Effects of Different Water Stress Levels on Biomass, Root Yield, and Some Physiological Parameters of Sorghum

E. Gonulal

ABSTRACT

This study was conducted under water stress conditions for two years (2017-2018) to investigate the effects of different water stress levels on biomass yield, root yield, root/shoot ratio, some physiological characteristics, Water Use Efficiency (WUE), seasonal water consumption, and yield reduction ratio of silage sorghum. Experiments were conducted in randomized blocks design. There were four different irrigation treatments including I_1: Full irrigation; I_2: 75% of I_1; I_3: 50% of I_1; and I_4: 25% of I_1. In 2017, dry biomass yields varied between 14.11 (I_4) and 26.02 t ha\(^{-1}\) (I_1), stomatal conductance between 72.2 (I_4) and 147.8 mmol m\(^{-2}\) s\(^{-1}\) (I_1), chlorophyll contents between 37 spad\(^{-1}\) (I_4) and 42.1 spad\(^{-1}\) (I_1), canopy temperatures between 27.2 \(^{\circ}\)C (I_1) and 31.3 \(^{\circ}\)C (I_4), and WUE between 4.5 (I_1) and 5.5 kg m\(^{-3}\) (I_3). In 2018, dry biomass yields varied between 14.51 (I_4) and 25.92 t ha\(^{-1}\) (I_1), stomatal conductance between 69.9 (I_4) and 129.5 mmol m\(^{-2}\) s\(^{-1}\) (I_1), chlorophyll contents between 39.7 spad\(^{-1}\) (I_4) and 43.9 spad\(^{-1}\) (I_1), canopy temperatures between 30.0 \(^{\circ}\)C (I_1) and 34.5 \(^{\circ}\)C (I_4), and WUE between 4.2 (I_1) and 4.9 kg m\(^{-3}\) (I_4). Based on two-year averages, dry root yields varied between 8.15 (I_4) and 13.27 t ha\(^{-1}\) (I_1), root/shoot ratios between 0.51 (I_1) and 0.57 % (I_3-I_4), seasonal water consumptions between 281(I_4) and 598 mm (I_1). Water stress reduced biomass yield, root yield, stomatal conductance, and chlorophyll contents, and increased WUE and root/shoot ratios. Biomass yields decreased with increase in water stress, but this decrease was lower compared to the decrease in applied irrigation water quantities.

Keywords: Climate change, Drought, Irrigation, Yield reduction ratio.

INTRODUCTION

In recent years, impacts of climate change are encountered worldwide, especially on agriculture. Together with increasing populations, such a case exerts serious threats on sustainable food supply. It is expected that present climate change and global warming will result in droughts in agricultural lands, and especially Mediterranean climate zone will be more influenced by these negative factors. Drought stress reduces plant water and nutrient uptake and reduces food supply, thus exerts serious threats on sustainability of plant production activities. (Du et al., 2010). Water is the most important input affecting and limiting agricultural productions. It is expected that 35% of cultivated and irrigated lands could not be irrigated if current water use ratios continued, and thus productions will decrease seriously (Haacker et al., 2016). Besides, groundwater is withdrawn from deeper aquifers and such a case increased irrigation and, consequently, production costs. Therefore, under these circumstances, alternative less-water-using species should be encouraged in irrigated lands and water use ratios of currently cultivated species should be reduced (Chaves and Davies, 2010).

Potential droughts and deficit water supplies will influence field crops the most and will then generate a risk for food safety (Alghabari et al., 2016). In this sense, taking

1 Bahri Dagdas International Agriculture Research Institute, 42031, Konya, Turkey. e-mail: erdalgonulal@hotmail.com
the future projections into consideration, sorghum and similar drought-resistant species with less water use should be cultivated to meet silage and roughage needs of livestock in regions with less precipitation and insufficient water resources within the scope of adaptation of climate change. Sorghum has less water use than maize, which was used for similar purposes. It is also resistant to various abiotic stress factors, especially to water stress, and can reliably be grown in marginal lands at low costs. Sorghum has quite high water use efficiency under water stress conditions (Li et al., 2010). Sorghum is largely grown especially in the USA and in the other parts of the world and used for various purposes (human nutrition, animal feeding, bioethanol, and cellulose production). Silage maize is also largely used in animal feeding, but maize is highly sensitive to water deficits and has quite high crop water consumption levels. Thus, it is hard to achieve sustainable water management in maize culture in semi-arid regions (Saneoka et al., 1996). Sorghum with a deep root structure, waxy shoot structure, and upright leaf structure could produce better biomass and use water more efficiently than maize under water stress (Begg, 1980). In previous studies on water stress in sorghum, Vasilakoglou et al. (2011), Tariq et al. (2012), and Dahmardeh et al. (2015) reported that the biomass yield decreased with the decreasing amount of irrigation and the highest biomass yield was obtained from full irrigation subjects. In previous studies on the effect of water stress on physiological properties of sorghum, Vasilakoglou et al. (2011), Dahmardeh et al. (2015), and Bhattacharai (2019) reported that stomatal conductivity values decreased in sorghum under water stress conditions, El-Mageed et al. (2018) and Bhattacharai (2019) reported that the chlorophyll value decreased, while the canopy temperature increased with water stress. In many studies carried out with different soil and water regimes in sorghum, root yield decreased in decreasing irrigation water amount or drought conditions, but this decrease was lower than biomass yield (Creelman et al., 1990; Bibi et al., 2010; Yin et al., 2014). Root/shoot ratio is a reliable parameter used in estimation of drought resistance. It is a measure of dry matter distribution in root and shoot systems and a good indicator of the effects of stress on root and shoot dry matter (Boutraa et al., 2010). Nour and Weibel (1978) indicated that root/stem ratio of sorghum varied with the varieties, and drought-resistant varieties had greater root/stem ratio and reported root/shoot ratios of sorghum between 0.39 - 0.65.

