Relationship Between Soil Seed Bank and Above-ground Vegetation of a Mixed-deciduous Temperate Forest in Northern Iran

O. Esmailzadeh, S. M. Hosseini, and M. Tabari

ABSTRACT

We assessed the size and composition of the soil seed bank and above-ground vegetation in 52 relevés representing a range of habitats within an old-growth, temperate deciduous forest at the Hyrcanian region, northern Iran. We identified 63 taxa in the seed bank, with an average density of 4202 seeds/spores per m2 by seedling emergence method. Hypericum androsaemum, Cardamine impatiens, Rubus hyrcanus, Adthryum flix-femina and Pteris cretica as two ferns, were the most abundant species in the seed bank and spore bank that made up to 92% of the seeds/spores recorded in the soil seed bank. Totally, 107 species were recorded in the vegetation and soil seed bank of the study site, of which 33% were common in both seed bank and vegetation and 26% and 41% were found only in the seed bank or in the vegetation, respectively. The dominant tree species with many woody understory species found in the above-ground vegetation were absent from the persistent soil seed bank. Jaccard’s similarity coefficient revealed that the correspondence between the species in the vegetation and the same species in the seed bank were consistently low (average of 24.3%) based on presence/absence data. Yates-corrected χ^2 test showed that sites present significant differences (P<0.001) in seed bank and vegetation species composition. DCA ordination of the above-ground vegetation and soil seed bank flora displays a clear pattern, with two distinct groups on the basis of the above-ground vegetation and soil seed bank floristic data. Our results explain the low similarity between soil seed bank and vegetation of the Darkola oriental beech (Fagus orientalis Lipsky) forest only to a limited extent, but confirm that most of the species of the above-ground vegetation do not depend on the persistent soil seed bank. Therefore, it may be concluded that the persistent soil seed bank is not capable of restoring the extant vegetation of the studied site.

Keywords: Soil seed bank, Above-ground vegetation, Old-growth forest, Ordination, Oriental beech, Temperate deciduous forest

INTRODUCTION

A soil seed bank is defined as the seeds that can remain dormant for a period of time in the soil until their germination is triggered by an environmental change (Simpson et al., 1989). Furthermore, soil seed banks are considered as essential constituents of plant communities (Harper, 1997). Seed bank studies can provide important information for restoration and management purposes (Katharina et al., 2009).

The soil seed bank represents the regeneration potential of the plant communities and it is regarded as a memory of the former plant community; thus, it could be important for conservation and restoration of species and plant communities (Bakker et al., 1996). There is an increasing demand for reliable information on seed banks, both for scientific purposes and as a decision tool in habitat and landscape management, particularly restoration projects (Holzel and Otte, 2004). Soil seed banks play an important role in...
restoring former species diversity (Bakker et al., 1996). Seeds of the target species may have survived beneath degraded plant communities. It has also been shown that the risk of local extinction increases in species with short-lived seed banks, particularly in fragmented landscapes (Stocklin and Fischer, 1999).

Thompson et al. (1997) suggested a classification for seed bank types using the criterion of seed longevity: transient: < 1 yr; short-term persistent: 1-5 yr; long-term persistent: > 5 yr. Only the latter category could play a significant role in the restoration of species richness. Thus, soil seed bank persistence is a key factor in the regeneration of plant communities (McDonald et al., 1996; Bekker et al., 1998) and for the assessment of the local extinction risk (Stocklin and Fischer, 1999). The capability of plant species to produce seeds remaining viable in the soil allows them to bridge temporarily favorable habitat conditions for germination and establishment, spreading germination risk in time and conserving population genetic variation in the long term (Bossuyt and Honnay, 2008). Similarity between the above-ground vegetation and the soil seed bank has also been examined in several studies, along which a low similarity was documented (Thompson and Grime, 1979; Looney and Gibson, 1995). The composition and abundance of soil seed bank species, as well as the distribution of life forms, are influenced by factors such as floristic composition, the phenoology of the local vegetation, and disturbances occurring at the forest edge (Butler and Chazdon, 1998). The size, composition, structure, and the dynamics of the soil seed banks are key factors for community regeneration and ecological restoration. Therefore, the functional role of soil seed banks in determining the structure of the vegetation and the persistence at European temperate forests has been considered in various studies (Onaindia and Amezaga, 2000; Zobel et al., 2005; Bossuyt et al., 2008 and Chaideftou et al., 2009). Nevertheless, no information is available on the soil seed bank of the Caspian or Hyrcanian temperate forests in northern Iran.

Caspian or Hyrcanian forests cover an area of 1.9 million hectares in Iran and cover additionally 20000 hectares in the Republic of Azerbaijan. In the northern part of Iran, these forests extend along the south coast of Caspian Sea, and are characterized by high growth capacity due to fertile soils and humid temperate climate with annual rainfall ranging from 700 to 2000mm (Marvie Mohajer, 2004). Dominant tree species of these forests include oriental beech (Fagus orientalis Lipsky), oak (Quercus castaneifolia C. A. May.) and hornbeam (Carpinus betulus L.). Depending on the site conditions, other constituent species are the following; Acer velutinum Boiss, Tilia platyphyllos Scop., Fraxinus excelsior L. and Alnus subcordata C. A. May. Fagus orientalis is the most important tree species in Hyrcanian forests of northern Iran, occurring at 700 m. to 2200m a.s.l and forming the most important and the richest forests in the Hyrcanian region. Based on their floristic composition, oriental beech forests of this region are linked with European forests, with major affinities with Balkans beech forests (Assadollahi, 2001). The Caspian beech communities occur at the eastern-most part of the distribution range of the oriental beech (Sageb- Talebi et al., 2003).

