Changes in Climatic Variables and Their Effect on Wheat Water Requirement in Urmia Lake Basin

H. Faghih¹, J. Behmanesh¹*, H. Rezaie¹, and K. Khalili¹

ABSTRACT

Climate change and low water use efficiency are the main reasons for reducing the water entering the Urmia Lake. Therefore, water use management via irrigation scheduling can be an effective strategy to restore this lake. This research was conducted to investigate the effect of climatic variables on water requirements, identify water-sensitive growth stages, and prepare irrigation scheduling guidelines for wheat, which is one of the main crops in the studied region. For this purpose, crop Evapotranspiration (ETc) and Net Irrigation Requirement (NIR) of wheat growth stages were estimated by computing the daily soil water balance of the root zone for a period of 32 years (1985-1986 to 2016-2017). Dividing wheat growth period into nine phenological stages was performed using Growing Degree Days (GDDs) and Zadoks scale. These stages included intervals of [Sowing-Emergence (StE)], [Emergence-Trifoliate (EtT)], [Trifoliate-Double ridge (TtD)], [Double ridge-Jointing (DtJ)], [Jointing-Boot ing (JtB)], [Boot ing-Heading (BtH)], [Heading-Anthesis (HA)], [Anthesis-Maturity (AtM)] and [Maturity-Harvesting (MtHa)], whose mean ETc was estimated to be 2.30, 1.33, 1.03, 3.63, 4.69, 5.13, 6.53, 7.09 and 1.35 mm d⁻¹, respectively. The mean ETc, Effective Precipitation (Eff. P) and NIR of wheat during its growth period were estimated to be 774, 349, and 425 mm, respectively. Results showed that wheat sensitivity to water stress is high from booting to maturity, is low from sowing to double ridge and from maturity to harvesting, and is moderate in other stages. Therefore, increasing the irrigation interval in the first three stages of growth and eliminating the end-stage irrigation are recommended for water saving.

Keywords: Dual Kc, FAO Penman-Monteith, GDD, Mann-Kendall test, Zadoks scale.

INTRODUCTION

Urmia Lake, in north-western Iran, is the largest saltwater lake in the Middle East (Zoljoodi and Didevarasl, 2014). Over a period of 20 years (1995-2015), the lake water level has decreased more than 8 m (Khazaei et al., 2019). This decline in the lake water level has caused a significant decrease in lake surface area and its water volume. Continuation of the drying up of Urmia Lake will cause serious damages to health, hygiene, livelihood, and destruction of its basin ecosystem.

The drying process of this lake is the consequence of negative impacts of human activities and natural factors. Unbalanced and unsustainable development of agricultural activities and excessive and undesirable water use in this sector are the most important reasons for over-harvesting of the renewable water resources in the Urmia Lake Basin (Khazaei et al., 2019).

Irrigation scheduling is one of the most important practices to manage water use in agriculture. In numerous studies, the effectiveness of different irrigation scheduling methods in reducing water use and increasing water productivity has been evaluated (Rosa et al., 2012; Zhao et al., 2013; Gao et al., 2014; Incrocci et al., 2014; Goosheh et al., 2018; Zhang et al., 2018; Ewaid et al., 2019; Jha et al., 2019; Mehmood et al., 2019; Zhou et al., 2019; Taromi Aliabadi et al., 2019; Erken and Yildirim 2019; Dindarlou et al., 2019; Singh et al., 2019).

¹ Department of Water Engineering, Urmia University, Urmia, Islamic Republic of Iran.
* Corresponding author; e-mail: j.behmanesh@urmia.ac.ir
Irrigation scheduling involves methods that are based on plant stress indices, soil moisture budget, crop water use (ET), or a combination of these approaches (Hill, 2002). Applying these methods requires field measurements and experiments, or the use of simulation models. Field experiments have some limitations (including cost and time consuming, unable to perform multiple and complex irrigation management options, and generalization of test findings to other conditions and regions (external validity)). Simulation models are used to overcome these limitations. Among the most used ones are FAO Penman-Monteith (P-M), CERES, and AquaCrop models. The effectiveness of these models has been studied and approved for irrigation scheduling of different crops, reducing water use and increasing water productivity in different parts of the world (Rosa et al., 2012; Zhao et al., 2013; Gao et al., 2014; Incrocci et al., 2014; Goosheh et al., 2018; Zhang et al., 2018; Zhang et al., 2018; Ewaid et al., 2019; Zhou et al., 2019).