Root experiments are time and labor-consuming processes. Therefore, the majority of root yield experiments are conducted under pot conditions and root characteristics are mostly investigated at early growth stages (Takele, 2000). Root studies, which are mostly carried out under pot conditions, should also be tested under field conditions. The most different aspect of the present study from similar studies is that root experiments were conducted under field conditions instead of pots.

This research aimed to study sorghum in a semi-arid region of Turkey within the Mediterranean basin with irregular precipitation regime and ever decreasing water resources to determine biomass yield, root yield, root/shoot ratio, water consumption, water use efficiency, yield decrease ratio, and some physiological characteristics of silage sorghum under different water stress conditions.

MATERIALS AND METHODS

Experiment Area

Experiments were conducted in 2017 and 2018 for two years over the experimental fields of Konya-Karapınar Desertification and Erosion Research Center (37° 41’ 12.20” N and 33° 30’ 13.37” E). The study area had a semi-arid climate with an annual total precipitation of less than 300 mm, mostly falling between the months November –
Effects of Water Stress on Sorghum

April. Annual total precipitation was measured as 249.6 mm (64.8 mm between May-August) in 2017 and 286.7 mm (69.2 mm between May-August) in 2018. Long-term annual average total precipitation is 291 mm (71.3 between May-August) (Table 1).

Characteristics of experimental soils are provided in Table 2. Experimental soils were poor in organic matter, high in lime and pH, free of salinity problems and had sandy texture in upper layers.

Some properties of irrigation water used in the study are given in Table 3, which shows that irrigation water was in the T2A1[(In irrigation water medium salt content (T2) and low sodium content (A1)] class. Irrigation water is groundwater with a low SAR value, dominated by bicarbonate and sulfate ions.

Cultural Practices and Plant Material

Early Sumac sorghum variety largely grown in the region was used as the plant material of the study. Initial soil tillage was performed with moldboard plow and the second tillage was performed before sowing. At soil tillage, based on soil analysis results, 90 kg ha\(^{-1}\) P\(_2\)O\(_5\) and 30 kg ha\(^{-1}\) nitrogen fertilizer were applied as base fertilizer. The rest of nitrogen was applied in splits through drip lines to complete the nitrogen to 150 kg ha\(^{-1}\). Sowing was performed on 10th May in 2017 and 13th of May in 2018. Experimental plots were 8 m long and 2.7 m wide (21.6 m\(^2\)). Each plot had 6 rows and sowing was performed at 45 cm row spacing and 5 cm on-row plant spacing. Side rows and 1 m sections from the top and bottom of the plots were omitted to consider side effects and harvest was performed from 10.8 m\(^2\) plot area. Mechanical and chemical weed control was practiced.

Water Stress Treatments

Pressure regulated drip irrigation was used for irrigations. A drip line with 1.6 L h\(^{-1}\) discharge drippers spaced 20 cm apart was placed along each row. There were four different irrigation treatments: I\(_1\): Full irrigation, deficit moisture was completed to field capacity when the 40-45% of available moisture within the root zone was depleted; I\(_2\): 75% of I\(_1\); I\(_3\): 50% of I\(_1\); and I\(_4\): 25% of I\(_1\). Before the initiation of experimental irrigation treatments, 30 mm irrigation water was applied in the first year and 40 mm in the second year to bring the soil moisture to

### Table 1. Precipitation amounts of the growing season.

<table>
<thead>
<tr>
<th>Years</th>
<th>Precipitation (mm)</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>Total annual precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963-2018</td>
<td>Precipitation (mm)</td>
<td>35.4</td>
<td>23.8</td>
<td>8.0</td>
<td>4.1</td>
<td>291</td>
</tr>
<tr>
<td>2017</td>
<td>Precipitation (mm)</td>
<td>23.0</td>
<td>15.6</td>
<td>7.6</td>
<td>18.6</td>
<td>249.6</td>
</tr>
<tr>
<td>2018</td>
<td>Precipitation (mm)</td>
<td>30.5</td>
<td>25.2</td>
<td>10.1</td>
<td>3.4</td>
<td>286.7</td>
</tr>
</tbody>
</table>