This study aims to describe the floristic- physiognomic features of the above-ground vegetation and the soil seed bank composition of a Hyrcanian intact old growth temperate deciduous forest with Fagus orientalis in Darkola, situated in the centre of Mazandaran Province. No disturbance or exploitation, grazing, and other destructive human interventions have ever been recorded in this forest, which make it a desirable site to study soil seed banks in climax forest communities. More specifically, objectives of this study are: (1) to describe the vascular flora composition, growth- and life- forms, of the field layer of the above-ground, as well as of the soil seed bank vegetation; (2) to determine the soil seed bank composition and species density and (3) to assess the relationship between the above-ground vegetation and seed bank species composition.
MATERIAL AND METHODS

Study Area

The research area is an old growth temperate deciduous forest in Darkola, in Hyrcanian or Caspian forests of northern Iran (latitude: 36°8' N, longitude: 53° 6' E and elevation 1050 to 1750m above sea level). Darkola forest is located in the middle part of Caspian forest and is intact. Mean annual temperature and precipitation are 13°C and 1200 mm, respectively (Anonymous, 2002).

Data Collection

Above-ground vegetation was investigated in 52 plots of 400 m² at the peak of vegetation period in the spring of 2007. Sample plots were positioned by systematic-selective method in 100 and 200 meter grid dimensions, considering indicator stands concept. However, if the center of the network in the field was not within a representative stand, the plot was positioned in the nearest stand of beech. Relevés were made in each plant community, using marked permanent plots of 20 m x 20 m (400 m²); tree- and shrub-cover was estimated within the entire plot area. Herbaceous species were recorded in (a) 20 quadrats (5 m²), which were distributed as four at the corners of the sample plot, (b) 5 cluster subplots with 4 quadrats of 5 m² each (4 × 5 subplot = 20 quadrats representing a total of 100 m² subplot for herbaceous plants) (Figure 1).

To assess the persistent seed bank composition, we collected soil samples at the end of May 2007, when germination had ended and before new seeds were dispersed (Baskin and Baskin, 1998). Within each plot, six seed bank samples were randomly collected, resulting in a total of 312 soil samples. Seed banks samples were collected by hammering a hollow 20 cm x 20 cm square (400 cm²) metal frame into the soil to a depth of 10 cm. Thus, in each plot, an area of 2400 cm² of soil was sampled. The litter layer was included with the soil samples because this layer could contain a high number of seeds (Leckie et al., 2000). Each sample was separated into two collection bags: organic LFH material and mineral soil. The bags were stored wet in a refrigerator in the dark at 3-4°C, for 3 months to cold stratify the seeds (Chaideftou et al., 2009). During the first week of October 2007, the samples were transported to the greenhouse for seed bank determination.

The seedling emergence method is the most frequently used, and the more reliable method, in soil seed bank studies (Baskin and Baskin, 1998). Thus, it was used in the present study for determining the species composition of the soil seed bank, assuming 413
that the number of seedlings detected by this method is the number of the buried viable seeds, which would indicate the number of the readily germinable seeds in the soil. Soil samples were spread out on a 5 cm thick layer of sterilized sand in a 40 cm × 40 cm plastic seed tray, forming an approximately 2.5 cm thick layer. Leaf litter was shaken and the seeds present were added to the soil samples (Leckie et al., 2000). Twenty seed trays containing only sterilized sand were placed among the sample trays to test for contamination by local seeds. In the course of the germination test, no seedlings were found in these control trays. The seed trays were kept continuously moist by daily watering and, to avoid differences in light exposure, the position of the trays was changed every 2 weeks. Every week, all seed trays were checked for seedlings. Newly emerged seedlings were determined, counted, and removed from the trays. Unidentifiable seedlings were transplanted into pots and grown until species identification was possible (Diaz-Villa et al., 2003). Soil samples were maintained and checked for emerging seedlings for approximately 1 year, since a shorter period of study could result in an underestimation of the persistent seed bank (Baskin and Baskin, 1998). During this period, soil samples were stirred five times to bring any non germinated seeds to the surface in order to increase the possibility of seeds to be exposed to light. Total number of seedlings that emerged was used as the measure of viable seeds in the seed bank.

Data Analysis

The total number of seedlings germinating per tray were summed for each plot (six trays per plot) and retained for analysis. Seedling totals are expressed as seed density per m². Similarity in species composition between seed bank and above-ground vegetation was assessed by Jaccard’s similarity index (Greig-Smith, 1983).

