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Thermal, ANFIS, and Polynomial Neural Network Models for
Predicting Environmental Variables in an Arch Greenhouse
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ABSTRACT

The aim of this study was to design an Adaptive Neuro-Fuzzy Inference Mechanism
(ANFIS) and a Polynomial Neural-Network (PNN) to improve modeling and identification of
some climate variables within a greenhouse. Furthermore, a Stable Deviation Quantum-
Behaved Particle Swarm Optimization (SD-QPSO) algorithm was employed as a learning
algorithm to train the constant parameters of ANFIS and PNN structures. To denoise
measured data, a wavelet transform method was applied to ensure that no measured data
exceeds a predefined interval. Moreover, to show the modeling performance, a set of
differential equations were derived as a dynamical model based on the computation of energy
and mass balance in a specified greenhouse. The results of modeling and simulation were
evaluated with the experimental results of an experimental arch greenhouse. The results
showed that the proposed models were more accurate in predicting greenhouse climate and
could be used more easily. Moreover, this study showed that the PNN model with less pop-size
and evaluation function was more effective than the ANFIS structure to predict the
temperatures of inside air and inside roof cover. In this study, an on-line identification system
is also proposed for real time identification of experimental data. The obtained simulation
results show that performance of the proposed modeling structures and identification system
are effective to predict and identify the soil surface, internal air, and roof cover temperatures
of the greenhouse. This study shows that the identification algorithm can be used to predict

and confirm the results of the model.
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INTRODUCTION

The greenhouse is considered as an
uncertain and a very complex dynamic
nonlinear system that is covered with thin and
transparent materials. The disturbance variables
such as external air temperature, radiation, wind
speed and humidity increase the nonlinearity
property of greenhouses. Therefore, difficulties
to improve the accuracy in the greenhouse
controller design such as climate control systems
and the optimization methods to save the energy
demand are increased. To develop the
greenhouse automation, Grigoriu et al. (2015)
provided heat for a specified greenhouse by use
of parabolic trough collector thermal energy and
designed a control system to regulate the internal
temperature of the greenhouse. They induced a

proper signal as an input to climate control
system of a greenhouse. However, to design
precise control systems, a clear physical
explanation of the greenhouse environment can
be helpful. Hence, many modeling strategies and
optimization methods have been proposed for
greenhouse simulation and control over the
years. To design a practical control system based
on a fairly accurate model for greenhouse
temperature, Marquez-Vera et al. (2016)
presented a fuzzy model of the internal
temperature of a greenhouse and developed a
fuzzy controller to adjust the internal
temperature. Moreover, Isaev and Sadykov
(2014) presented a mathematical model of the
heat exchange process based on analytical
approach in a solar greenhouse. Su and Xu
(2017) presented a discrete-time greenhouse
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climate model and designed a greenhouse
climate discrete control based on an algebraic
fitting technique and time sequence functions.
They employed a polynomial to estimate and
identify unknown parameters and some
unmodeled dynamics based on the least square
and Levenberg-Marquardt (LM) algorithms.
Fidaros et al. (2010) developed a numerical
simulation based on finite volume to investigate
the uniform transfer of air due to ventilation that
occurs inside an arch type of tunnel greenhouse
during a solar day. As can be seen, many models
have been proposed to improve the climate
control systems to save the energy demand.
Therefore, preparing a precise greenhouse
climate model becomes a challenge in
engineering studies. Hence, Sethi et al. (2013)
compared the performance of some climate
thermal models and heating methods in the
analysis of greenhouses. To achieve a realistic
simulation of greenhouse climate modeling,
steady state conditions of the glazing cover
inside, air, and soil should be considered. The
steady state analysis can be used to calculate the
total additional energy required in a greenhouse
(Mobtaker et al., 2016). Thus, Joudi and Farhan
(2007) proposed a dynamic model to predict the
inside air and soil temperature of a greenhouse
with less than 10% absolute error. Many artificial
intelligence modeling techniques, such as the
artificial neural network (Fourati and Chtourou,
2007; Gonzélez and Calder6n, 2018; Garcia et
al., 2020; He and Ma, 2010) have been
developed for modeling and controlling the
climate of the greenhouse based on roof cover,
soil temperature, and air temperature.

For greenhouse climate control modeling, the
sampling time to collect the data is important. It
should be noted that the run time of calculations
increases with a lot of collected data. However, a
small data set may provide inaccurate model for
the control purposes. Therefore, Speetjens et al.
(2009) developed an adaptive extended Kalman
filter for on-line estimation of climate parameters
in a greenhouse model with data collected over a
year. Numerous non-linear control laws have
been used to control climate in greenhouses such
as system linearization (Pasgianos et al., 2003)
and adaptive fuzzy control (Su et al., 2016). The
main objective of the climate control design is to
set the humidity and the temperature of the
greenhouse environment in the vicinity of a
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predefined and desired values. Moreover, in
many studies, the metaheuristic optimization
algorithms such as PSO, Quantum-Behaved
Particle Swarm Optimization (QPSO) have been
applied to solve the optimization problems and to
find the constant parameters of a specified
model. Yu et al. (2016) presented a temperature
prediction model based on a least squares
support vector machine and applied a PSO
algorithm with probability of mutation to
optimized parameters in a model. Chen et al.
(2016) proposed a model optimized prediction
methodology to predict the energy demand of
greenhouses with a better performance of
accuracy and reduction in runtime or
computation time. They employed an adaptive
particle swarm optimization to calibrate the
uncertain parameters by using experimental data.