### Table 2. Some soil properties of the experimental area.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>Texture</th>
<th>Field Capacity (% Pw)</th>
<th>Watering Point (% Pw)</th>
<th>Bulk Density (g cm(^{-3}))</th>
<th>pH</th>
<th>EC (dSm(^{-1}))</th>
<th>Lime (%)</th>
<th>Organic Matter (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>58.1</td>
<td>22.8</td>
<td>19.1</td>
<td>SCL</td>
<td>20</td>
<td>9.6</td>
<td>1.37</td>
<td>7.8</td>
<td>0.42</td>
<td>33.5</td>
<td>1.3</td>
</tr>
<tr>
<td>30-60</td>
<td>30.1</td>
<td>20.3</td>
<td>49.6</td>
<td>C</td>
<td>24.5</td>
<td>12.6</td>
<td>1.30</td>
<td>8.1</td>
<td>0.45</td>
<td>28.7</td>
<td>1.1</td>
</tr>
<tr>
<td>60-90</td>
<td>16.0</td>
<td>24.4</td>
<td>59.6</td>
<td>C</td>
<td>28</td>
<td>15.4</td>
<td>1.22</td>
<td>8.2</td>
<td>0.44</td>
<td>29.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
field capacity for homogeneous germination and emergence. Soil moisture at 0-90 cm soil profile (effective root depth of sorghum) was monitored with the use of gravimetric method and amount of water to be applied in each irrigation was determined and measured with a water meter. The first irrigation was practiced on 7th of June in 2017 and 11th of June in 2018. During the growing season, 12 and 14 irrigations were made in 2017 and 2018, respectively.

In the present study, soil moisture within 90 cm soil profile was measured and I₁ (full irrigation) treatment was performed to bring the soil moisture to field capacity when 40-45 % of available moisture was depleted. Amount of irrigation water applied in each treatment, amount of precipitation, changes in soil moisture between sowing and harvest, and water consumptions of experimental treatments are provided in Table 4.

Amount of irrigation water applied varied between 143 mm (I₄) and 480 mm (I₁) in the first year and between 150 mm (I₁) and 510 mm (I₁) in the second year. Total water consumptions varied between 268 mm (I₄) and 575.9 mm (I₁) in the first year and between 294.8 mm (I₄) and 619.2 mm (I₁) in the second year (Table 4).

Evapotranspiration (ET), Water Use Efficiency (WUE) and Yield Reduction Ratio (YRR)

Evapotranspiration was calculated according to Equation (1), considering the moisture content in the 90 cm soil profile (Doorenbos and Kassam, 1979).

\[ ET = I + P - D_p \pm CSW \]  

Where, ET= Evapotranspiration (mm), I= Irrigation water quantity (mm), P= Precipitation (mm), D_p= Deep percolation (mm), CSW: Change in Soil Water storage (mm) between planting and harvest.

In the study, WUE value (Howell et al. 1990) and Yield Reduction Ratios (YRR) (Araghi and Assad, 1998) expressing the proportional decrease in biomass yield against unit decreasing water were calculated according to the following equations.

\[ WUE = Y/ET \]  

Where, WUE= Water Use Efficiency (kg.m⁻³), Y= Dry biomass yield (kg ha⁻¹), and ET= Evapotranspiration (mm).

\[ YRR = 1 - (Y_s/Y_p) \]  

Where, YRR= Yield Reduction Ratio (%); Ys= Yield under stress conditions (kg ha⁻¹); Yp= Yield under non stress conditions (kg ha⁻¹).

Table 3. Quality parameters of the irrigation water used in the study.

<table>
<thead>
<tr>
<th>pH</th>
<th>EC (dS m⁻¹)</th>
<th>Na (me L⁻¹)</th>
<th>K (me L⁻¹)</th>
<th>Ca (me L⁻¹)</th>
<th>Mg (me L⁻¹)</th>
<th>CO₃⁻ (me L⁻¹)</th>
<th>HCO₃⁻ (me L⁻¹)</th>
<th>Cl (me L⁻¹)</th>
<th>SO₄²⁻ (me L⁻¹)</th>
<th>SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.80</td>
<td>0.533</td>
<td>0.21</td>
<td>0.01</td>
<td>1.79</td>
<td>6.38</td>
<td>0.01</td>
<td>4.02</td>
<td>0.02</td>
<td>1.13</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 4. Irrigation water amount, precipitation, change in soil water, and evapotranspiration.