The relative cover, or the relative seed density for each plot, was calculated as the herb layer cover of the above-ground vegetation or the seed density in the soil seed bank divided by the total cover or total seed density in that plot. The relationship between species composition in the ground layer vegetation and in the soil seed bank was further explored by means of Detrended Correspondence Analysis (DCA; Hill and Gauch, 1980) using modified original cover values of the species and density of the germinants for vegetation and seed bank data, respectively. DCA is generally the most widely used (Kent and Coker, 1995) and cited ordination technique in ecological literature and has distinct advantages for our application in these forest stands, since the species are ordinated simultaneously and the computational requirements are small. Prior to analysis, seed bank density data and original cover values of vegetation data were separately modified by the maximum value modification for preventing any bias to the species with high values i.e. seed bank density or cover value. By this adjustment, seed bank density and cover percentage values were transformed in the range of 0 to 1 (McCune and Mefford, 1999). To avoid artifacts arising through under-sampling of less frequent taxa in the seed bank, only the taxa that were found in three or more plots were included in the DCA analysis. Rare species were downweighted to reduce distortion of the analysis. Following this procedure, sample plots were ordinated in both above-ground vegetation and soil seed bank data, in order to obtain the pattern of variation in the seed bank and vegetation data.

For ordination of the soil seed bank and above-ground vegetation data, CANOCO 4.0 (ter Braak, 1988) was used; plots were drawn by CANODRAW 3.0 (Smilauer, 1993). Yates-corrected χ^2 test was done to compare seed bank floristic composition with the standing vegetation (Arriaga and Mercado, 2004).
RESULTS

Above-ground Vegetation Composition and Life Form

The above-ground vegetation comprised 79 plant taxa belonging to 71 genera and 44 families (Table 1). The families with the higher number of species, namely, Labiatae and Asteraceae (with 8 species), Rosaceae and Poaceae (with 7 species), Aspidiaceae and Liliaceae (with 5 species), comprise 74 % of the total above-ground flora. Growth-forms classification of the present vegetation (Table 2), showed their participation with the following percentages: forbs: 30 taxa, trees: 19 taxa, ferns: 13 taxa, grasses: 7 taxa, shrubs and semi-shrubs: 6 taxa, and lianas: 5 taxa in the above-ground vegetation of the study area. Fagus orientalis Lipsky and Carpinus betulus L. as tree species and Ruscus hyrcanus Woron., Ilex spinigera (loes) Loes and Danae racemosa (L.) Moench as shrub species with Solanum kieseritzkii C. A. May and Mercurialis perennis L. as forb species were the most frequent and dominant species in the overstorey and understorey of the extant vegetation, respectively. Alnus subcordata C. A. May, Acer velutinum Boiss. and A. cappadocicum Gled., were the companion tree species in the overstorey. Biological spectrum of the ground vegetation following Raunkiaer’s system shows that phanerophytes (35 %), cryptophytes (33.8 %), and hemicryptophytes (26.2 %) were the dominating life-forms in the extant vegetation, while chamaephytes and therophytes add only 2.5 % in the above-ground vegetation (Figure 1).

Seed bank density and diversity

A total of 28931 seedlings belonging to 63 plant species, representing 57 genera and 36 families, were recorded in the seed bank soil samples (Table 1). Of these, forbs comprised the largest group, with just over 70 % of the total species. Fern gametophytes were the next most abundant group among the emerged seedlings making up approximately 11 % of the total taxa, while woody plants and graminoids comprised only 9.5 % of the total richness of the emerged seedlings (Table 2). The average seed density for all study sites was 4202 seeds per m2. The most abundant species in the seed bank were Hypericum androsaemum L. (1590 seeds per m2), Cardamine impatiens L. (570 seeds per m2), and Rubus hyrcanus Woron (286 seeds per m2). The high numbers of spores of Athyrium flix-femina (L.) Roth. (1277 seeds per m2) and Pteris cretica L. (151 seeds per m2) were also remarkable. These five species made up to 92 % of seeds recorded in the soil seed bank samples. Biological spectrum of the soil seed bank with Raunkiaer’s system shows that phanerophytes (35 %), cryptophytes (33.8 %) and hemicryptophytes (26.2 %) were the dominating life-forms in the extant vegetation, while chamaephytes and therophytes add only 2.5 % in the above-ground vegetation (Figure 2).

![Figure 2. Biological spectrum of the soil seed bank and the above-ground vegetation of Darkola Oriental beech forest.](image-url)
Table 1. Floristic composition, life-forms and constancy of soil seed bank and above-ground vegetation of the Darkola Oriental forest, Northern Iran.