In Saqqez County, located in the Urmia Lake basin, farmers do not use the scientific method for irrigation scheduling. The vastness of the area is an obstacle to generalize the results of field experiments to the whole region. This research was conducted to prepare irrigation scheduling guidelines for wheat using FAO P-M model and dual K_c approach, as well as investigate the effect of climatic variables on water requirements and identifying water-sensitive growth stages of wheat.

MATERIALS AND METHODS

Study Area

The study area is Saqqez County in Kurdistan province, located in the southern part of the Urmia Lake basin of Iran (Figure 1). Saqqez has a cold semi-humid climate. The climate of Saqqez was determined using Emberger method (Arkian et al., 2018). Daily minimum and maximum temperatures of Saqqez in the coldest and warmest months of the year are -36 and 43°C, respectively. Mean annual precipitation of

![Figure 1. Location of Urmia Lake basin and Saqqez County and the textural classes of 94 soil samples of the study area in the USDA soil texture triangle.](image-url)
Saqqez is about 450 mm. In this county, approximately 118,000 ha of the land is cultivated. On average, wheat is planted in 83,000 ha (70%) of these cultivated lands. Therefore, wheat is one of the main crops of this county.

The textural classes of 94 soil samples of the study area are presented in Figure 1. According to this figure, Saqqez soils include clay loam (41.5%), clay (21.3%), loam (14.9%), sandy clay loam (9.6%), sandy loam (5.3%), silty clay (3.2%), silty clay loam (2.1%) and silty loam (2.1%). These data were obtained from Kurdistan Agricultural and Natural Resources Research and Education Center.

FAO P–M Equation

In this method, reference ET (\(ET_0\)) is estimated by Equation (1). The required climate variables to calculate daily \(ET_0\) by this method were obtained from the Saqqez Synoptic Station. This station has a longitude of 46° 16′ E, a latitude of 36° 15′ N, and an altitude of 1,522.8 m above mean sea level.

\[
ET_0 = \frac{0.408 \cdot \Delta \cdot (R_n - G) + \gamma \cdot \frac{900}{T + 273} \cdot u_2 \cdot (e_a - e_s)}{\Delta + \gamma \cdot (1 - 0.34 \cdot u_2)}
\]

(1)

Where, \(ET_0\) is reference ET (mm d\(^{-1}\)), \(\Delta\) is slope of the saturation vapor pressure curve (kPa °C\(^{-1}\)), \(\gamma\) is psychrometric constant (kPa °C\(^{-1}\)), \(u_2\) and \(T\) are wind speed (m s\(^{-1}\)) and mean air temperature (°C) at 2 m height, \(e_a\) and \(e_s\) are actual and saturation vapor pressures (kPa), \(G\) is soil heat flux density (MJ m\(^{-2}\) d\(^{-1}\)), and \(R_n\) is net Radiation at the crop surface (MJ m\(^{-2}\) d\(^{-1}\)).

Crop Growth Stages

Every plant needs a certain amount of heat to pass a growth stage, which is referred to as the heat requirement and is expressed in terms of Growing Degree Days (GDDs). Table (1) presents the GDDs required for some wheat growth stages (Bowden et al., 2008). In this study, the GDDs were calculated using Equation (2).

\[
GDD = \sum_{j=1}^{n} \left(\frac{1}{m} \sum_{i=1}^{m} T_i - T_b \right)
\]

(2)

Where, \(T_i\) is hourly air Temperature (°C), \(m\) is number of daily air temperature records, \(n\) is number of days after sowing, and \(T_b\) is the base Temperature. The base temperature, or physiological zero, is the minimum temperature at which the plant grows, and its value varies for each plant. For wheat, \(T_b\) was set to zero degrees Celsius (Bowden et al., 2008).

Based on the \(K_c\) approach, the plant growth period is divided into four stages including initial (\(L_{ini}\)), development (\(L_{dev}\)), mid (\(L_{mid}\)) and late (\(L_{end}\)) season. The GDDs required for wheat to pass through the initial (trifoliate), crop development (heading), mid-season (maturity), and late-season (harvesting) stages were considered 300, 1400, 2,200, and 2,500°C, respectively (Allen et al., 1998; Bowden et al., 2008).