<table>
<thead>
<tr>
<th>Years</th>
<th>Irrigation Levels</th>
<th>Irrigation water (mm)</th>
<th>Precipitation (mm)</th>
<th>Change in soil water (mm)</th>
<th>Evapotranspiration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>I₁</td>
<td>480</td>
<td>64.8</td>
<td>31.1</td>
<td>575.9</td>
</tr>
<tr>
<td></td>
<td>I₂</td>
<td>368</td>
<td>64.8</td>
<td>44.9</td>
<td>477.7</td>
</tr>
<tr>
<td></td>
<td>I₃</td>
<td>255</td>
<td>64.8</td>
<td>50.4</td>
<td>370.2</td>
</tr>
<tr>
<td></td>
<td>I₄</td>
<td>143</td>
<td>64.8</td>
<td>60.2</td>
<td>268</td>
</tr>
<tr>
<td>2018</td>
<td>I₁</td>
<td>510</td>
<td>69.2</td>
<td>40</td>
<td>619.2</td>
</tr>
<tr>
<td></td>
<td>I₂</td>
<td>390</td>
<td>69.2</td>
<td>46.8</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>I₃</td>
<td>270</td>
<td>69.2</td>
<td>55.4</td>
<td>394.6</td>
</tr>
<tr>
<td></td>
<td>I₄</td>
<td>150</td>
<td>69.2</td>
<td>75.6</td>
<td>294.8</td>
</tr>
</tbody>
</table>
Biomass Yield and Physiological Properties

For Fresh Biomass Yield (FBY), harvest was performed at milk-dough stage from 10.8 m² plot area on 20th of August in the first year and 27th of August in the second year. Harvested herbage was weighed to get fresh biomass yield. For Dry Matter Ratio (DMR), 500 g fresh sample was dried in an oven at 70°C until a constant mass. Resultant masses were converted into hectares to get Dry Biomass Yield (DBY). Physiological observations were made at flowering period. Stomatal Conductance (SC) and Chlorophyll Content (CC) were measured on five different plants in four replicates. Chlorophyll and stomatal conductivity measurements were made between 1100 and 1500 hours during the day on the 3rd fully developed leaf from the top at the time of flowering (Kumar et al., 2013). Canopy Temperature (CT) was measured between 1200-1400 hours from north and south directions and average of measurements were taken (Gonulal et al., 2021). SPAD readings were taken using the SPAD 502 Chlorophyll meter (Minolta Corporation, Ramsey, NJ). Stomatal conductivity measurements were made with a leaf porometer device (Decagon Model SC-1) and canopy temperatures were made with an infrared thermometer (Fluke 574).

Root Biomass Yield and Root/Shoot Ratio

For Fresh Root Yield (FRY), following the fresh biomass harvest, 90 cm soil profiles were opened and 40x40 cm root cross-sections were taken from 3 different locations. Roots were cleared from the soil and weighed to get fresh root yield. Fresh root samples were dried in an oven at 70°C until a constant mass. Resultant masses were converted into hectares to get Dry Root Yield (DRY) (Gonulal et al., 2021).

Root/shoot ratio was calculated with the following equation:

\[ \text{Root/Shoot Ratio (RSR)} = \frac{\text{Dry root biomass yield}}{\text{Dry biomass yield}} \]

Experimental Design and Statistical Analysis

Experiments were conducted in randomized blocks design with 3 replications. Irrigation treatments were randomly distributed into blocks. There were 12 plots including 4 irrigation treatments and 3 replications. Experimental data were subjected to variance analysis with the use of JMP 11.1 statistical software and significant means were compared with the use of LSD test. The GGE-biplot analysis method was used to visually evaluate the relationship between the properties examined at different irrigation levels and the clustering and relationships formed by the characteristics at the irrigation levels (Yan and Tinker, 2006; Akcura, 2011).

RESULTS AND DISCUSSION

Biomass Yield

Fresh biomass yield, dry biomass yield and dry matter ratios of silage sorghum under different water stress levels are provided as the two-years average in Table 5. The differences in biomass yields of irrigation treatments were found to be significant in both years (P< 0.01). In the first year, the greatest fresh biomass yield was obtained from I1 treatment (93.07 t ha⁻¹), but I2 treatment (84.77 t ha⁻¹) was also placed into the same statistical group and the lowest yield was obtained from I4 treatment (43.33 t ha⁻¹). In 2018, the greatest fresh biomass yield was obtained from I1 treatment (96.57 t ha⁻¹) and the lowest from I3 treatment (47.25 t ha⁻¹). Dry biomass yields varied between 14.11 (I4) and 26.02 t ha⁻¹ (I1) in 2017 and between 14.51 (I4) and 25.92 t ha⁻¹ (I1) in 2018 (Table 5). The differences in dry matter ratios of irrigation
treatments were found to be significant at P< 0.05 in 2017 and at P< 0.01 in 2018. In both years, the greatest values were obtained from I4 treatments (32.3 and 30.7%) and the lowest values were obtained from I1 treatments (27.9 and 26.7%) (Table 5).