<table>
<thead>
<tr>
<th>Species</th>
<th>Abbreviation</th>
<th>Life form</th>
<th>Mean density (per m²)</th>
<th>Constancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer cappadocicum</td>
<td>Acer cap</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer velutinum</td>
<td>Acer vel</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asplenium trichomanes</td>
<td>Aspl tri</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blechnum spicant</td>
<td>Blec spi</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex riparia</td>
<td>Care rip</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td>Carp bet</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalanthera caucasica</td>
<td>Ceph cau</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerasus avium</td>
<td>Cera avi</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinopodium ambrosum</td>
<td>Clin umb</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornus australis</td>
<td>Corn aus</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crataegus microphylla</td>
<td>Crat mic</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danae racemosa</td>
<td>Dana rac</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne mezereum</td>
<td>Daph mez</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitalis nervosa</td>
<td>Digi ner</td>
<td>Th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diospyrus lotus</td>
<td>Dios lot</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopetris borrii</td>
<td>Dryo bor</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopetris filic- mas</td>
<td>Dryo fil</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epipactis helleborine</td>
<td>Epip Hel</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evonymus latifolia</td>
<td>Evon lat</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus orientalis</td>
<td>Fagu ori</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frangula albus</td>
<td>Fran aln</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>Gera rob</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illex spinigera</td>
<td>Illex spi</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapsana communis</td>
<td>Laps com</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lathyrus vernus</td>
<td>Lath ver</td>
<td>Th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mateuccia strothiopteris</td>
<td>Mate str</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mespilus germanica</td>
<td>Mesp ger</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paeonia wittmanniana</td>
<td>Paeo wit</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periploca graeca</td>
<td>Peri gra</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygonatum orientale</td>
<td>Poly ori</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystichum aculeatum</td>
<td>Poly acu</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystichum woronovi</td>
<td>Poly wor</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>Prun vul</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus divaricata</td>
<td>Prun div</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus petraea</td>
<td>Quer pet</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus castaneifolia</td>
<td>Quer cas</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruscus hyrcanus</td>
<td>Rusc hyr</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serratula quinquifolia</td>
<td>Serr qui</td>
<td>Cry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidago virga- aurea</td>
<td>Soli vir</td>
<td>He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbus torminalis</td>
<td>Sorb tor</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus baccata</td>
<td>Taxu bac</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus glabra</td>
<td>Ulmu gla</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinium arctostaphylos</td>
<td>Vacc arc</td>
<td>Ph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicia cracca</td>
<td>Vici cr</td>
<td>Ch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus subcordata</td>
<td>Alnu sub</td>
<td>Ph</td>
<td>6.8</td>
<td>35.3</td>
</tr>
<tr>
<td>Asperula odorata</td>
<td>Aspe oda</td>
<td>He</td>
<td>2.8</td>
<td>21.6</td>
</tr>
<tr>
<td>Asplenium adiantum- nigrum</td>
<td>Aspl adi</td>
<td>Cry</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Athyrium flix- femina</td>
<td>Athy fli</td>
<td>Cry</td>
<td>1277</td>
<td>100</td>
</tr>
<tr>
<td>Brachypodium pinnatum</td>
<td>Brac pin</td>
<td>He</td>
<td>2.7</td>
<td>15.7</td>
</tr>
<tr>
<td>Brachypodium sylvaticum</td>
<td>Brac syl</td>
<td>He</td>
<td>0.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Calystegia sepium</td>
<td>Caly sep</td>
<td>He</td>
<td>0.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Cardamine impatiens</td>
<td>Card imp</td>
<td>He</td>
<td>570</td>
<td>100</td>
</tr>
<tr>
<td>Carex remota</td>
<td>Care rem</td>
<td>Cry</td>
<td>43</td>
<td>74.5</td>
</tr>
</tbody>
</table>