Table 1. Generic GDDs required for wheat growth stages (Bowden et al., 2008).

<table>
<thead>
<tr>
<th>Row growth stage (Code(^a))</th>
<th>GDDs (°C)</th>
<th>Row growth stage (Code(^a))</th>
<th>GDDs (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Seedling (00) to emergence (09)</td>
<td>100</td>
<td>7 Flag leaf to heading (59)</td>
<td>140</td>
</tr>
<tr>
<td>2 Emergence to 3 leaves unfolded (Trifoliate) (13)</td>
<td>200</td>
<td>8 Heading to anthesis (69)</td>
<td>75</td>
</tr>
<tr>
<td>3 Trifoliate to double ridge (29)</td>
<td>305</td>
<td>9 Anthesis to maturity (89)</td>
<td>800</td>
</tr>
<tr>
<td>4 Double ridge to terminal spikelet (30)</td>
<td>150</td>
<td>10 Maturity to harvested product (99)</td>
<td>300</td>
</tr>
<tr>
<td>5 Terminal spikelet to jointing (36)</td>
<td>105</td>
<td>1181 Total</td>
<td>2475</td>
</tr>
<tr>
<td>6 Jointing to flag leaf (49)</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The decimal code is based on the well-known cereal code developed by Zadoks et al., (1974).
Dual K_c Method

K_c is a coefficient that is multiplied by the reference crop ET (ET_0) to get the ET_c. The K_c is used in the form of single (Equation 3) or dual (Equation 4) approaches. In real-time irrigation scheduling, dual K_c is more accurate than single K_c (Allen et al., 1998). Therefore, in this study, dual K_c method was used to calculate daily ET of wheat (ET_{cw}):

$$ET_c = K_c \cdot ET_0$$

$$ET_c = (K_{cb} + K_r) \cdot ET_0 \quad \text{always} \quad (K_{cb} + K_r) \leq K_{c-max}$$

(3)

(4)

In Equations (3) and (4), ET_c is crop ET (mm d$^{-1}$) and ET_0 is reference crop ET (grass or alfalfa ET) (mm d$^{-1}$), K_c, K_{cb}, and K_r are single K_c, basal K_c, and soil evaporation coefficient, respectively. The dual K_c is always smaller than the maximum value of K_c (K_{c-max}). The K_{c-max} can be obtained using Equation (5). The K_{cb} of mid and late season stages (K_{cb-mid} and K_{cb-end}) must be modified by using Equation (6) for local weather conditions (Allen et al., 1998).

Where, u_2 is mean wind speed at 2 m height (m s$^{-1}$), RH_{min} is mean minimum Relative Humidity (%), K_{cb-adj} is modified K_{cb}, max () is maximum amount of the parameters in the braces [], separated by the comma.

K_c describes the evaporation component of ET_c. To estimate K_c, it is necessary to calculate daily water balance for the surface soil layer using Equations (7) to (14). For this purpose, the process of evaporation from bare soil exposed to air is divided into two steps. In the first step, topsoil is moist after rainfall or irrigation. Soil evaporation has maximum rate, which is limited only by energy availability. During step 1 of soil drying, the evaporation reduction coefficient (K_r) is constant ($K_r = 1$).

In the second step, topsoil is apparently dry, and evaporation decreases in proportion to the amount of water remaining in the topsoil. During stage 2 of drying, the evaporation rate decreases and K_c is smaller than one (Equation (9)) (Allen et al., 1998).

$$K_c = K_r \cdot (K_{c-max} - K_{cb}) \leq f_{ew} \cdot K_{c-max}$$

(7)

$$D_{e,j-1} = TEW - D_{e,j-1}$$

(8)

$$K_r = \frac{TEW - D_{e,j-1}}{TEW - REW}$$

(9)

$$D_{e,j} = D_{e,j-1} - (P - RO) - \frac{I}{f_w} + \frac{E}{f_{ew}} + T_{ew,j} + D_{p,j}$$

(10)

$$f_{ew} = \min(1 - f_c, f_w)$$

(11)

$$f_c = \frac{(K_{cb} - K_{c-min})^{(1+0.5h)}}{K_{c-max} - K_{c-min}}$$

(12)

(13)

(14)

