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ABSTRACT 

The aim of this study was to design an Adaptive Neuro-Fuzzy Inference Mechanism 

(ANFIS) and a Polynomial Neural-Network (PNN) to improve modeling and identification of 

some climate variables within a greenhouse. Furthermore, a Stable Deviation Quantum-

Behaved Particle Swarm Optimization (SD-QPSO) algorithm was employed as a learning 

algorithm to train the constant parameters of ANFIS and PNN structures. To denoise 

measured data, a wavelet transform method was applied to ensure that no measured data 

exceeds a predefined interval. Moreover, to show the modeling performance, a set of 

differential equations were derived as a dynamical model based on the computation of energy 

and mass balance in a specified greenhouse. The results of modeling and simulation were 

evaluated with the experimental results of an experimental arch greenhouse. The results 

showed that the proposed models were more accurate in predicting greenhouse climate and 

could be used more easily. Moreover, this study showed that the PNN model with less pop-size 

and evaluation function was more effective than the ANFIS structure to predict the 

temperatures of inside air and inside roof cover. In this study, an on-line identification system 

is also proposed for real time identification of experimental data. The obtained simulation 

results show that performance of the proposed modeling structures and identification system 

are effective to predict and identify the soil surface, internal air, and roof cover temperatures 

of the greenhouse. This study shows that the identification algorithm can be used to predict 

and confirm the results of the model.  

Keywords: Denoising data, Modeling, PNN, SD-QPSO, Wavelet. 

INTRODUCTION 

The greenhouse is considered as an 

uncertain and a very complex dynamic 

nonlinear system that is covered with thin and 

transparent materials. The disturbance variables 

such as external air temperature, radiation, wind 

speed and humidity increase the nonlinearity 

property of greenhouses. Therefore, difficulties 

to improve the accuracy in the greenhouse 

controller design such as climate control systems 

and the optimization methods to save the energy 

demand are increased. To develop the 

greenhouse automation, Grigoriu et al. (2015) 

provided heat for a specified greenhouse by use 

of parabolic trough collector thermal energy and 

designed a control system to regulate the internal 

temperature of the greenhouse. They induced a 

proper signal as an input to climate control 

system of a greenhouse. However, to design 

precise control systems, a clear physical 

explanation of the greenhouse environment can 

be helpful. Hence, many modeling strategies and 

optimization methods have been proposed for 

greenhouse simulation and control over the 

years. To design a practical control system based 

on a fairly accurate model for greenhouse 

temperature, Márquez-Vera et al. (2016) 

presented a fuzzy model of the internal 

temperature of a greenhouse and developed a 

fuzzy controller to adjust the internal 

temperature. Moreover, Isaev and Sadykov 

(2014) presented a mathematical model of the 

heat exchange process based on analytical 

approach in a solar greenhouse. Su and Xu 

(2017) presented a discrete-time greenhouse 
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climate model and designed a greenhouse 

climate discrete control based on an algebraic 

fitting technique and time sequence functions. 

They employed a polynomial to estimate and 

identify unknown parameters and some 

unmodeled dynamics based on the least square 

and Levenberg-Marquardt (LM) algorithms. 

Fidaros et al. (2010) developed a numerical 

simulation based on finite volume to investigate 

the uniform transfer of air due to ventilation that 

occurs inside an arch type of tunnel greenhouse 

during a solar day. As can be seen, many models 

have been proposed to improve the climate 

control systems to save the energy demand. 

Therefore, preparing a precise greenhouse 

climate model becomes a challenge in 

engineering studies. Hence, Sethi et al. (2013) 

compared the performance of some climate 

thermal models and heating methods in the 

analysis of greenhouses. To achieve a realistic 

simulation of greenhouse climate modeling, 

steady state conditions of the glazing cover 

inside, air, and soil should be considered. The 

steady state analysis can be used to calculate the 

total additional energy required in a greenhouse 

(Mobtaker et al., 2016). Thus, Joudi and Farhan 

(2007) proposed a dynamic model to predict the 

inside air and soil temperature of a greenhouse 

with less than 10% absolute error. Many artificial 

intelligence modeling techniques, such as the 

artificial neural network (Fourati and Chtourou, 

2007; González and Calderón, 2018; García et 

al., 2020; He and Ma, 2010) have been 

developed for modeling and controlling the 

climate of the greenhouse based on roof cover, 

soil temperature, and air temperature.  

For greenhouse climate control modeling, the 

sampling time to collect the data is important. It 

should be noted that the run time of calculations 

increases with a lot of collected data. However, a 

small data set may provide inaccurate model for 

the control purposes. Therefore, Speetjens et al. 

(2009) developed an adaptive extended Kalman 

filter for on-line estimation of climate parameters 

in a greenhouse model with data collected over a 

year. Numerous non-linear control laws have 

been used to control climate in greenhouses such 

as system linearization (Pasgianos et al., 2003) 

and adaptive fuzzy control (Su et al., 2016). The 

main objective of the climate control design is to 

set the humidity and the temperature of the 

greenhouse environment in the vicinity of a 

predefined and desired values. Moreover, in 

many studies, the metaheuristic optimization 

algorithms such as PSO, Quantum-Behaved 

Particle Swarm Optimization (QPSO) have been 

applied to solve the optimization problems and to 

find the constant parameters of a specified 

model. Yu et al. (2016) presented a temperature 

prediction model based on a least squares 

support vector machine and applied a PSO 

algorithm with probability of mutation to 

optimized parameters in a model. Chen et al. 