To be continued…

416
Table 1. Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Abbreviation</th>
<th>Species performance</th>
<th>Life form</th>
<th>Mean density (per m²)</th>
<th>Seed bank constancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carex sylvatica</td>
<td>Care syl</td>
<td>*</td>
<td>Cry</td>
<td>20.5</td>
<td>54.9</td>
</tr>
<tr>
<td>Circaea lutetiana</td>
<td>Circ lut</td>
<td>*</td>
<td>He</td>
<td>1</td>
<td>11.8</td>
</tr>
<tr>
<td>Cyclamen coum</td>
<td>Cycl cou</td>
<td>*</td>
<td>Cry</td>
<td>4.7</td>
<td>33.3</td>
</tr>
<tr>
<td>Dryopteris dilatata</td>
<td>Dryo dil</td>
<td>*</td>
<td>Cry</td>
<td>0.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Euphorbia amygdaloides</td>
<td>Euph amy</td>
<td>*</td>
<td>He</td>
<td>0.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Festuca drymea</td>
<td>Fest dry</td>
<td>*</td>
<td>Cry</td>
<td>10.9</td>
<td>15.7</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>Frag ves</td>
<td>*</td>
<td>He</td>
<td>2.3</td>
<td>25.5</td>
</tr>
<tr>
<td>Galium aparine</td>
<td>Gali apa</td>
<td>*</td>
<td>He</td>
<td>1.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Hedera pastuchovii</td>
<td>Hede pas</td>
<td>*</td>
<td>Ph</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Hypericum androsaemum</td>
<td>Hype and</td>
<td>*</td>
<td>Ph</td>
<td>1590</td>
<td>100</td>
</tr>
<tr>
<td>Lamium album</td>
<td>Lami alb</td>
<td>*</td>
<td>He</td>
<td>45.1</td>
<td>68.6</td>
</tr>
<tr>
<td>Mercurialis perennis</td>
<td>Merc per</td>
<td>*</td>
<td>Cry</td>
<td>2.1</td>
<td>11.7</td>
</tr>
<tr>
<td>Oplismenus undolatilfous</td>
<td>Opli und</td>
<td>*</td>
<td>He</td>
<td>1.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Petasites hybridus</td>
<td>Peta hyb</td>
<td>*</td>
<td>Cry</td>
<td>0.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Phyllitis scolopendrium</td>
<td>Phyl sco</td>
<td>*</td>
<td>Cry</td>
<td>0.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Primula heterochroma</td>
<td>Prim het</td>
<td>*</td>
<td>He</td>
<td>10</td>
<td>29.4</td>
</tr>
<tr>
<td>Pteris cretica</td>
<td>Pter cre</td>
<td>*</td>
<td>Cry</td>
<td>151.5</td>
<td>94</td>
</tr>
<tr>
<td>Rubus hyrcanus</td>
<td>Rubu hyr</td>
<td>*</td>
<td>Ph</td>
<td>285.7</td>
<td>100</td>
</tr>
<tr>
<td>Salvia glutinosa</td>
<td>Salv glu</td>
<td>*</td>
<td>He</td>
<td>2</td>
<td>3.9</td>
</tr>
<tr>
<td>Scrophularia vernalis</td>
<td>Scro ver</td>
<td>*</td>
<td>He</td>
<td>6.7</td>
<td>15.7</td>
</tr>
<tr>
<td>Scutellaria tournefortei</td>
<td>Scut tou</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Sedum stoloniferum</td>
<td>Sedu sto</td>
<td>*</td>
<td>He</td>
<td>3.3</td>
<td>13.7</td>
</tr>
<tr>
<td>Solanum kieseritzkii</td>
<td>Sola kie</td>
<td>*</td>
<td>Ch</td>
<td>4.4</td>
<td>25.5</td>
</tr>
<tr>
<td>Tamus communis</td>
<td>Tamu com</td>
<td>*</td>
<td>Cry</td>
<td>0.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Tilia platyphyllos</td>
<td>Tili pla</td>
<td>*</td>
<td>Ph</td>
<td>0.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Urica dioica</td>
<td>Uric dio</td>
<td>*</td>
<td>Cry</td>
<td>1.6</td>
<td>17.6</td>
</tr>
<tr>
<td>Viola alba</td>
<td>Viol alb</td>
<td>*</td>
<td>He</td>
<td>4.1</td>
<td>31.4</td>
</tr>
<tr>
<td>Allaria petiolata</td>
<td>Alia pet</td>
<td>*</td>
<td>He</td>
<td>0.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Atropa belladonna</td>
<td>Atro bel</td>
<td>*</td>
<td>He</td>
<td>22</td>
<td>62.7</td>
</tr>
<tr>
<td>Ajuga reptans</td>
<td>Auju rep</td>
<td>*</td>
<td>He</td>
<td>0.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Calamintha officinalis</td>
<td>Cala off</td>
<td>*</td>
<td>He</td>
<td>24.3</td>
<td>51</td>
</tr>
<tr>
<td>Carex sp.</td>
<td>Care sp.</td>
<td>*</td>
<td>Cry</td>
<td>13.1</td>
<td>39.2</td>
</tr>
<tr>
<td>Conyza canadensis</td>
<td>Cony can</td>
<td>*</td>
<td>He</td>
<td>9.2</td>
<td>72.5</td>
</tr>
<tr>
<td>Corydalis hyrcana</td>
<td>Cory hyr</td>
<td>*</td>
<td>Cry</td>
<td>0.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Digitaria sanguinalis</td>
<td>Digi san</td>
<td>*</td>
<td>Cry</td>
<td>2.1</td>
<td>23.5</td>
</tr>
<tr>
<td>Hypericum hyssopifolium</td>
<td>Hype hys</td>
<td>*</td>
<td>He</td>
<td>0.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>Hype per</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Juncus sp.</td>
<td>Junc sp.</td>
<td>*</td>
<td>Cry</td>
<td>19.8</td>
<td>35.3</td>
</tr>
<tr>
<td>Lacula forsteri</td>
<td>Luzu for</td>
<td>*</td>
<td>Cry</td>
<td>12.7</td>
<td>45.1</td>
</tr>
<tr>
<td>Melilotus officinalis</td>
<td>Meli off</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Mentha aquatica</td>
<td>Ment aqu</td>
<td>*</td>
<td>He</td>
<td>2.9</td>
<td>11.7</td>
</tr>
<tr>
<td>Oxalis corniculata</td>
<td>Oxal cor</td>
<td>*</td>
<td>Th</td>
<td>0.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Plantago sp.</td>
<td>Plan sp.</td>
<td>*</td>
<td>Th</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Poa bulbosa</td>
<td>Poa bul</td>
<td>*</td>
<td>Cry</td>
<td>13</td>
<td>35.3</td>
</tr>
<tr>
<td>Portulaca oleracea</td>
<td>Port ole</td>
<td>*</td>
<td>Th</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Pteridium aquilinum</td>
<td>Pter aqu</td>
<td>*</td>
<td>Cry</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Rumex sp.</td>
<td>Rume sp.</td>
<td>*</td>
<td>He</td>
<td>0.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Salix aegyptica</td>
<td>Sali aeg</td>
<td>*</td>
<td>Ph</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Sambucus ebulus</td>
<td>Samb Ebu</td>
<td>*</td>
<td>He</td>
<td>3.5</td>
<td>33.3</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>Sola nig</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Sonchus oleraceus</td>
<td>Sone ole</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Stellaria media</td>
<td>Stel med</td>
<td>*</td>
<td>Cry</td>
<td>22.1</td>
<td>47</td>
</tr>
<tr>
<td>Thelypteris palustris</td>
<td>Thly pal</td>
<td>*</td>
<td>Cry</td>
<td>0.9</td>
<td>7.8</td>
</tr>
<tr>
<td>Veronica serpyllifolia</td>
<td>Vero ser</td>
<td>*</td>
<td>He</td>
<td>0.2</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Table 2. Growth-form spectrum for the soil seed bank and the above-ground vegetation of Darkola Oriental beech forest.