Water stress reduced leaf area index, plant height, number of leaves and leaf width of several plant species and decreased biomass yields through leaf aging (Razmi and Ghasemi, 2007; Kuscu et al. (2014). In previous studies on water stress in sorghum, Vasilakoglou et al. (2011), Tariq et al. (2012), and Dahmardeh et al. (2015) reported decreasing biomass yields with decreasing irrigation water quantities and obtained the greatest biomass yield from full-irrigation treatments. Nejad et al. (2014) reported the greatest dry biomass yield of sorghum as 17.94 t ha\(^{-1}\) under full irrigation and the lowest as 11.27 t ha\(^{-1}\) under water stress, and reported the fresh biomass yields as between 54.57 and 33.55 t ha\(^{-1}\). These findings revealed that water stress influenced biomass yield of sorghum at certain levels, but irrigation costs should be taken into consideration in silage sorghum cultivation.

### Physiological Characteristics

Stomatal conductance, chlorophyll content, and canopy temperature of sorghum under different irrigation levels are presented in Table 6. While the differences in stomatal conductance and canopy temperatures of irrigation treatments were significant in both years (P< 0.01), the differences in chlorophyll contents were significant in 2017 (P< 0.01), but insignificant in 2018. Decreasing stomatal conductance and chlorophyll contents and increasing canopy temperatures were

<table>
<thead>
<tr>
<th>Irrigation levels/Years</th>
<th>Stomatal conductivity (mmol m(^{-2}) s(^{-1}))</th>
<th>Canopy temperature (°C)</th>
<th>Chlorophyll content (spad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017**</td>
<td>2018**</td>
<td>2017**</td>
<td>2018**</td>
</tr>
<tr>
<td>I1</td>
<td>147.8 a</td>
<td>129.5 a</td>
<td>27.2 b</td>
</tr>
<tr>
<td>I2</td>
<td>107.3 b</td>
<td>104.9 b</td>
<td>28.1 b</td>
</tr>
<tr>
<td>I3</td>
<td>101.2 b</td>
<td>98.6 b</td>
<td>30.6 a</td>
</tr>
<tr>
<td>I4</td>
<td>72.2 c</td>
<td>69.9 c</td>
<td>31.3 a</td>
</tr>
<tr>
<td>Means</td>
<td>107.1</td>
<td>100.7</td>
<td>29.3</td>
</tr>
<tr>
<td>CV</td>
<td>6.4</td>
<td>5.5</td>
<td>1.8</td>
</tr>
<tr>
<td>LSD</td>
<td>13.7</td>
<td>11</td>
<td>1.00</td>
</tr>
</tbody>
</table>

** Significant at P≤ 0.01; * Significant at P≤ 0.05; ns: Non significant.

### Table 5. Fresh/dry biomass yield and dry matter ratio.

<table>
<thead>
<tr>
<th>Irrigation levels/Years</th>
<th>Fresh biomass yield (t ha(^{-1}))</th>
<th>Dry biomass yield (t ha(^{-1}))</th>
<th>Dry matter ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017**</td>
<td>2018**</td>
<td>2017**</td>
<td>2018**</td>
</tr>
<tr>
<td>I1</td>
<td>93.07 a</td>
<td>96.57 a</td>
<td>26.02 a</td>
</tr>
<tr>
<td>I2</td>
<td>84.77 a</td>
<td>86.37 b</td>
<td>24.51 ab</td>
</tr>
<tr>
<td>I3</td>
<td>66.22 b</td>
<td>63.47 c</td>
<td>20.39 b</td>
</tr>
<tr>
<td>I4</td>
<td>43.33 c</td>
<td>47.25 d</td>
<td>14.11 c</td>
</tr>
<tr>
<td>Means</td>
<td>71.85</td>
<td>73.42</td>
<td>21.25</td>
</tr>
<tr>
<td>CV</td>
<td>9.5</td>
<td>6.4</td>
<td>11.7</td>
</tr>
<tr>
<td>LSD</td>
<td>13.62</td>
<td>9.32</td>
<td>4.98</td>
</tr>
</tbody>
</table>

** Significant at P≤ 0.01; * Significant at P≤ 0.05.
Effects of Water Stress on Sorghum

observed with decreasing irrigation water quantities. The greatest and the lowest stomatal conductance values were obtained from, respectively, I₁ (147.8 mmol m⁻² s⁻¹) and I₄ (72.2 mmol m⁻² s⁻¹) treatments in 2017 and again from I₁ (129.5 mmol m⁻² s⁻¹) and I₄ (69.9 mmol m⁻² s⁻¹) in 2018 (Table 6). In 2017, the greatest canopy temperature was obtained in I₁ (31.3°C) and the lowest from I₁ (27.2°C). Similarly, in 2018, the greatest canopy temperature was obtained from I₁ (34.5°C) and the lowest from I₁ (30.0°C) (Table 6). In 2017, the greatest chlorophyll content was observed in I₁ (42.1 spad) and the lowest in I₄ (37spad). In 2018, despite the insignificant differences, the greatest value was observed in I₁ (43.9 spad) and lowest in I₄ (39.7spad) (Table 6).