Perez-Gonzalez et al. (2017) presented a
collection method based on Particle Swarm
Optimization (PSO) and Differential Evolution
(DE) to identify the parameters of a
mathematical model for a greenhouse. Hu et al.
(2014) proposed a methodology based on
nondominated sorting genetic algorithm- 1l
(NSGA-II) for tuning the parameters for multiple
PID controllers to climate control of a
greenhouse.

The sensitivity analysis can be done to show
the sensitivity of a model on input data. Kurtulus
et al. (2010) proposed an ANFIS model with two
triangular MF per node to assess the resulting
hydraulic head distribution. They added a
systematic error of -2 m, -1 m, 1 m,and 2 m to
the soil elevation of each cell and then compared
the results of ANFIS output due to this error than
the output reference and, thus, this difference
showed the model sensitivity.

Based on the static energy balance of the
greenhouse components, Ziapour and Dehnavi
(2012) proposed a finite-volume method for
solving the energy balance in the arc-roof and
one-sided roof enclosures for greenhouse
boundary conditions. Using multiple linear
regressions, Rosas et al. (2017) developed a
semi-empirical dynamic model of energy
balance to predict temperatures of a naturally
ventilated greenhouse in a Mediterranean
climate, where the solar radiation was the main
component of the energy balance in warm
climate conditions.
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The problem of temperature estimation
in a greenhouse system has been paid a lot
of attention and thus many observation and
identification systems, such as Ferreira et
al. (2002) and Patila et al. (2008), have
been developed in recent years. The neural
networks can be used for system
identification effectively. However, the
time delay due to online learning by the
adaptive rules is a problem, indeed.
Therefore, sliding mode observer can be
used as a fast response observer with a
robustness property and high-performance
operation. Hence, Fridman et al. (2007)
proposed a higher-order sliding-mode
observer for linear time invariant systems.
The single output and unknown bounded
single input are some specifications in this
observer. Therefore, the results of sliding-
mode observer such as this method can be
extended to the multi-input multi-output
(MIMO) cases and thus many authors have
developed the higher order sliding mode
observers for the MIMO nonlinear systems
(Floquet et al., 2007).

Although various methods have been
proposed for modeling and predicting
greenhouse climates, it is not yet clear
how reliable their results are. Changes in
boundary  conditions outside  the
greenhouse, as well as changes in
evapotranspiration rates, cause changes in
data collection conditions. Therefore, the
error can increase due to the response of
mathematical models. As a result, the
greenhouse climate-control-systems that
use these models cannot be practical and
appropriate. Therefore, in this study, a
method for modeling and predicting
greenhouse climate was presented that can
be used industrially and practically.

In the next section, specification of
constructed arch greenhouse and a
dynamic model derived based on mass and
energy balance are presented. Moreover,
the proposed ANFIS and PNN models
with their optimization algorithm are
explained and the results of the proposed
models are compared  with  the
experimental data by some simulations.
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MATERIALS AND METHODS
Dynamic Model

In this section, three differential equations
were derived to simulate the inside air, roof
cover, and the soil surface temperatures. This
dynamical model was derived from the energy
balance equation for the inside air, the roof area,
and the topsoil (Van-Straten et al., 2011). It was
assumed that the greenhouse elements were
considered as lumped systems and evaporation
did not occur from the soil surface. Furthermore,
no absorption and emission of the radiation
energy occurred by the inside air. The uniform
temperatures of topsoil layer and air were
assumed in computation and the constructed
greenhouse had no plants during the recording
data. To drive the energy balance equations, the
heat transfer coefficients between the surfaces in
the greenhouse can be written as follows (Van-
Ooteghem, 2007):

1

Ags = 1-7|Tair - Tsoillf

Ags = 1-3|Tair - TsoillZ

Arip =28+ 1.2V, V Ve <4 (3)

Arip = 2.5 Vooﬁ% VVour 24 (4)

A combination of the energy balance and the
transferred energy of the greenhouse between the
elements (De-Zwart, 1996) and with estimated
infiltration through the greenhouse (Vadiee,
2011) can be expressed by the following forms:

v Tair < Tsoil (1)
v Tair = Tsoil (2)

dT o 1
%ﬂ = PsCpsVs (Qrds + Asoilaa,s(TaiT(t) -
Asoit A5(Ts0i1(D)=Tss())
Tsoil(t)) - eri) - SPsCS:;;st . ©)
ATroof 1
Cdt propeVy (Qrdri + 34007 | Tair () —

Troof (t)|1/3 (Tair (t) - Troof (t)) + eri -
Aroofario (Troof (t) - Tout (t)) -
Qrisk) (6)