In Equations (7) to (14), K_{c-min} is minimum K_c for dry bare soil, f_c is mean fraction of topsoil wetted by irrigation or rainfall, f_{ew} is fraction of the soil wetted and exposed to air or soil fraction having maximum evaporation, f_c is the effective fraction of topsoil covered by vegetation, θ_{fc} and θ_{wp} are soil water content at Field Capacity (FC) and wilting point (m3 m$^{-3}$), Z_e is depth of the topsoil layer that is subject to drying by evaporation [0.1-0.15m], TEW (Total Evaporable Water) is cumulative depth of evaporable water during a complete cycle of topsoil drying (mm), REW (Readily Evaporable Water) is cumulative depth of water left in the topsoil layer during a complete cycle of topsoil drying (mm), Z_e is depth of the topsoil layer that is subject to drying by evaporation [0.1-0.15m].
\[D_{r,j} = D_{r,j-1} - (P - RO)_j - I_j - CR_j + ET_{c,j} + DP_j, \quad 0 \leq D_{r,j} \leq TAW \]

Evaporable Water) is cumulative depth of evaporation at the first stage of drying soil (mm), and \(h \) is average plant height (m). Also, in these equations, the \(j \) subscript represents day \(j \), \(D_e \) is cumulative evaporation at the end of the day (mm), \(P \) is Precipitation (mm), \(RO \) is Runoff (mm), \(I \) is Irrigation (mm), \(E \) is Evaporation (mm), \(T_{ew} \) is transpiration from the fraction of the topsoil exposed to air and moisture (mm), and \(DP \) is Deep Percolation (mm) when the soil moisture content is above FC.

As long as the soil moisture content in the evaporation layer is less than FC (i.e., \(D_{r,j} > 0 \)), \(DP_{e,j} \) is zero. The amount of Transpiration from evaporating soil layer \(T_{ew} \) is not very effective in calculating daily moisture balance and can be ignored. The \(Kc_{min} \) coefficient is usually the same as the \(K_{cb-ini} \) used for annual crops (0.15 for wheat) in bare soil conditions (Allen et al., 1998).

Time and depth of subsequent irrigation are determined by computing daily soil water balance of the root zone using Equations (15) to (18). To avoid water stress, irrigation should be done before or at the moment when Readily Available Water (RAW) is depleted (i.e. \(D_{r,j} \leq \text{RAW} \)). Also, to avoid deep percolation, which leads to leaching of soil nutrients, the net irrigation depth should be smaller than or equal to the amount of water depleted \((I_j \leq D_{r,j}) \) (Allen et al., 1998).

\[D_{r,j-1} = 1000 \cdot (\theta_{FC} - \theta_{j-1}) \cdot Z_r \]

\[\text{TAW} = 1000 \cdot (\theta_{FC} - \theta_{wp}) \cdot Z_r \]

\[S = \sum_{i=1}^{n} \sum_{j=i+1}^{m} \text{sgn}(X_{j} - X_{i}), \quad \text{sgn}(X_{j} - X_{i}) = \begin{cases} -1 & \text{if } (X_j - X_i) < 0 \\ 0 & \text{if } (X_j - X_i) = 0 \\ 1 & \text{if } (X_j - X_i) > 0 \end{cases} \]

\[\text{Var}(S) = \frac{1}{18} \cdot [n \cdot (n - 1) \cdot (2n + 5) - \sum_{i=1}^{m} t_i \cdot (t_i - 1) \cdot (2t_i + 5)] \]

\[\text{RAW} = p \cdot (\text{TAW}) \]

Where, the \(j \) subscript represents day \(j \), \(D_r \) is root zone Depletion at the end of the day (mm), \(P \) is Precipitation (mm), \(RO \) is Runoff (mm), \(I \) is net Irrigation (mm), \(CR \) is Capillary Rise from the groundwater table (mm), \(ET_c \) is crop ET (mm), \(DP \) is water loss out of the root zone by Deep Percolation (mm), \(Z_r \) is root Zone depth, \(\theta_{FC} \) is soil water content at FC (m3/m3), \(\theta \) is average soil water content for \(Z_r \) (m3/m3), \(\text{TAW} \) is Total Available soil Water in \(Z_r \) (mm), \(\text{RAW} \) is Readily Available soil Water in \(Z_r \) (mm), and \(p \) is average fraction of \(\text{TAW} \) that can be depleted from \(Z_r \) before moisture stress occurs [0-1].