<table>
<thead>
<tr>
<th>Growth form</th>
<th>Soil seed bank</th>
<th>Above-ground vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of species</td>
<td>Percentage</td>
</tr>
<tr>
<td>Forb</td>
<td>44</td>
<td>70</td>
</tr>
<tr>
<td>Gross</td>
<td>6</td>
<td>9.5</td>
</tr>
<tr>
<td>Fern</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Liana</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shrub and</td>
<td>5</td>
<td>7.9</td>
</tr>
<tr>
<td>Bush</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Tree</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Richness</td>
<td>63</td>
<td>100</td>
</tr>
</tbody>
</table>

Relationship Between Seed Bank and Vegetation

As a total, 107 species were recognized in the vegetation and the soil seed banks of the study site, of which 33 % were common in both the seed banks and vegetation, 26 % and 41 % were found only in the seed bank or in the above-ground vegetation, respectively (Figure 3). The forest plant diversity was mostly composed of herbaceous species belonging to different families: Labiatae (6), Poaceae (6), Asteraceae (4), Cyperaceae (3), Hypericaceae (3) and Solanaceae (3), among others. A total of 44 plant species recorded in the vegetation were not present in the soil seed bank, including the species characteristic of old beech stands of the Hyrcanian temperate deciduous forests such as Fagus orientalis and Carpinus betulus, in the overstorey, and Illex aquifolium, Ruscus hyrcanus, and Danae racemosa, in the understorey. The presence of 28 species recorded as viable seeds buried in the soil, but not found as adult plants in the vegetation, should be noted. Among them, 23 species such as Rubus hycanus, Atropa belladonna, Poa bulbosa, Juncus sp., Urtica dioica, Digitaria sanguinalis, and Mentha aquatica occur sparsely outside the vegetation sample plots in natural gaps or road verges, while others (Sambucus ebulus, Conyza canadensis, Thelypteris palustris, Portulaca oleracea and Pteridium aquilinum) are characteristic to the disturbed sites in the forests (clear cuts) and never previously seen in the site.

Based on the vegetation cover and germinant density, the DCA ordination diagram is presented in Figure 4. Soil seed bank and vegetation samples were clearly clustered along the two ordination axes. The first axis explained 31.8 % and the second axis 17.3 % of the total variation. The ordination of vegetation and soil seed bank flora were distinct in composition and displayed a clear pattern (Figure 4). Yates- corrected χ^2 was estimated 23 from basis of above ground vegetation data versus seed bank

Figure 3. Soil seed bank and vegetation floristic composition of Darkola Oriental beech forest.
Figure 4. Ordination (DCA) diagram of 52 samples upon seedling density from the soil seed bank and vegetation cover of relevés. (a) Relevés ordination; Plots are displayed as: (■) seed bank plots; (□) vegetation plots (b) Species ordination; (*) Species only found in the vegetation; (●) Species found in both seed bank and vegetation and (●) Species only found in the seed bank. The species are labeled by the first four letters of the generic name and the first three letters of the species. Abbreviations: Refer to table 1.
present/absent floristic data. These indexes clearly indicated that seed bank floristic has significantly relation to above ground vegetation (p<0.01). Despite being the significant relationships among extant vegetation with both seed bank floristic data but the type of these relations were negatively assessed. As in Table 3 is shown the observed frequencies of the common occurrences of the extant vegetation floristic with seed banks are 27. However the expected frequencies of the common occurrences of plant species in the above ground vegetation with seed bank ((80×63)/107=47.1) compared with the corresponding observed frequencies, 27 species, indicate that above ground vegetation and soil seed banks vegetation did not occur together.