AT gir 1
— = (Asoilaa,s (Tair ) -

at PacpaVa
Tsoit () — PaCpadson(8.3 X 1075 + 3.5 x

10_5Voutfa)(Tair(t) - Tout(t)) -
1/3
3Aroof |Tair (t) - Troof (t)| (Tair (t) -
awAnw (Tawo (0)=Tnwi
Troog ()= Arteelle® T ©)) 7)

dTLW

where, Q,4s and Q,.4-; are the solar radiation
absorbed by the soil surface and roof,
respectively, and their computational equations
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can be considered as Van-Ooteghem (2007). By
substituting the values of Q4. Qrari, the net
solar radiation heat exchange between soil and
roof Q.;, and the net solar radiation heat
exchange between roof and sky Qs (Van-
Straten et al., 2011) in the above equations, one
can obtain Equation (8):
ATsoil _
at
1
m (Asoilnslslin + Asoilaa,s (Tair (t) -
Ts(t)) - AsoilEsEriFsria(Ts‘l(’)il - Trf}oof)) -
Agoil As(Ts(t)—Tss(t)
: p. (c Vsds ) (8)
sCpsVs
AT o0 1
Tf = prc—prVr(AroofnroofIsIroof +
1/3
3Aroof|Tair (t) - Troof (t)| (Tair (t) -
Troof (t)) + AsoilEsEriFsriO-(Ts‘t)il -
T;l'oof) - Aroofari,o (Troof (t) — Tout (t)) -

AroofEriEskFriskU(Tﬁoof - Ts4ky)) (9)
aTgir 1

= (Asoila’as(Tair (t) - Tsoil(t)) -

dt PacpaVa
PaCpahson (8.3 X 107° + 3.5 X

10_5Voutfa)(Tair(t) - Tout(t)) -
3Aroof|Tair (t) - Troof (t)|1/3 (Tair (t) -

AnwAnw (Tnwo () =Tnwi(t)
T‘roof (t)) - ( dnw )) (10)

Some literature propose a method to find the
sky temperature. In this study, the sky
temperature is presented as T, (t) =

0.0552(T,ye(£))"" (Joudi and Farhan, 2007).
Therefore, Equation (9) can be rewritten as the

following expression:
dTroof _
dt PreprVr

1/3
3Aroof|Tair (t) - T‘roof (t)| (Tair(t) -
Troof (t)) + AsoilEsEriFsriO_(Ts‘t)il -
T‘r400f) - A‘roofari,o (Troof (t) - Tout (t)) -

AroofEriEskFriska [Trf}oof -

1.5\%
(0.0552(T,e (6))") ]} (11)

Where, ¢ = 5.67051 x 1078 W /m?K* is
Stefan-Boltzman constant.

Equations (8), (10), and (11) were solved at
each time step using appropriate values of input
parameters. In the dynamic equations, Tsyii, Tyir
and T,.,, 5 Were state variables, and the variables
Toutr Voutr Iin, and L.oor Were considered as

{Aroofr/rooflslroof +
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input or boundary variables. It should be noted
that some parameters and coefficients of the
dynamic equation of the greenhouse must be
calculated according to the experimental
conditions to improve the result in practice.
Otherwise, these equations will have a
significant error. On the other hand, measuring
these parameters, such as thermal coefficients
that change over time, can be difficult.
Therefore, the use of artificial intelligence
algorithms that directly and indirectly use the
information of common sensors in the
greenhouse, such as temperature, humidity, etc.,
can be more accurate in predicting the results of
greenhouse climate behavior. Hence, an
appropriate method for this issue was suggested
in the following section.

SD-QPSO Algorithm and ANFIS Training

The SD-QPSO (Moghaddam and Bagheri,
2015) is a metaheuristic optimization
algorithm that is based on the Quantum
Behaved Particle Swarm Optimization (QPSO)
algorithm. In this section, the SD-QPSO
algorithm is applied to optimize the ANFIS
parameters (Jang, 1993) in the rules layer and
the least square method is also employed to
find the Takagi—Sugeno coefficients. The main
idea of the SD-QPSO is based on the QPSO
algorithm, in which a stable deviation function
is considered to improve the domain search.
For the N number of particles, swarm set can
be defined as set ={x;,x,,..,xy}. The
position and the velocity i of particles can be
considered as  x; = (x1, Xz, ..., X;p) and
v = (Uil,viz, ...,Vin)T for i = 1,2, ...,N,
respectively. In this algorithm, the best
positions p; = (pi1, Piz, -, Pin) T fOr a history
set P={P,,P,,...,Py} can be defined in
which p = argmin,f;(.) for i=1,2,...,N.
Here, t is an iteration counter and f;(.) is the
objective function. In this study, the position
and the velocity can be written as xfj and vfj
respectively. The basic iterative equations of
the QPSO can be considered by the following
forms:

x5t = Ph + Blmbest — xf;|In (i) if k=05
(12)
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x;tt = Pl; — Blmbest — xf;|In (%) if k<05
(13)
Where, B is called contraction—expansion
coefficient and u is a random number.

clPL-t-+cth-
Py = 2L (14)
The random numbers ¢; and c, are selected
uniformly from the interval [0, 1]. The mean
best (mbest) of population is defined as the

mean of the best positions of all particles and
can be obtained as:
mbest = %Z’i‘il P; (15)
The history set can be also substituted by the
best position and, therefore, the mbest can be

expressed as:
mbest =

(% ﬁlpil'i ﬁlPin---:% ?11131'1') (16)
In the SD-QPSO algorithm, a swarm can be
generated by a nonlinear function. The
evaluation of new swarm shows that it can be
accepted and replaced in position of the worst
particle in the swarm. This way is applied,
while no better solution is obtained, then, a
particle that is selected as a = X,,;, With two
randomly chosen swarm particles {b, c} from
the population are used to generate a new
particle with a fair fitness. So, a crossover
operator is used to generate this solution
vector at the minimum point of the quadratic
curve passing through three different selected
swarm particles {a, b,c}. Therefore, this
method can improve diversity and probability
to find a better particle in the search space. In
this method, a recombination operator is
defined to generate the first candidate particle
x5 s follows:
ot = L(bE=c2)f (an)t(ct-af)f (by)+(af—b2)f(ca) (17)
PZ 2 (by—c)f(ag)+(cz—az)f (by)+(az—by)f (cz)
The stable deviation function as a parallel
recombination operator is defined to generate
the second candidate particle xf, by the

following form:

_ _(bz=c)’f%(az)
Xz = 5 terranyg LA ((b; — c)f (a,)

+ (cz—az)?f%(by)+1 Tanh((cz az)f(bz))

4 @b’ D) onp((a, — b,)f(c,)) (18)

(az=bz)?f?(cz)+1
The sum of absolute errors was considered
as an objective function. Finally, the global
best position of the particles is considered as
the optimized parameters in the rule layer. To
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develop the modeling, evaluation results, and
sensitivity analysis, a PNN structure was also
considered for the comparison purposes. The
structure of the proposed PNN model, which
was optimized by the SD-QPSO algorithm, is
presented in the following section.

Polynomial Neural Network (PNN)

To show the model sensitivity analysis and
model evaluation, a PNN was proposed and
the SD-QPSO algorithm was utilized to obtain
the constant parameters and coefficients. The
main function of PNN can be written as:

Fo(ai'xz,j) = 213=1 T[i(ai'xz,j) (19)

Where, the linear and the nonlinear parts of
function (19) are considered by the following
forms:

nl(ai,xzjj) = Z:r;1=1 Fi(ai' xZJ) =

2731:1 aixz,j (20)
7'[Z(O‘i'XZ.j) = 2?31 ;'n=3i+1 ayFiF;, (21)
(@ x,;) = Xk ?:;-,,-:1 a,Fi’F;, (22)

Where, n is an appropriate increased counter
and m,,m,, ..., mg are selected to be equal to
the number of input variables. The Mean
Absolute Error (MAE) between the observed and
the experimental data are considered as the cost
function that is presented by the following form:

MAE = Y- |exdata; — obdata;|/N] (23)

The learning methodology to train the
proposed PNN model is developed by the
following algorithm:

Choose the number of inputs and constant
parameters based on the polynomial degree of
PNN.

Choose 70% of data as the training procedure.

Random initialize the constant parameters of
PNN model.

Set the evaluation and pop size number of SD-
QPSO algorithm in which the MAE results
between output model and experimental data
satisfy a predefined threshold.

Use the SD-QPSO algorithm to find constant
parameters of PNN model.

Use the optimized constant parameters from
the last step in the PNN model and check the
train and the test quality.
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In modeling, it should be noted that data are
collected and categorized at predetermined
sample times. Therefore, any power failure or
sensor failure that prevents the data from being
recorded correctly can increase the modeling
error. Mathematical identification algorithms can
be used to ensure the accuracy of the measured
variables. In addition, some of the necessary
parameters in predicting the dynamic behavior of
the greenhouse can be identified online using
these mathematical methods. In this research, the
robust identification method used to examine
temperature data is presented in the following
section.

System ldentification of Greenhouse

To investigate the rate of heat transfer and to
improve the energy consumption in a
greenhouse, an identification method can be
useful for on-line estimation of temperature
changes in a greenhouse. However, many
different identification systems have been
developed recently; the use of sliding mode in hi-
tech greenhouses has interested many authors
(Yau and Chen, 2011) because of its fast
converging and easy implementation. To design
a sliding mode identification system, the
chattering phenomena can be considered as a
major problem. Therefore, in this section, a
system identification method based on the higher
order sliding mode identification (Levant, 1993)
is proposed to smoothly identify the average of
daily temperature variables of soil surface,
internal air, and roof cover of the constructed
greenhouse. The proposed simple identification
algorithm is presented by the following
equationS'

% = /11|91| / )tanh(el)
Xy = @ —— (5 — 2) tanh(el)
%, =E [x3 + Azlezll/ tanh(ez)]

=Fa, —5 (5 2 tanh(ez)

%3 = E, [x4 + A3|e3|1/ tanh(e3)]

2
2 =K en—z
Xn-1 = En-3Qn—2 @

— = _tanh(e,_,)
n—2 T erzl—z) 2
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A

Xn-1 =
E,._, [)?n +

1 eZ_
ey t“""(en-l)]

2 9121 1
X, = 17—~
n n=2Pnel (g g te? )

J,C.\n =LEp- [§+/1 |en|1/2

An—llen—ll

tanh(e,_4)

' 2 )tanh(en)]
6 =E, ,a, o )tanh(en) (24)

Where, e; =X%; —X; is the error term
between experimental (%) and estimated data
(®) fori=1,..,nwith % = x; and [%;,0 | is
the output of the proposed observer. There is a
constant parameter §; € [1,1.5] to have a
smooth response. |a(t)] < K is a bounded
smooth scalar function and K is a positive
constant. In Equation (24), the sign function in
the original sliding mode identification
(Levant 1993) has been replaced by

tanh(e;) to induce more smooth

(5;+e2) +ez)
response. The scalar functions E; are defined
as

E;=1if |ej| = |9?j —9?]-| <g forallj<
ielseE; =0 (25)

Where, ¢ is a small positive constant.