Stomatal conductance is an indicator of CO₂ assimilation and water loss (Messina et al., 2015) and decreasing stomatal conductance is observed with increasing water stress. Vasilakoglou et al. (2011), Dahmardeh et al. (2015), and Bhattarai (2019) reported decreasing stomatal conductance values in sorghum under water stress conditions. Bhattarai et al. (2020) reported stomatal conductance of sorghum as between 359 -243 mmol m⁻² s⁻¹. Retarded aging and prolonged stay-green durations increase drought resistance of sorghum and such a resistance is related to high chlorophyll content (Harris et al., 2006). It was reported by El-Mageed et al. (2018) and Bhattarai (2019) that increasing water stress reduced water uptake, nitrogen accumulation in leaves, and ultimately chlorophyll contents. Vasilakoglou et al. (2011) indicated that chlorophyll contents varied with the growth stages under water stress conditions, chlorophyll contents were lower under full irrigation than under water stress at flag leaf stage, but greater at flowering period.

Chlorophyll contents at full irrigation and water stress were reported as, respectively, 38 and 25 (Rostampour et al., 2012) and 46.9 and 41.1 (Keten, 2020). Canopy temperature designates plant resistance to drought stress and higher values are expected under water stress conditions. Such lower values indicate greater yield levels. Blum et al. (1989) reported canopy temperature of sorghum as 25.8°C under full irrigation and as 26.8°C under water stress. Similar to the present findings, El-Mageed et al. (2018) and Bhattarai (2019) reported increasing canopy temperatures with increasing water stress.

Root Biomass Yield and Root/Shoot Ratio

Fresh and dry root yield and root/shoot ratios of sorghum under different irrigation levels are shown in Table 7. While the differences in fresh and dry root yields of irrigation treatments were significant in both years (P< 0.01), differences in root/shoot ratios were not significant in 2017, but significant in 2018 (P< 0.05).

The greatest fresh and dry root yields were obtained from I₁ (57.86 and 13.48 t ha⁻¹ in 2017; 56.61 and 13.05 t ha⁻¹ in 2018) and the lowest values were obtained from I₄ (32.20 and 7.85 t ha⁻¹ in 2017; 33.93 and 8.45 t ha⁻¹ in 2018) (Table 7). Despite the insignificant differences in 2017, the greatest root/shoot ratio was obtained from I₁ (0.56) and the lowest from I₂ (0.51). In 2018, the greatest and the lowest root/shoot ratios were observed in, respectively, I₃ (0.59) and I₁ (0.51) (Table 7).

Previous researchers also reported decreasing sorghum root yields with water stress in pot experiments (Bibi et al., 2012; Yin et al., 2014). However, increasing root yields were reported with water stress. Despite widened leaves and reduced biomass with increasing water stress, roots continued to grow and were less influenced by water stress (Bibi et al., 2010). Stress conditions were first confronted by the roots, thus it is expected that roots sensed the stress and responded accordingly (Xiong et al., 2006; Khodarahmpour, 2011). Although a decrease is observed in fresh and dry root yields, such a decrease is less than the decrease in biomass (Creelman et al., 1990). Root/shoot ratio is a reliable parameter used in estimation of drought resistance. It is a measure of dry
matter distribution in root and shoots systems and a well indicator of the effects of stress on root and shoot dry matter (Boutraa, 2010). Nour and Weibel (1978) indicated that root/shoot ratio of sorghum varied with the varieties, drought-resistant varieties and reported root/shoot ratios of sorghum between 0.39 - 0.65. Together with deep roots, high root/shoot ratios are also important mechanisms for prevention of negative impacts of droughts in several species. Greater decrease was seen in shoot yield than root yield with water stress, root/shoot ratio was higher and such a ratio resulted from decreasing shoot growth under stress rather than an absolute increase in root growth (Assefa et al., 2010). Similar to the present findings, several other researchers (Takele, 2000; Younis et al., 2000; Munamava and Riddoch, 2001) reported increased root/shoot ratios in sorghum under water stress conditions, but Ahmed et al. (2011) reported decreased root/shoot ratios with water stress. Takele (2000) reported root/shoot ratio as 0.47 at 25% FC, 0.32 at 45% FC, 0.27 at 65% FC, and 0.21 at 85% FC, and indicated increasing root/shoot ratios with decreasing irrigation water quantity.

** Water Use Efficiency and Yield Reduction Ratio **

The Water Use Efficiency (WUE) and Yield Reduction Ratio (YRR) of sorghum under different irrigation levels are shown in Table 8. Increasing WUE values were observed with decreasing irrigation water quantities. In 2017, the highest WUE was obtained from I4 (5.5 kg m⁻³) with 370.2 mm ET and 20.39 t ha⁻¹ of biomass yield. Although the biomass yield decreased as the irrigation water and ET decreased, the efficiency of irrigation water use was high. However, WUE value had the lowest value in I1 (4.5 kg m⁻³), where full irrigation (ET: 575.9 mm) was made and the highest biomass yield (26.02 t ha⁻¹) was obtained. Similarly in 2018, I1 (4.9 kg m⁻³) with the lowest ET (294.8 mm) and biomass yield value (14.51 t ha⁻¹) had the highest WUE value, while the I4 (4.2 kg m⁻³) with full irrigation (ET: 619.2 mm) and higher biomass yield (25.92 t ha⁻¹) had the lowest WUE value (Tables 4 and 8).