DISCUSSION

The Darkola oriental beech forests constitute an intact old- growth temperate forest that could syntaxonomically be classified in the Querco-Fagetea class, Ilico-Fagetalia order and Rubo-Fagion alliance (Assadolahi, 2001). The great percentages of hemicryptophytes, phanerophytes, and cryptophytes within the studied forest emphasize its indicator value as a temperate forest. High number of fern species indicate the high humidity in this forest, compared to the low contribution of therophytes, which are indicators of arid or semi-arid regions. The presence of a species in the above-ground vegetation does not ensure that a seed bank will also be present for that species. Approximately 55 % of the taxa found in the vegetation did not occur in the persistent soil seed bank of the study area; on the other hand, 43 % of the soil seed bank taxa were not found in the above-ground vegetation. The absence of above-ground flora species from the persistent seed bank suggests that seeds of most of the species remain viable on the forest floor for less than one year. This confirms the generally low similarity between above-ground vegetation and persistent soil seed bank floras in forest ecosystems and that the above-ground vegetation does not necessarily reflect the soil seed bank composition (Chaideftou et al., 2009).

The seed richness and densities in our study are occasionally higher than those reported for other deciduous forests. For example, seed densities ranging from 1000-4500 seed/m2 from the transient and the persistent seed banks of temperate forests were found in northwestern Switzerland with species richness equal to 39 plants (Amrein et al., 2005). Leckie et al. (2000) reported 1218 seed/m2 and 40 species in the soil seed bank of an old-growth temperate deciduous forest at Mount St. Hilarire, Quebec. Bossuyt and Hermy (2001) reported an average of 3083 seed/m2 and 20 species in temperate forest of Central Belgium. However, our results on the seed bank size may be lower than what has been found in other seed bank studies of the other types of temperate forests, which were carried out after seed rain and before the growing season. For example, Godefroid et al. (2006) reported 10772 to 12047 seed/m2 in the temperate oak and beech forests of central

Table 3. Yates-corrected χ^2 test result for comparisons of seed bank composition and above-ground vegetation of the Darkola oriental beech forest

<table>
<thead>
<tr>
<th>Only seed bank species richness</th>
<th>Both seed bank and vegetation</th>
<th>Only vegetation species richness</th>
<th>Total richness</th>
<th>Yates-corrected χ^2</th>
<th>P-value</th>
<th>N_{obs}</th>
<th>N_{exp}</th>
<th>Occ. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>36</td>
<td>44</td>
<td>107</td>
<td>23</td>
<td>< 0.01</td>
<td>36</td>
<td>47.1</td>
<td>-</td>
</tr>
</tbody>
</table>

N_{obs} = Observed frequency of the common occurrences
N_{exp} = Expected frequency of the common occurrences
Occ. type=Occurrence type, It is positive (+) if N_{obs}<N_{exp} and it is negative (-) if N_{obs}>N_{exp}.
Belgium, though their data were based on both transient and persistent seed bank. From the point of view of species richness, our seed bank richness was relatively higher than the European temperate forest seed banks.

Large-seeded late-successional species were consistently absent in the persistent soil seed bank of the study area. *Fagus orientalis*, *Carpinus betulus*, and *Acer velutinum*, as the overstory tree species, and *Ruscus hyrcanus*, *Danae racemosa*, and *Ilex spicigera*, as the main understorey species, were never found in the soil seed banks, although they were abundant in the ground vegetation. As expected, the large seeds of these species can not accumulate in the soil, because almost all of their viable seeds germinate in spring. Among the species observed at the study site, only two woody species, namely, *Alnus subcordata* and *Rubus hyrcanus*, were present and this confirms the fact that woody species in temperate habitats generally do not produce long-lived seeds and persistent soil seed bank. This is similar to other studies in temperate forests, which report only few tree taxa in the soil seed bank (Bossuyt et al., 2002; Diaz-Villa et al., 2003; Zobel et al., 2007; and Chaideftou et al., 2009). Bossuyt and Honnay (2008) affirm that few forest species produce long-lived seeds, because the stable but stressful forest environment will select for traits associated with a higher seedling establishment success rate rather than for dispersal in time or space. Lambers et al. (2005) agree that the greater risk of mortality at seed than seedling stage for large-seeded species may provide an evolutionary explanation for their absence from temperate forest seed banks. Arriaga and Mercado (2004) suggested that the dominant species in temperate forest communities frequently have alternative regeneration strategies, such as seedling banks or advanced regeneration, a possible reason that seeds do not necessarily enter the seed bank. The large-seeded species prefer to form seedling bank rather than seed bank, due to the lack of dormancy mechanisms.

Nevertheless, light demanding species such as *Hypericum androsaceum*, *Cardamine impatiens*, *Rubus hyrcanus*, *Athyrium flix-femina* and *Pteris cretica*, comprise up to 92% of seeds in the soil seed bank samples. These species produce small seeds and may remain viable for a long time in the soil seed bank of the European temperate forests (Onaindia and Amezaga, 2000; Bossuyt et al., 2002 and Godefroid et al., 2006). Some of the species recorded in the seed bank, like *Conyza canadensis*, *Urtica dioica*, *Sambucus ebulus*, *Juncus sp.*, *Pteridium aquilinum*, and *Thylepteris palustris*, never occur in the extant vegetation (Table 1). These species that are characteristic of the disturbed sites or marginal lands contribute to the soil seed bank and, thus, participate in the plant diversity of the study area. In fact, in the shaded forest understorey, these light demanding species probably are no longer present in the vegetation, but their seeds may remain viable, long after the mother plant has died.