In the following, the experimental conditions
and the result of using the mentioned modeling
and identification functions are described.

RESULTS AND DISCUSSION

Structure of Greenhouse and Data
Recording

In this study, the experimental data was
collected in an arch greenhouse that was
designed and constructed at the Southeast of
Iran, in Kerman Province, city of Jiroft, with
geographical coordinates of 57° 51’ E and 28°
32'N, at an altitude of 750 m above the sea level.
The structure of the constructed greenhouse is
shown in Figure 1, with the base dimension of
5.5x40 m. It had a height of 3.5 m and designed
according to receive maximum solar radiation.
This experimental greenhouse was equipped
with natural ventilation system, etc. The heating
system with hot water was off during the data
gathering. Therefore, due to the ability of loggers
and its available space to store information, 6


https://jast.modares.ac.ir/article-23-42853-en.html

[ Downloaded from jast.modares.ac.ir on 2025-07-05 ]

Machine Learning for Predicting Climate Variables JIA\S][‘

Figure 1. Outside and inside views of the
constructed greenhouse.

data were collected daily for the following
variables every one hour (between 10:00 to
17:00) and the average (to reduce the sensitivity
of the model) was used as daily data (Dates of
data recording and measurement: 22/11/2007 to

05/04/2008,): Tairv Troofa Touta Iroofv Vouta
Tsoit» RHyir and RH ;. Then, it was applied as
a new sampling time in modelling. To do this,
four CEM DT-171T sensors were used to

Table 1. Parameters used in calculations.

measure the temperature of the inside air, soil,
and roof cover as well as relative humidity
inside/outside the greenhouse. The constructed
greenhouse was partitioned by sensors located on
the soil, air (middle part of the greenhouse),
inside the roof, and outside the greenhouse.
Figure 2 shows the greenhouse dimensions and
the sensor locations of the data logger system. It
should be noted that the critical area of
temperature in the greenhouse was located
between the soil and indoor air sensors, which
could be wused to determine the optimal
conditions for plant growth. In the next section,
to demonstrate the efficiency of the dynamic
equations, the results are compared with the data
collected by the greenhouse sensors. Simulations
in this study were performed using MATLAB
software version 2016A. Moreover, ANFIS and
PNN models as well as identification and SD-
QPSO algorithms were programmed in this
software.

Dynamic Results

In this section, the results of differential
Equations (8), (10) and (11) are compared with
the experimental data. All initial conditions were
based on experimental data at the beginning of
the operation. The conditions considered for
input variables were as follows: T,,; = 16,
Vour = 848, I;, = 10.85,and I,.,r = 6.2. The
initial values for the state variables wereT,,; =
15.5°C, Tgr =17°C, and Tro0p = 17°C.
Moreover, other nominal parameters of
greenhouse dynamic equations were considered
according to Table 1.

Parameter Value Parameter  Value Parameter Value
Ps 1400 Cpa 1000 ds 0.8
Cps 800 Eg 0.7 Pr 2500
Vs 352 Eri 095 Nroofls 00173

Asoil 440 Feri 0.8 Pa 1.21
Nsts 0.86 Tgs 4 Cpr 840
Aroof 314 Vr 09420 As 06
ano Tout - 0-5Tair Va 13825 dnw 025
ani Tair - O-9Tout Anw 0397 fa 1
Anw 34.5625
623
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To solve the differential equations of the
system, two MATLAB Files (m.file:
MATLAB programming environment) were
programmed in MATLAB environment. The
program of the first m.file included the function
of greenhouse dynamic equations, constants,
variables and how to receive and send input and
output variables. The second file program
included the method of solving the differential
equation of the first m.file, reading experimental
data for comparison from an Excel file, and
instructions for drawing 2D and 3D graphs. To
solve the differential equations, the ode45
Toolbox was used with automatic accuracy. The
statistical results of the dynamic greenhouse
model for T,,; were presented as follows:
MAPE = 2.2733, EF =0.9357, TSSE =
0.2995, RMSE = 0.5873 and R? = 0.9550.
Moreover, the results of statistical calculations
using dynamic model for prediction of T,;,. =
17°C,and T,,r = 17°Care in Tables 2 and 3.
Figures 3a) and 3b) show the results of the
dynamic model and the comparison of the error
response of the experimental data over a period
of 134 days. In the use of dynamical method,
researchers have accepted the error less than
20% (Joudi and Farhan, 2007). It should be
noted that, because of the materials properties
and some assumptions to derive the equations,
comparison between the measured data and
dynamical response are not recommended.
Therefore, it can be shown as differences
between nominal and real conditions during the
work. These differences can be sorted as T,
Tair and Tyo0f. The small error response before
day 90" shows that in cold weather the results of

dynamical model were close to the experimental
data. Closing the opening in winter was the
main reason, because it reduced the effect of
disturbances caused by outside wind speeds. In
this study, we tried to select the constant
coefficients of dynamic equations in such a way
to have the highest correlation between the
results of dynamic equations of the greenhouse
and experimental data. Figure 3 shows that the
maximum and minimum differences are between
the roof temperature and the soil temperature,
respectively. The reason can be attributed to the
effect of wind speed outside the greenhouse and
the intensity of radiation on the roof of the
greenhouse. In addition, the temperature close to
the greenhouse cover was strongly influenced by
the climate outside the greenhouse. On the other
hand, due to sunlight on the soil surface and
increasing heat, the air movement will always be
in the direction perpendicular to the soil and, as a
result, the temperature steady state changes in the
experiment. In this case, we cannot expect the
results of dynamic equations to be very accurate
without calibrating their coefficients. The
following shows how the use of predictive
numerical algorithms can increase the accuracy
of predicting greenhouse climate behavior.