After heavy rainfall or irrigation, it can be assumed that \(\theta_{j-1} \) is about FC and \(D_{r,j-1} \) is zero. Also, in the region where water table is more than about 1 m below the bottom of root zone (such as in Saqqez), \(CR \) can be assumed to be zero (Allen et al., 1998). In this study, \(RO \) was estimated using the Curve Number method (Schmit and Scott, 2019).

Mann-Kendall Trend Test

The M-K statistical test is applied to evaluate the significance of trend in the data time series. The M-K statistic, \(S \), is calculated using Equation (19). The mean of \(S \) is zero and its variance is calculated by Equation (20). Using the Z-transformation [i.e. Equation (21)], distribution of the \(S \)

<table>
<thead>
<tr>
<th>Month</th>
<th>(E_T) (mm d(^{-1}))</th>
<th>P (mm d(^{-1}))</th>
<th>S (h d(^{-1}))</th>
<th>(T_{\text{mean}}) (°C)</th>
<th>RH(_{\text{mean}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Z</td>
<td>Mean Z</td>
<td>Mean Z</td>
<td>Mean Z</td>
<td>Mean Z</td>
</tr>
<tr>
<td>Jan.</td>
<td>0.8 6.66***</td>
<td>1.8 -1.25ns</td>
<td>4.5 9.90***</td>
<td>-2.2 2.65**</td>
<td>73.8 0.58ns</td>
</tr>
<tr>
<td>Feb.</td>
<td>1.2 7.72***</td>
<td>2.0 -4.73ns</td>
<td>5.5 5.28***</td>
<td>-0.3 5.44***</td>
<td>70.5 -6.41***</td>
</tr>
<tr>
<td>Mar.</td>
<td>2.3 4.24***</td>
<td>2.3 -4.26ns</td>
<td>6.4 4.90***</td>
<td>4.9 5.65***</td>
<td>63.9 -2.35*</td>
</tr>
<tr>
<td>Apr.</td>
<td>3.5 4.21***</td>
<td>2.2 -4.50ns</td>
<td>7.6 3.13**</td>
<td>10.3 2.58**</td>
<td>59.7 0.49ns</td>
</tr>
<tr>
<td>May</td>
<td>4.7 2.62**</td>
<td>1.1 -0.08ns</td>
<td>9.5 -0.33ns</td>
<td>14.3 3.32**</td>
<td>55.5 1.06ns</td>
</tr>
<tr>
<td>Jun.</td>
<td>6.1 5.01***</td>
<td>0.2 -1.67ns</td>
<td>11.9 1.44**</td>
<td>19.1 3.25**</td>
<td>43.6 -0.66ns</td>
</tr>
<tr>
<td>Jul.</td>
<td>6.6 4.09***</td>
<td>0.2 1.31ns</td>
<td>11.7 0.74**</td>
<td>23.6 2.35*</td>
<td>36.1 -2.17*</td>
</tr>
<tr>
<td>Aug.</td>
<td>6.1 2.82**</td>
<td>0.1 2.77**</td>
<td>11.3 1.08**</td>
<td>23.4 6.43***</td>
<td>31.6 -1.15*</td>
</tr>
<tr>
<td>Sep.</td>
<td>4.6 3.68***</td>
<td>0.1 1.06ns</td>
<td>10.5 1.45**</td>
<td>18.7 5.73***</td>
<td>32.7 1.81ns</td>
</tr>
<tr>
<td>Oct.</td>
<td>2.8 2.94***</td>
<td>1.0 0.78ns</td>
<td>8.1 1.77**</td>
<td>13.0 2.49*</td>
<td>47.1 -1.46ns</td>
</tr>
<tr>
<td>Nov.</td>
<td>1.3 0.95ns</td>
<td>2.1 0.54ns</td>
<td>6.0 -0.31ns</td>
<td>6.2 -0.11ns</td>
<td>62.8 2.63**</td>
</tr>
<tr>
<td>Dec.</td>
<td>0.8 3.10**</td>
<td>1.9 -0.03ns</td>
<td>4.5 5.26***</td>
<td>0.6 -0.46ns</td>
<td>70.7 0.38ns</td>
</tr>
<tr>
<td>Annual</td>
<td>3.4 3.72***</td>
<td>1.2 -4.00ns</td>
<td>8.1 3.92**</td>
<td>11.0 5.11***</td>
<td>53.9 -0.63ns</td>
</tr>
</tbody>
</table>