When WUE value is evaluated together with biomass yield, ET and yield reduction rate, it is seen that the decrease in biomass yield is less than the decrease in irrigation water and water is used more effectively. About 11% decrease was observed in dry biomass yield with 25% decrease in irrigation water quantity. 28.4% decrease was observed with 50% decrease in irrigation water and 44% decrease was observed in dry biomass yield with 75% decrease in irrigation water quantity (Table 8). This feature shows that sorghum can use irrigation water effectively.

WUE is used to determine dry matter quantity produced per unit of water and it is among the most important parameters used in generation of irrigation strategies. WUE is an unstable parameter and varies with the years, environmental conditions, growth stages, soil moisture and nitrogen contents. Different WUE values were reported for sorghum in previous studies (4.1-6.0 kg m⁻³) by Mastrorilli et al., 1999;
Effects of Water Stress on Sorghum

Table 8. Effects of different water stress levels on WUE and yield reduction ratio.

<table>
<thead>
<tr>
<th>Irrigation levels/Years</th>
<th>WUE (kg m(^{-3}))</th>
<th>Yield reduction ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017</td>
<td>2018</td>
</tr>
<tr>
<td>I(_1)</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>I(_2)</td>
<td>5.1</td>
<td>4.6</td>
</tr>
<tr>
<td>I(_3)</td>
<td>5.5</td>
<td>4.7</td>
</tr>
<tr>
<td>I(_4)</td>
<td>5.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Means</td>
<td>5.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

4.4-5.5 kg m\(^{-3}\) by Steduto and Albrizio, 2005; 6.5-8.6 kg m\(^{-3}\) by Saeed and El-Nadi, 1998. There are different opinions about the effects of water stress on WUE values. Similar with the present findings, Aishah et al. (2011) indicated that sorghum was able to use soil moisture more efficiently until severe deficits and increase WUE through prevention of yield loss. Besides, Jahansouz et al. (2014) and Bhattarai (2019) reported decreasing WUE values with decreasing irrigation water quantities and Garofalo and Rinaldi (2013) indicated insignificant effects of water stress on WUE and reported that full irrigation reduced WUE in some years. Uzun et al. (2017) reported a yield reduction of between 20.1-46.3% in sorghum. Jahansouz et al. (2014) reported 28% yield reduction in sorghum with 25% reduction in irrigation water quantity.

Under stress conditions, sorghum plants usually have longer stay-green durations, get into dormant state and reduce water use, then respond to subsequent irrigations quickly with deep and intense root system, thus keep growing and reduce yield loss (Afshar et al., 2014). Seasonal water consumption of sorghum was reported between 521-553 mm by Lamm et al. (2010); between 227-517 mm by Hao et al. (2014) and between 446-683 mm by Wagle et al. (2016).

Correlations between Irrigation Levels and Investigated Traits

The correlation analysis performed to determine the relationship between the traits in the study is given in Table 9. FBY had positive and significant correlations with DBY (r:0.99), SC (r:0.88), CC (r:0.80), FRY (r:0.96), and DRY (r:0.96) traits and negative-significant correlations with CT (r:-0.97), DMR (r:-0.89), and RSR (r:-0.83) traits. As with the FBY feature, the DBY feature had similar correlation values (Table 9).

Also, a biplot graph was generated to present the relationship among the investigated traits and clusters formed by the traits at different irrigation levels. Two-year averages were used in biplot graph (Figure 1).

The first principle component explained 91.5% and the second principle component explained 6.1% of total variation (97.6% of total variation was explained by the first two principle components) (Figure 1). Such a case is desired in biplot graphs and such high rate of explanation allows researchers to better interpret the correlations among the investigated traits (Akcura, 2011). The biplot graph was composed of four sections and the investigated traits were clustered in sections in which I\(_1\) and I\(_4\) treatments were the diagonals. In the first section with I\(_1\) treatment as the diagonal, DBY, FBY, CC, SC, FRY, and DRY traits were placed. The angles between these trait vectors were acute angles indicating positive correlations among them. In the fourth section with I\(_4\) treatment as the diagonal, CT, DMR, WUE, and RSR traits were placed and again vector angles were acute, indicating positive correlations between them. In general, diagonal treatments are superior in trait/traits of the same section over the other treatments and there are significant positive correlations between them, the angles between trait vectors are acute and such traits are placed close to each other (Yan and Tinker, 2006; Akcura, 2011). According to the present biplot, biomass yield had positive
correlations with CC, SC, FRY, and DRY traits and negative correlations with CT, DMR, WUE, and RSR traits.

