. Molecular chaperones are key
components contributing to cellular homeostasis
under both optimal and stress conditions (Wang
et al., 2004). Chaperones are responsible for
stabilizing proteins through regulation of their
folding, assembly, translocation, and
degradation. Hence, they can play a crucial role
in protecting plants against stress by maintaining
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proteins in their functional conformations (Wang
etal.,2004).

Cellular Transport

TDFs similar to ATP-binding cassette (ABC)
transporter (F251) and CI channel (F249) which
their expression up- regulated under drought

assigned to this functional group. ABC
transporter are responsible for cellular
detoxification processes and involved in

sequestration of secondary metabolites and
heavy metals into the vacuole (Klein et al.,
2004). In addition to tonoplast, the localization of
these transporters in plasmalma shows that they
are implicated in regulation of ion channel
activities (Klein et al., 2004). Also, Klein et al.
(2004) demonstrated that ABC transporter gene
(AtMRP4) was involved in regulation of
stomatal aperture and concluded that coordinate
action of several MRP-type ABC transporters
was implicated in the stomatal opening
regulation and its interaction with gaseous
environment of plants.

Several literatures have pointed to the role of
this class of transporters under adverse
conditions. For example, induction of ABC
transporter gene has been reported in
Aneurolepidium chinense under heat stress (Shi
et al., 2002). Over expression of ABC transporter
transcripts under heat and drought stress have
been demonstrated in Arabidopsis by Rizhsky et
al. (2004). Keinanen et al. (2007) reported over
expression of ABC transporter gene in Betula
pendula tolerant to Cu treatment. Up-regulation
of ABC transporter transcripts under drought
stress have been demonstrated in chickpea roots
by Molina et al. (2011). Selvam et al. (2009) also
documented that the difference between drought
tolerant and sensitive varieties of Gossypium
hirsutum was based on their difference in ABC
transporter expression.

The opening and closing of the stomatal pore
are regulated by dynamic changes of guard cells
osmotic pressure and ion channels are critical
factors in this process. The cytosolic Ca'
elevation and abscisic acid activate S-type anion
channels in the plasma membrane of guard cells.
This kind of anion channels, which are
responsible for CI efflux, cause depolarization of
guard cells membrane and provide the driving
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force for K" efflux through outward K" channels,
thereby triggering stomatal closure. Up-
regulation of CI' channel TDF in tolerant line
shows that modulating the stomatal conductance
in response to drought is another possible
mechanism for drought tolerance in chickpea.
Stomatal closure balances rates of water loss and
absorbance and maintains leaf water potential
close to that of the control.

Protein Synthesis

TDF B111, which expressed in FLIP9855C, is
matched with ribosomal S8 proteins (Table 1)
and contains special conserved domain of this
kind of proteins. Ribosomal protein S8, a
primary RNA binding protein of small ribosomal
subunit, is a critical factor for correct folding of
central domain of 16S RNA and stabilizing its
tertiary structure (Davies et al., 1996). Hence, it
causes  translational  regulation  through
participating in ribosome assembly. This protein
is also one of the regulatory elements,
responsible for controling ribosomal protein
syntesis through translational feedback inhibition
mechanism (Davies et al., 1996). It was
proposed that this protein binds its own mRNAs
in the same way that it binds to rRNA in the
ribosome. Similar three dimensional structure
between this protein mRNAs and rRNAs make
this interaction possible. Competition between
rRNAs and ribosomal protein mRNAs will
guarantee the production of ribosomal proteins
(Merianos et al., 2004).

Differential expression of this kind of proteins
between chickpea lines shows that regulation of
translation initiation is one of the critical
mechanisms that differentiate tolerant and
sensitive lines from each other. In line with this
result, Molina et al. (2011) documented
deployment of the protein machinery as prime
response in the stressed roots of chickpea. Over
expression of ribosomal protein transcripts under
heat and drought stress have been demonstrated
in Arabidopsis by Rizhsky et al. (2004).
Keinanen et al. (2007) reported over expression
of ribosomal protein gene in B. pendula tolerant
to Cu treatment. Wang et al. (2010b) also
documented the up-regulation of ribosomal
protein in tolerant variety of Arachis hypogaea in
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response to Aspergillus flavus infection under
drought stress.

Energy Production

The sequence of D9 TDF showed high
similarity to NADH dehydrogenase proteins of
Medicago prostrata. NADH dehydrogenase, also
called mitochondrial complex I, is the first
protein in the electron transport chain that
participates in  oxidative  phosphorylation.
Although oxidative phosphorylation is critical
reaction for energy release in the cell, but
inhibition of the full electron transport to
molecular oxygen (a terminal electron acceptor
in electron transport chain) produces reactive
oxygen species (ROS). Hence, mitochondria
represent a major source of ROS production and
the consequent oxidative damage.