* ns ** ***: Indicate a trend at the significance level of 5% (\(Z_C = 1.96 \)), 1% (\(Z_C = 2.576 \)), and 0.1% (\(Z_C = 3.291 \)), respectively.
Changes in the Length of the Growth Stages

Date of planting was set to October 12 by reviewing the literature and according to the experts from Kurdistan Agricultural-Jahad Organization (Bazgeer et al., 2008). Also, using Table 1 and Eq. (2), Lini, Ldev, Lmid, and Lend of winter wheat in Saqqez County for 32 years (1985-1986 to 2016-2017) were estimated. Results are presented in Figure (2). Coefficient of Variation (CV) for Lini, Ldev, Lmid, and Lend was 35.0%, 6.74%, 6.52% and 7.52%, respectively. The higher value of CV for Lini was due to higher fluctuations in air temperature in the initial stage than in other stages. Mean Lini, Ldev, Lmid, and Lend for winter wheat were obtained as 31, 195, 39 and 12 days, respectively. Allen et al. (1998) reported 30, 140, 40, and 30 days for Lini, Ldev, Lmid, and Lend for winter wheat, respectively. Therefore, the length of wheat growth period determined in this study is longer than that suggested by Allen et al. (1998).

Changes in Kc and Ke

Figure 3 shows the daily variations of Kcb-adj, Ke, (Kc-adj+Ke), and Kc-max in 2015-2016. Due to low vegetation cover at the beginning of the growing season (initial stage), Ke will be very high if the soil gets wet by irrigation or rain. As the crop grows and vegetation cover is completed, Ke decreases. According to Figure 3, it can be said that Ke has a decreasing trend during the growth period and its fluctuations are related to the wetting of the soil surface. This result is consistent with field experiments by Zhao et al. (2013).

Figure 4 shows the mean Kcb-adj, Ke, (Kc-adj+Ke), and Kc-max at nine growth stages of the winter wheat for 2015-2016. Due to the low vegetation cover in the initial growth stage (planting to trifoliate), Ke is high and Kcb-adj is low. Thus, in the initial growth
Figure 3. Daily K_{cb}, K_{e}, K_{cb} + K_{e}, K_{c}, and NIR for winter wheat, and precipitation in 2015-2016.

Figure 4. Mean K_{cb}, K_{e}, (K_{cb} + K_{e}), K_{c}, NIR, and P in nine wheat growth stages in 2015-2016.

Table 3. ET, NIR, and length of different growth stages of winter wheat in Saqqez region.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Duration (Day)</th>
<th>ET_{c} (mm)</th>
<th>Net irrigation (mm)</th>
<th>Nu Of Irr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribution</td>
<td>Confidence level</td>
<td>Distribution</td>
<td>Confidence level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>StE</td>
<td>10</td>
<td>Wakeby</td>
<td>23.0</td>
<td>25.1</td>
</tr>
<tr>
<td>EtT</td>
<td>21</td>
<td>Johnson SB</td>
<td>27.9</td>
<td>37.3</td>
</tr>
<tr>
<td>TtD</td>
<td>128</td>
<td>Wakeby</td>
<td>132</td>
<td>173</td>
</tr>
<tr>
<td>DjT</td>
<td>30</td>
<td>Wakeby</td>
<td>109</td>
<td>121</td>
</tr>
<tr>
<td>JtB</td>
<td>23</td>
<td>Johnson SB</td>
<td>108</td>
<td>119</td>
</tr>
<tr>
<td>BtH</td>
<td>9</td>
<td>Gen Extreme</td>
<td>46.2</td>
<td>51.1</td>
</tr>
<tr>
<td>HtA</td>
<td>4</td>
<td>Wakeby</td>
<td>26.1</td>
<td>29.1</td>
</tr>
<tr>
<td>AtM</td>
<td>40</td>
<td>Wakeby</td>
<td>266</td>
<td>322</td>
</tr>
<tr>
<td>MtHa</td>
<td>13</td>
<td>Wakeby</td>
<td>17.6</td>
<td>24.0</td>
</tr>
<tr>
<td>Total</td>
<td>278</td>
<td>Wakeby</td>
<td>774</td>
<td>878</td>
</tr>
</tbody>
</table>
Climate Change and Wheat Water Requirements

stage, the E portion in ET_C is on the average more than 80%. With the onset of tillering, due to the increasing trend of green vegetation, the descending trend of K_c begins and continues until the end of the physiological maturity stage. From the physiological maturity to harvesting, due to the partial reduction of vegetation cover, K_c shows a slightly increasing trend.