### CONCLUSIONS

This study was conducted for two years to determine the effects of different water stress levels on biomass yield, root yield, root/shoot ratio, water consumption, water use efficiency, yield reduction ratio, and some other physiological characteristics of sorghum plants. Present findings revealed that the investigated parameters were influenced by water stress levels. Water stress reduced biomass yield, root yield, stomatal conductance, and chlorophyll contents, but increased water use efficiency and root/shoot ratios. Biomass yields decreased with water stress, but such a decrease was lower as compared to the decrease in applied irrigation water quantities. Based on our findings, it was concluded that deficit irrigation could be practiced in sorghum cultivation and irrigation costs should be taken into consideration.

Table 9. Relationship between traits in sorghum.

<table>
<thead>
<tr>
<th>Traits</th>
<th>FBY</th>
<th>DMR</th>
<th>DBY</th>
<th>SC</th>
<th>CC</th>
<th>CT</th>
<th>WUE</th>
<th>FRY</th>
<th>DRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBY</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMR</td>
<td>-0.89**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBY</td>
<td>0.99**</td>
<td>-0.83**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>0.88**</td>
<td>-0.82**</td>
<td>0.87**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.80**</td>
<td>-0.81**</td>
<td>0.77**</td>
<td>0.83**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>-0.97**</td>
<td>0.89**</td>
<td>-0.96**</td>
<td>-0.90**</td>
<td>-0.78**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WUE</td>
<td>-0.27**</td>
<td>0.55**</td>
<td>-0.18**</td>
<td>-0.50**</td>
<td>-0.50**</td>
<td>0.34**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRY</td>
<td>0.96**</td>
<td>-0.89**</td>
<td>0.95**</td>
<td>0.93**</td>
<td>0.89**</td>
<td>-0.94**</td>
<td>-0.34**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DRY</td>
<td>0.96**</td>
<td>-0.85**</td>
<td>0.96**</td>
<td>0.90**</td>
<td>0.85**</td>
<td>-0.95**</td>
<td>-0.22**</td>
<td>0.98**</td>
<td>1</td>
</tr>
</tbody>
</table>

**Figure 1.** GGE-biplot analysis to visually evaluate the relationship between the traits examined at different water stress levels. FBY: Fresh Biomass Yield; DBY: Dry Biomass Yield; FRY: Fresh Root Yield; DRY: Dry Root Yield; RSR: Root/Shoot Ratio; WUE: Water Use Efficiency; DMR: Dry Matter Ratio; CT: Canopy Temperature; SC: Stomatal Conductance; CC: Chlorophyll Contents.
REFERENCES


Effects of Water Stress on Sorghum

اثرات سطوح مختلف تنش آبی بر زیستنوده، عملکرد ریشه و برخی پارامترهای
فیزیولوژیکی سورگوم

1. گنلاد

چکیده

به‌منظور بررسی اثرات سطوح مختلف تنش آبی بر عملکرد زیست‌نوده، عملکرد ریشه، نسبت ریشه به ساقه، برخی ویژگی‌های فیزیولوژیکی، رشد و کاربرد آب (WUE)، آب مصرفی فصلی، و تعیین نسبت کاهش عملکرد سورگوم سیلوی، این پژوهش در شرایط نسبت آب به مدت دو سال (1387–1388) روی سورگوم انجام شد. آزمایش‌ها در قالب طرح بی‌بندی رودکار به‌کار گرفته شد. چهار تیمار آبیاری مختلف به کار گرفته‌اند که شامل: 

1. آبیاری کامل (I1)
2. 75% آبیاری (I2)
3. 50% آبیاری (I3)
4. 25% آبیاری (I4)

در سال 1381، بازده زیستنوده خشک بیش از 81.88 (I4) و 70.17 (I1) در هکتار، هزایت روزانه بیش از 27.7 (I4) و 812.1 میلی‌متر در متر مربع، محتوی کلروفیل بیش از 72 (I4) و 17.8 (I1)، دمای پوست بیش از 72.7 (I1) و 78.7 (I4)، و WUE بیش از 1.4 (I1) و 4.4 (کیلوگرم در متر مکعب I3) بودند. در سال 1382، بازده زیستنوده خشک بیش از 81.48 (I4) و 74.57 (I1) در هکتار، هزایت روزانه بیش از 05.5 (I4) و 875.4 میلی‌متر در متر مربع (I1)، و محتوی کلروفیل بیش از 75.2 (I4) و 17.5 (I1) بودند. دمای پوست بیش از 71.1 (I1) و 71.4 (I4)، و WUE بیش از 1.7 (I1) و 1.5 (کیلوگرم در متر مکعب I4) بودند. بر اساس میانگین دو ساله، عملکرد زیست‌نوده با افزایش تنش آبی کاهش یافت، اما این کاهش در مقایسه با کاهش مقدار آب آبیاری داده شده کمتر بود.

 DOI: 10.52547/jast.24.6.1487
 Downloaded from jast.modares.ac.ir on 2022-11-22