Reactive oxygen species are very harmful to
cells, as they oxidize proteins and cause DNA
denaturation. The plant cells use three different
strategies for efficient defense against oxidative
stress including the avoidance of ROS
production, ROS detoxification, and the repair of
ROS mediated damages. The first strategy,
which is achieved by keeping the electron
transport chain adequately oxidized, is more
advantageous (Pastore et al., 2007).

Although ROS (s) are harmful for cell, they are
also key factors for signal transduction under
adverse condition. Hence, modulating ROS
production may warrant quick control of cell
homeostasis. It is well known that plant
mitochondria play a critical role in cell
adaptation to abiotic stresses through modulating
cell redox homeostasis (Pastore et al., 2007).
Rizhsky et al. (2004) demonstrated that, under
drought and heat stress condition, increase in
respiratory activity of plants is associated with
expression of NADH dehydrogenase transcript.
Keinanen et al. (2007) reported over expression
of NADH dehydrogenase gene in B. pendula
tolerant to Cu treatment. Liu er al. (2008) also
documented over expression of NADH
dehydrogenase protein in initial stages of rice
flag leaf senescence.

In contrast to these examples, NADH
dehydrogenase TDF (D9) down-regulated in
ICCV2 and its expression under severe drought
stress decreased to less than half of that under
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control treatment. Based on these results, the
following hypothesis emerges: under control
condition, constitutive level of this enzyme was
high in drought tolerant line; therefore, the
respiratory chain produced ROS at a basal level
and activity of antioxidant enzymes was
maintained at the low level (data not shown).
Under severe drought stress treatment, a kind of
feedback mechanism was activated that caused
the expression of NADH dehydrogenase to
decline. This reduction, in turn, increased NADH
level, decreased the electron acceptor level in
electron transport chain, and caused ROS
production. In fact, severe drought treatment in
ICCV2 changed cell homeostasis and ROS
production works as a signal that elicits
activation of stress responsive pathway and
provides appropriate reaction against the stress.
Increase in activity level of catalase in ICCV2
under severe drought stress treatment confirms
this hypothesis (data not shown). But, further
studies are necessary to check this possibility. In
line with this hypothesis, Grabelnych et al.
(2004) showed that the constitutive activity of
alternative oxidase was higher in a pea under
control condition, whereas the cold hardening
decreased the activity of this enzyme.
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Cell Signaling

Up-regulation of TDFs which contains EF
hand calcium binding conserved domain (D4 and
D7) in ICCV2 under drought stress shows that
there is difference in tolerant and sensitive lines
of chickpea in signaling cascades that are

presumably contributing to the tolerance
mechanism. Increased Ca™" influx in response to
biotic and abiotic stimuli can increase

intracellular free calcium ion concentration (Liu
et al., 2003).The Ca™* elevations are sensed by
Ca* sensors, which most often contain the EF-
hand' motif(s) and a helix-loop-helix structure.
The highly conserved Ca2+-binding protein in
plants is calmoduline (CaM), whose role in
regulating calcium-dependent signaling
pathways has been documented (Kim et al.,
2010).

Identification of CaM-like proteins has been
demonstrated by Fu et al. (2007) in study of
drought tolerance candidate gene in rice. Molina
et al. (2008) also reported up-regulation of CaM
proteins and role of Ca™ related signal
transduction in chickpea under drought stress.
Alignments of the amino acid sequence of D4
and D7 TDFs from ICCV2 and that of other
species are shown in Figure 4.
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Figure 4. The multiple sequence alignment between D4 (a) and D7 (b) TDFs sequence from ICCV2 line
of chickpea and their homologous CaM protein from other species.
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CONCLUSIONS

The present study demonstrated that cDNA-
AFLP is a powerful technique to study
candidate genes involved in drought tolerance
of chickpea. About 38% of sequenced TDFs
had reliable homology to protein with known
function. These genes that were categorized in
macromolecules metabolism, cellular
transport, signal transduction, transcriptional
regulation, cell division, and energy
production functional groups provide insight
in understanding the chickpea drought tolerant
mechanism for future functional studies and
can be targeted for increasing drought
acclimation of this crop. On the other hand,
about half of the sequenced TDFs encode
proteins whose roles cannot be predicted from
their amino acid sequences similarity and their
biological activity remains to be determined.
Working on these unknown proteins or ESTs
with no hit in the data bank may be an
important priority in future for further
investigation and for exploring better
understanding of new and unknown drought
tolerance mechanisms.
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