Figure 5 presents the results of calculating mean daily (K_{cb-adj}+K_c) for initial, mid, and late-season stages of winter wheat growth during the 32-year period (1985-1986 to 2016-2017). The mean daily (K_{cb-adj}+K_c)_{ini}, (K_{cb-adj}+K_c)_{mid} and (K_{cb-adj}+K_c)_{end} were 0.79, 1.18, and 0.23, respectively. These coefficients include the effect of both crop transpiration and soil evaporation; therefore, they can be used instead of the single K_c. According to Allen et al. (1998), the single K_c of initial, mid and late-season growth stages of winter wheat are 0.4, 1.15 and 0.25, respectively. It can be seen from this figure that (K_{cb-adj}+K_c)_{ini} and (K_{cb-adj}+K_c)_{end} vary for each year. But the (K_{cb-adj}+K_c)_{mid} was almost constant. The (K_{cb-adj}+K_c)_{ini} and (K_{cb-adj}+K_c)_{end} are dependent on the topsoil moisture balance, which is strongly affected by the weather conditions. Different weather conditions in each year caused changes in soil moisture balance and, as a result, changes in the (K_{cb-adj}+K_c)_{ini} and (K_{cb-adj}+K_c)_{end}.

ET_c and NIR

Daily ET_c of wheat (ET_{c-w}) was calculated using Equation (4). The time and depth of irrigation were determined by Equation (15). The calculations were repeated for 32 years (1985-1986 to 2016-2017). The ET_c and NIR of the growth stage were obtained from the sum of the daily data. EasyFit5.5 software was used to select the statistical distribution of the ET_c and NIR data of the wheat growth stages. The ET_c and NIR of wheat were calculated at different probability levels using the selected appropriate distribution. Results of the calculations are presented in Table 3. It can be seen from this table that the ET_c of wheat at 50% probability level is 774 mm. The mean NIR of wheat was estimated to be 425 mm. The number of irrigations per growth stages include StE (once; 27 mm), DtJ (1 time; 16 mm), JtB (1 time; 60 mm), BtH (1 time; 30 mm), HtA (1 time; 26 mm), and AtM (3 times; 266 mm).

According to Equation (14), the evapotranspiration of wheat (ET_c) in Saqqez is supplied by precipitation and irrigation. Therefore, the difference between ET_c (774 mm) and NIR (425 mm) indicates the amount of effective precipitation (i.e. 349 mm). Total evaporation from soil during the wheat growth period (E) was 157 mm, which was 20% of Evapotranspiration (ET_c).

Reference documents for estimating water requirement of main crops in Iran (Farshi et al., 1997; Alizadeh, 2003) cite ET_c and NIR for wheat in Saqqez as (531 and 366 mm) and (375 and 220 mm), respectively. These reported ET_c and NIR values are much less than those estimated in this study (774 and 425 mm). These researchers considered the length of growth stages to be constant each year and did not modify the crop coefficients based on weather conditions. These were the main reasons for the large differences in their results compared to the present study. Other reasons for the discrepancy can be attributed to the differences in the statistical length of the data and the increasing or decreasing trend of some climatic data. This discrepancy in results confirms the necessity of revising and updating the mentioned references.

Mean daily net irrigation requirements, evaporation, transpiration, and evaporation portion of ET (E/ET_c) at wheat growth stages are presented for 32 years in Figure 6. Based on the mean daily ET_c and E/ET_c, each of the nine wheat growth stages can be classified into three groups with low, moderate, and high sensitivity to water stress.

Mean soil evaporation and wheat transpiration in the four stages of Sowing to Emergence (StE), Emergence to Trifoliate...
Mean E and wheat T in three stages of Booting to Heading (BtH), Heading to Anthesis (HtA), and Anthesis to Maturity (AtM) were (0.15, 4.98), (0.13, 6.40), and (0.14, 6.95) mm d⁻¹, respectively. In these three stages, E/ETc was low, and ETc and wheat sensitivity to water stress were high. In these three wheat growth stages in the Saqqez region, precipitation probability is very low and ETc must be supplied through accurate and timely irrigation.
Mean E and wheat T in two stages of Double ridge to Jointing (DtJ) and Jointing to Booting (JtB) were (0.73, 2.90) and (0.42, 4.27) mm d\(^{-1}\), respectively. In these two stages, wheat sensitivity to water stress was moderate.