Results of ANFIS and PNN Modeling by
SD-QPSO

The average of one day was considered as an
experimental data to reduce the computation and,
thus, 134 experimental data was gathered for
each variable parameters of Tyir, Troofrs Tout:

I i

40.00m roof
- sensor
£ —i I
o ., =
2 | <
N .'. C [ E air E
o| ©  ver
E 0| © 5
o b 3o < w o :
: ¢ ¢ f i ™
o'—_’— TGRSR . S R Awoo— 7§7! L ad .
i 1 1 ] 1 ]
20.00m 5.00m 5.50m

Figure 2. The greenhouse dimensions and the sensor locations.
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Iroofv Voutv Tsoila RHair and RHout- Two
different ANFIS and PNN structure were
obtained to predict the T,;,- and T}, due to the
inpUtS of Tsoilv Touta Iroofi Voutv RHair and
RH,,;. It is noted that the relation between Ty,;;
with Tg;, and Trp0¢ Can improve the results of
modeling (Taki et al., 2016) and, therefore, the
values of T,,;; were considered as an input.

In the ANFIS mechanism, the three bell
membership functions were considered for each
input layer and ANFIS and PNN constant
parameters were found by the SD-QPSO
algorithm. Thirty-five constant parameters were
used in PNN system and the numbers of
population size and evaluation functions to train
the ANFIS and PNN structure were set as [175,
210] and [112, 196], respectivelyln order to
equalize the effect of data type on
computations, in many artificial intelligence
systems and machine learning algorithms, the
data should be normalized in the range [0, 1].
In the modeling procedure, a wavelet
transformed was employed to denoise all data
(Toetal., 2009).

Three m.files were programmed for ANFIS
model. The first m.file was for starting and
running the program. At first, the data was read
from an Excel file. The wavelet transform
toolbox was then used to denoise measured data.
After normalization, the data were entered into
the SD-QPSO algorithm. In each evaluation, the
ANFIS program written in the second m.file was
called by the mentioned optimization algorithm.
After optimizing the coefficients of the ANFIS
function based on the training data, the test data
in the optimized function were used to show the
performance of ANFIS model in the prediction.
After that, the statistical results whose
calculation program was written in the third
m.file were called and printed. Finally, the
program for creating custom graphs was
implemented. The number of m.files and
programming steps of the PNN model were the
same as for ANFIS. The difference was that, in
the second file, the PNN function program was
written and all the coefficients and programming
in the related files were changed according to the
number of coefficients of this function.

The results of ANFIS model are depicted in
Figure 4, from which the train and test data set
were selected as 70% and 30%, respectively.
Figure 4b shows a small error between trained
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model output and experimental data, which
increased in the test region. Figure 4a shows that
this small error has a negligible effect on ANFIS
model response. Here, the train and the test
region were separated by a dashed line. The
efficiency values such as the Mean Absolute
Percentage Error (MAPE), Modelling Efficiency
(EF), average (TSSE), coefficient of
determination (R?) and the Root Mean Squared
Error (RMSE) due to ANFIS, PNN, and
dynamic models are shown in Tables 2 and 3 for
Tair and Troof, respectively. The high accuracy
and model performance of the ANFIS and PNN
structure can be shown by the values of R? and
RMSE. It has a value less than 0.99 and 0.28 in
ANFIS and PNN modeling, respectively. Table 3
shows that, by using this structure to model
Troof, the maximum RMSE value decreased to
less than 0.99. PNN model was more effective
than ANFIS and dynamic models because of
small values for RMSE, TSSE, MAPE, large
values for R? and EF. The PNN model results
and error response are depicted in Figures 5a and
5b, respectively.

In this study, the sensitivity analysis was
performed to sort the effectiveness inputs in two
different strategies. In the first strategy, based on
the optimized PNN parameters, which were
founded by the SD-QPSO algorithm, a +0.1 and
a -0.1 deviation were added to each normalized
input, while the others were fixed. The results
can be obtained in Figures 6 and 7. Figures 6a
and 7a show that T,,; and RH,,; are the most
and least important inputs to model the T,
respectively. It shows that changing of the
outside temperature of greenhouse should be
considered to design a temperature control
system and the required power. Moreover, the
relation between T,y and Th.o0p are shown in
Figures 6b and 7b. Solar radiation from the soil
to the roof and the effect of RH,, on this
reflection can be considered as the main
reason in the results of sensitivity analysis.
Because sunlight is refracted or absorbed by
water droplets suspended in the air. In the
second strategy, an input was removed and the
effect of removed input on the output was
investigated. The results shown in Figure 8
confirm the first strategy.