DCA ordination of the soil seed bank and vegetation samples showed that these two components were also floristically different. Indeed, this analysis showed two distinct groups as the plant community of the above-ground vegetation and the plant community of the soil seed bank, which were distributed on the basis of their floristic differentiation. Thus, we concluded that the soil seed bank and the above-ground vegetation are quite different and the two above mentioned community types do not have any overlap in the DCA ordination diagram.

Yates-corrected χ^2 test also showed that plant species composition of the seed bank significantly differed from that of the above-ground vegetation. This finding documents also statistically that the seed bank is a poor predictor of the vegetation composition in the Darkola oriental beech forest. As a concluding remark, we stress that our findings suggest that the restoration of the typical forest species of this old-growth temperate forest solely by diaspores (seeds
and spores) stored in the persistent soil seed bank is unlikely.

CONCLUSION

The present study has shown that the soil seed bank can only be expected to have the potential to regenerate earlier successional stage plant species. This means that persistent soil seed bank can not contribute to the regeneration of the desired typical forest species.

ACKNOWLEDGEMENTS

We thank the numerous assistants for their help with the field, glasshouse and laboratory work throughout the experiment. We especially thank Hamed Asadi and Abbas Ahmadi. We also thank Habib Zare and Taiebeh Amini as arboretum staff of the Research Institute of Forests and Rangelands, Iran, who identified the seedlings.

REFERENCES

5. Assadollahi, F., 2001. The Study of Plant Communities in Hycranian, Caspian, Region. The 1st national proceedings of Caspian forest management and sustainable development, Research Institute of forests and rangelands, Iran 323- 344. (in Persia)
ارتباط میان بذر خاک و بوش گیاهی رو زمینی در یک جنگل معتدل خزان
کنده آمیخته در شمال ایران

أ. اسماعیلزاده، س. م. حسینی، و م. طبری

چکیده

در این تحقیق ترکیب گیاهی و اندازه بانک بذر خاک و ارتباط آنها با ترکیب بوش گیاهی رو زمینی تعداد 54 روله از یک جنگل معتدل خزان کنده دست نخورده که میانه ای از جنگل های هیرکانی در شمال ایران می باشد ارژیزین گردید. در مطالعه بانک بذر خاک با استفاده از روش پیدایش نهال، تعداد 62 گونه گیاهی با متوسط تعداد 200/24/3 بذر/ هاگ در متر مربع ثبت و شمارش گردید. گونه (Hypericum androsaemum) کارداری (Cardamine impatiens)، (Athyrium frixa-femina) و (Rubus hyrcanus) به همراه دو گونه سرخس ماده (Pteris cretica) و (Rhus typhina) تمشکی گونه های رو زمینی از 21 درصد از نهال های رویش یافته به ترتیب (Pteris cretica) با اختصاص دادن 92 درصد از نهال های رویش یافته به ترتیب به عنوان فراوان ترین گونه های گیاهی بانک بذر و بانک هاگ خاک منطقه محصور می شوند. به طور کلی در سطح منطقه تعداد 107 گونه گیاهی از ترکیب بوش گیاهی رو زمینی و بانک بذر خاک شناسایی و ثبت گردیده که از میان آنها 33 درصد در هر دو بخش حضور مشترک داشته و تعداد 26 و 21 درصد به ترتیب فقط در یک بخش بانک بذر خاک و یا بوش گیاهی رو زمینی حضور یافته.

نتایج این تحقیق همچنین نشان داد که بذر درختان غالب منطقه به همراه بذر گونه های گیوه زیر اشکوب جنگل در بانک بذر دامی خاک منطقه حضور نیافته. بر مبنای ضریب تشای جاکارد و بر اساس داده های کیفی حضور- غیب گونه ها، درجه تشای گونه ای ترکیب گیاهی بانک بذر خاک و بوش گیاهی رو زمینی در سطح پایین (متوسط 24/34/3 درصد) ارژیزین گردید. محاسبه ضریب اصلاح شده 2R نشان داد که میان ترکیب بوش رو زمینی و بانک بذر خاک تفاوت معنی‌دار آماری وجود دارد. نتایج تحلیل رج بندی داده دکمک را به ترکیب بوش گیاهی رو زمینی و بانک بذر خاک در

DCA نشان داد که ترکیب بوش گیاهی رو زمینی و بانک بذر خاک در فضای دوم محور اول رج بندی، دو گروه کاملاً متمایز از یکدیگر به ارائه می دهند. نتایج تحقیق حاضر به طور کلی تصمیم می کند که درجه تشای گونه ای یک بانک بذر خاک و بوش گیاهی رو زمینی جنگل را در فضای پایین بوده و عدم وابستگی تجربی جهت ترکیب گیاهی کنونی از بانک بذر خاک دامی را تأیید می سازد. بنابراین نتیجه گیری می شود که بانک بذر خاک دامی منطقه قابلیت احیاء ترکیب گیاهی کنونی را ندارد.