CONCLUSION

Proper identification of wheat water-sensitive growth stages will help planners and farmers in timely irrigation and optimal management of water use. Also, scientific use of deficit irrigation (reducing or eliminating irrigation in growth stages non-sensitive to water stress) and supplemental irrigation methods would be possible. In addition, water use efficiency can also be increased. Results showed that wheat sensitivity to water stress was high from booting to maturity, low from sowing to double ridge and from maturity to harvesting, and moderate in other stages.

Agricultural operations are done based on plant growth stages, which are known to the farmer. However, previous relevant reference documents of Iran have reported crop ET\(_c\) and NIR for ten-day periods. Therefore, it is difficult to use the results of these documents in practice. In this study, to solve this problem, wheat irrigation scheduling guideline was developed based on nine principal growth stages of the Zadoks scale, and the sensitivity of each stage to water stress was determined.

Duration and crop coefficients of winter wheat growth stages (i.e. \(L_{\text{ini}}\), \(L_{\text{dev}}\), \(L_{\text{mid}}\), \(L_{\text{end}}\), \(K_{c-\text{ini}}\) and \(K_{c-\text{end}}\)) varied each year. Therefore, using a constant value for them in different years will be the main source of error in calculating the water requirement based on the \(K_c\) method. This subject has not been addressed in the national water documents of Iran. This result confirms the necessity of revising the reference documents for estimating water requirement of the main plants in Iran. In addition, this study showed a significant increasing trend in \(E_T\) data, which is a compelling reason for updating former documents.

REFERENCES

تفکیک در متغیرهای آب و هوایی تأثیر آنها بر نیاز آبی گندم در حوضه دریاچه ارومیه

5. فقهه، ج. همیشگی، ج. رضایی و ک. خلیلی

چکیده

تفکیک آب و هوایی و کارآیی پایین مصرف آب در بخش کشاورزی، در عامل اصلی کاهش آب روده به دریاچه ارومیه می‌باشد. بنابراین، مدل‌برداری مصرف آب از طریق برنامه‌ریزی آبیاری می‌تواند راه کاری موثر برای احیای این دریاچه باشد. این تحقیق با هدف بررسی اثر متغیرهای آب و هوایی بر نیاز آبی شناسایی مراحل رشد حساس بیان آب و تهیه دستورالعمل برنامه‌ریزی آبیاری برای گندم، که یکی از گیاهان ذرایع اصلی در حوضه دریاچه ارومیه است، انجام شد. برای این منظور، تبیخ-تعرق مراحل رشد گندم با محاسبه بیان آب و رطوبت خاک منطقه (NIR) و نیاز آبیاری خالص (ETc) رشته برای دوره 32 ساله (1365-1396) برآورد شد. جداسازی دوره رشد به نه مرحله فنولوژی با استفاده از درجه وزهای رشد و مقیاس Zadoks انجام شد. این مرحله شامل فواصل [کاشت تا سیب شدن]، [سیب شدن تا برقی]، [برقی تا برجنگی دوگانه]، [برجنگی دوگانه تا تشکیل ساقه]، [تشکیل ساقه تا چکمه برش]، [چکمه برش تا تشکیل خونه] و [تشکیل خونه تا اگزه جهی] [گلدهی تا رسیدگی] و [رسیدگی تا برداشت] بودند. که میانگین آن‌ها به ترتیب برای با 2.30، 1.33، 1.03، 0.63، 0.36، 0.49 و 7.09 و 1.35 میلی‌متر در روز برآورد شد. میانگین تبیخ-تعرق، به‌وسیله نیاز آبیاری خالص گندم در طول دوره رشد آن به ترتیب 774 و 425 میلی‌متر برآورد شد. نتایج نشان داد حساسیت گندم تنسب به نیاز آبی از چکمه برش تا رسیدگی زیاد است. از کاشت تا برجنگی دوگانه و از رسیدگی تا برداشت کم و در سایر مراحل متوسط است. بنابراین افزایش فاصله آبیاری در سه مرحله اول رشد و هدف آبیاری مرحله آخر رشد برای صرفه جویی در مصرف آب توصیه می‌شود.