As mentioned, various assumptions should be
considered to obtain the equations and the
dynamic model of the greenhouse. These
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assumptions are necessary to simplify these
equations.  Otherwise,  measuring  some
coefficients will cost significantly. Therefore,
with these simplifications, dynamic equations
cannot be used to predict the greenhouse climate
in a practical way. Therefore, models such as
ANFIS and PNN can be simply implemented by
using machine learning methods. They have
lower coefficients than other methods such as
multilayer neural networks and can be trained
faster in industrial applications. It should be
noted that, in this case, the only limitation of
using these algorithms is to keep constant the
variables that affect the physics of the problem
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Modelling ANFIS Polynomial Dynamic Identification
structure Traindata Test data Train data Test data Model system
MAPE 6.8381 5.0798 1.4925 1.2199
EF 0.8068 0.9718 0.9907 0.9983 6.3553 2.5643
TSSE 1.3513 1.3355 0.0643 0.0770 g-gggg 8-23&3
RMSE 1.1624 1.1556 0.2537 0.2775 18353 0.7361
R? 0.99991 0.99987 0.999934 0.99997 0.8855 0.9784
Table 3. Efficiency values of T, model.
Modeling ANFIS Polynomial Dynamic Identification
structure  Traindata  Testdata Traindata Test data Model system
MAPE 5.3639 4.4446 0.8933 0.8770 8.0991 3.1946
EF 0.8909 0.9797 0.9969 0.9992 0.7996 0.9365
TSSE 0.8315 0.8902 0.0230 0.0323 6.7062 2.1234
RMSE 0.9118 0.9811 0.1518 0.1798 2.5896 1.4572
R? 0.99996 0.99984 0.999997  0.999996 0.8944 0.9441
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Figure 3. (a) Simulation results due to dynamical model and experimental data, and (b) Error responses.

but are not involved in modelling. Otherwise, the
model coefficients must be trained and updated
at different predefined times.

Development of Greenhouse Climate
Modeling with ANFIS and PNN

The modelling performed by Hongkang et al.
(2018) by using the neural network method used
80% of the data for training and increased the
modelling accuracy for T,; to R? = 0.914,
MAPE = 0.842 and RMSE = 1.504. In other
studies, on neural networks, to predict
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Figure 4. (a) Simulation results due to ANFIS model and experimental data, and (b) Error responses.
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Figure 5. (a) Simulation results due to PNN model and experimental data, and (b) Error responses.

greenhouse temperatures, the RMSE was 0.94
and 0.9412, respectively for T, (Jung et al.,
2020; Miranda and Castario, 2017). Compared to
Tables 2 and 3, the results show that ANFIS and
PNN algorithms have higher accuracy than the
neural network model. Furthermore, it should be
noted that we used only 70% of the data set for
training. Moreover, we used three and one layer
of neurons in, respectively, ANFIS and PNN
models. Therefore, the number of constant
variables was lower, and the convergence rate of
the model was higher than the neural network,
which used more than 35 neurons in 3 hidden
layers. As a result, the training speed in the
proposed models was higher than neural
networks.

The artificial intelligence algorithm can
provide accurate predictions of parameters
when there are no significant changes in the
data pattern. In other words, when using the
trained algorithm, the pattern of climate
outside the greenhouse or the rate of
evapotranspiration inside the greenhouse
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should not change much compared to the time
of data collection. In this case, the mentioned
algorithms can be well used to predict and
manage the climate inside the greenhouse or in
the relevant climate control systems. In
intelligent algorithms, type and data diversity
will play an important role in application
guality. At the time of data collection, the
model can be made more practical by
considering a greater variety of data that are
more effective in greenhouse climate. In
general, despite disturbances, uncertainties,
and perturbations, the modelling response
cannot be expected to be reliable in all
circumstances. Therefore, the use of online
identification algorithms along with modelling
can provide a measure of system performance
accuracy. The results of the identification
algorithm used in this research are presented in
the next section. It can be seen how this
algorithm can be successful in confirming the
greenhouse modelling response.
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Results of Greenhouse Temperature
Identification

The proposed system identification Equation
(24) was employed to identify the temperatures
of Tsoit, Tair and Try0p. Figure 9a shows the
response of identification system with the use of
sign function as To et al. (2009). The response of
identification with sign function was much
noisier than the response of system identification
that was presented by Equation (24). Moreover,
to achieve the performance of the identification
procedure, the wavelet transform can be applied
to denoise the data before use of Equation (24).
The response of this procedure is depicted in
Figure 9b, where the output of algorithm has
converged to the experimental data. This method
can be used on-line to identify the required states
such as temperature and humidity everywhere in
a greenhouse. Figure 9c¢ shows that the proposed
identification algorithm was converged after 5
sample times for Ty,; and less than 2 sample
times for T,;- and T,,,f. Therefore, it can be
applied as an on-line estimator to predict all
requirement states in a greenhouse or in the other
industrial applications. The statistical results of
the identification system for Ty,;; were presented

Figure 6. Sensitivity analisys due to deviation of +0.1.
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Figure 7. Sensitivity analisys due to deviation of -0.1.

as follows: MAPE = 2.05112, EF = 0.98928,
TSSE = 0.22515, RMSE = 0.4745 , and
R? = 0.9949. Moreover, the results of statistical
calculations using identification system for
prediction of T, = 17°C, and Typ0r = 17°C
are in Tables 2 and 3.

Comparing Figures 4, 5 and 9, we see that the
results of modelling and online system
identification were close to each other, and the
results can be used with confidence. Since the
mentioned identification method uses the results
of differential equations online, the way it works
is different from numerical modeling and
artificial intelligence algorithms. Therefore, by
comparing the model responses  and
identification, the system performance can be
ensured. If there is a difference between the
results, the system can be reset or a warning
message or stop command can be sent to the
operators and the user.

Depending on the application, modeling
operations can deal with different types of data
and sampling times. Since reducing the sampling
time increases the sensitivity and increasing it
reduces the accuracy, the choice of this sampling
time will be different depending on the use.
Moreover, one can never be sure that the
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Figure 8. Sensitivity analisys due to removed inputs.

boundary conditions at the time of modeling
exist is the same as the time of operation.
Therefore, based on this study, to apply
mathematical models industrially, it is suggested
that several models should be used
simultaneously with  different identification
algorithms and sampling time. It is also
suggested that off-line modeling can be used to
predict parameters whose sampling time is daily
and longer. Additionally, on-line methods and
identification algorithms can be used to predict
the parameters to be measured at shorter sample
times.

It should be noted that machine learning
methods can predict any repetitive pattern with
varying accuracy. In modelling, if we use many
effective variables on the target, the accuracy of
the model and the modeling challenge increases.
This is more evident in the physical modelling of
the system. To obtain a more complete dynamic
model of the greenhouse, the Penman-Monteith
Equation can be used to calculate the rate of
evapotranspiration from meteorological.
However, obtaining the parameters of these
equations and measuring them will be costly and
time consuming, which is beyond the scope of
this study. However, it should be considered that
sub-reactions and sub-dynamics are always
present, and, therefore, their effect will be
present in the data measured by the sensors. The
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function and wavelet transform.

trained model can be used independently to
predict the desired parameters such as
temperature,  air, humidity,  condensate,
evapotranspiration as well as other greenhouse
parameters. In this case, there will be an
advantage that, without the use of direct data, the
effect of all sub-reactions and sub-dynamics is
easily considered.

CONCLUSIONS

In this study, a set of differential equation was
derived as a dynamical model to find the
temperature of inside air, inside roof cover, and
topsoil for the constructed arch greenhouse.
Moreover, a ANFIS mechanism and a PNN
structure were proposed to predict and model the
Tair and Tyy0 based on Ty, wind speed, Ty,
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RH,;, and RH ;. The SD-QPSO algorithm as a
metaheuristic  optimization  algorithm  was
successfully applied to train the constant
parameters of ANFIS and PNN structures.

The results showed that the proposed models
were more accurate in predicting greenhouse
climate and could be used more easily.
Moreover, this study showed that the PNN
model with less pop-size and evaluation function
was more effective than the ANFIS structure to
predict the temperatures of inside air and inside
roof cover. We showed that by teaching the
proposed models with only 70% of the data, their
accuracy was higher than other similar
references. Statistical analysis showed that R?
and RMSE increased by more than 0.08 and
0.34%, respectively. The sensitivity analysis was
successfully performed by two different
strategies. The results confirmed that the Ty,
Tsoil» RHair, and RHg,: Were more effective on the
T.ir and Tg. Moreover, Tout, RHg, and RHoy
were also effective on the T, An accurate
dynamical model is hard to derive and needs
much time for computation. Therefore, the
proposed ANFIS and PNN structures with the
SD-QPSO algorithm can be applied to nonlinear
model and complicated physical behavior and its
relations. Also, an identification system was
proposed for real time prediction purposes and
was successfully used to predict the Tspi;, Tyir
and Ty, It was shown that the use of wavelet
transforms and substituting the sign function by
the proposed function can improve the
performance of the identification operation. The
results showed that the online identification
system could increase the prediction of T,;,- and
Tro0f bY, respectively, 2.47 and 2.53 times in R?
compared to the dynamic model. This accuracy
showed that the identification system can be used
for confirmation of the model and increasing the
reliability of predicting operations. Therefore,
this advantage can be used in greenhouse climate
controllers.

Nomenclature

Agoits Aroof and Ay, Soil, roof, and north
wall surface area (m?)

V., V, and V. The volume of Soil, inside air
and roof (m?)
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Ps, Pa and p, Density of soil, inside air, roof
cover (kg/m?)

Cps» Cpa AN Cpy - Specific  heat  capacity
(J/kg K) of soil, air and roof

Ag and A, Soil and north wall thermal
conductivity (W /m K)

Eg, E,; and E;, Emission coefficient of soil,
roof and sky

Tsoit» Tair»and Tyroor Temperature of Soil,
inside air and roof (m3)

T,y Temperature of the outside (K)

@, sHeat transfer coefficient, inside air to soil

(W/m?K)

o, Heat transfer coefficient, inside roof to
outside (W /m? K)
Q,-qsHeat transfer, radiation absorption by soil

(W)

Qi Heat transfer, soil to inside roof (W)

RH 4, Inside air humidity

T, Temperature of the lower soil (K)

Vout Out wind speed (m/s)

ds and d,,,, Upper soil and north wall
Thickness (m)

Tawor Tnwi North wall out and in temperature
(K)

fa Infiltration Factor

Fgri) Frisk Soil-roof and roof-sky View factor

Ns1s Absorption coefficient of shortwave
radiation by soil

Nroofis Absorption coefficient shortwave
radiation by roof

Loy Solar radiation, inside roof (W /m?)

I;,, Solar radiation, upper soil (W /m?)

Q.isx Heat transfer, inside roof to sky (W)

Qrari Heat transfer, radiation absorption by
roofs (W)

RH ;¢ Outside air humidity
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