(2016) proposed a model optimized prediction 

methodology to predict the energy demand of 

greenhouses with a better performance of 

accuracy and reduction in runtime or 

computation time. They employed an adaptive 

particle swarm optimization to calibrate the 

uncertain parameters by using experimental data. 

Perez-Gonzalez et al. (2017) presented a 

collection method based on Particle Swarm 

Optimization (PSO) and Differential Evolution 

(DE) to identify the parameters of a 

mathematical model for a greenhouse. Hu et al. 
(2014) proposed a methodology based on 

nondominated sorting genetic algorithm- II 

(NSGA-II) for tuning the parameters for multiple 

PID controllers to climate control of a 

greenhouse. 

The sensitivity analysis can be done to show 

the sensitivity of a model on input data. Kurtulus 

et al. (2010) proposed an ANFIS model with two 

triangular MF per node to assess the resulting 

hydraulic head distribution. They added a 

systematic error of -2 m, -1 m, 1 m, and 2 m to 

the soil elevation of each cell and then compared 

the results of ANFIS output due to this error than 

the output reference and, thus, this difference 

showed the model sensitivity.  

Based on the static energy balance of the 

greenhouse components, Ziapour and Dehnavi 

(2012) proposed a finite-volume method for 

solving the energy balance in the arc-roof and 

one-sided roof enclosures for greenhouse 

boundary conditions. Using multiple linear 

regressions, Rosas et al. (2017) developed a 

semi-empirical dynamic model of energy 

balance to predict temperatures of a naturally 

ventilated greenhouse in a Mediterranean 

climate, where the solar radiation was the main 

component of the energy balance in warm 

climate conditions.  
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The problem of temperature estimation 

in a greenhouse system has been paid a lot 

of attention and thus many observation and 

identification systems, such as Ferreira et 

al. (2002) and Patila et al. (2008), have 

been developed in recent years. The neural 

networks can be used for system 

identification effectively. However, the 

time delay due to online learning by the 

adaptive rules is a problem, indeed. 

Therefore, sliding mode observer can be 

used as a fast response observer with a 

robustness property and high-performance 

operation. Hence, Fridman et al. (2007) 

proposed a higher-order sliding-mode 

observer for linear time invariant systems. 

The single output and unknown bounded 

single input are some specifications in this 

observer. Therefore, the results of sliding-

mode observer such as this method can be 

extended to the multi-input multi-output 

(MIMO) cases and thus many authors have 

developed the higher order sliding mode 

observers for the MIMO nonlinear systems 

(Floquet et al., 2007).  

Although various methods have been 

proposed for modeling and predicting 

greenhouse climates, it is not yet clear 

how reliable their results are. Changes in 

boundary conditions outside the 

greenhouse, as well as changes in 

evapotranspiration rates, cause changes in 

data collection conditions. Therefore, the 

error can increase due to the response of 

mathematical models. As a result, the 

greenhouse climate-control-systems that 

use these models cannot be practical and 

appropriate. Therefore, in this study, a 

method for modeling and predicting 

greenhouse climate was presented that can 

be used industrially and practically. 

In the next section, specification of 

constructed arch greenhouse and a 

dynamic model derived based on mass and 

energy balance are presented. Moreover, 

the proposed ANFIS and PNN models 

with their optimization algorithm are 

explained and the results of the proposed 

models are compared with the 

experimental data by some simulations. 

MATERIALS AND METHODS 

Dynamic Model 

In this section, three differential equations 

were derived to simulate the inside air, roof 

cover, and the soil surface temperatures. This 

dynamical model was derived from the energy 

balance equation for the inside air, the roof area, 

and the topsoil (Van-Straten et al., 2011). It was 

assumed that the greenhouse elements were 

considered as lumped systems and evaporation 

did not occur from the soil surface. Furthermore, 

no absorption and emission of the radiation 

energy occurred by the inside air. The uniform 

temperatures of topsoil layer and air were 

assumed in computation and the constructed 

greenhouse had no plants during the recording 

data. To drive the energy balance equations, the 

heat transfer coefficients between the surfaces in 

the greenhouse can be written as follows (Van-

Ooteghem, 2007): 

        |          |
 
                       (1) 

        |          |
 
                       (2) 

                                             (3) 

              
                                         (4) 

A combination of the energy balance and the 

transferred energy of the greenhouse between the 

elements (De-Zwart, 1996) and with estimated 

infiltration through the greenhouse (Vadiee, 

2011) can be expressed by the following forms:  
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where,      and       are the solar radiation 

absorbed by the soil surface and roof, 

respectively, and their computational equations 
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can be considered as Van-Ooteghem (2007). By 

substituting the values of     ,      , the net 

solar radiation heat exchange between soil and 

roof     , and the net solar radiation heat 

exchange between roof and sky       (Van-

Straten et al., 2011) in the above equations, one 

can obtain Equation (8): 
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Some literature propose a method to find the 

sky temperature. In this study, the sky 

temperature is presented as     ( )  

      (    ( ))
   

 (Joudi and Farhan, 2007). 

Therefore, Equation (9) can be rewritten as the 

following expression: 
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]}     (11)  

Where,                    ⁄  is 

Stefan-Boltzman constant. 

Equations (8), (10), and (11) were solved at 

each time step using appropriate values of input 

parameters. In the dynamic equations,      ,     , 
and       were state variables, and the variables 

    ,     ,    , and       were considered as 

input or boundary variables. It should be noted 

that some parameters and coefficients of the 

dynamic equation of the greenhouse must be 

calculated according to the experimental 

conditions to improve the result in practice. 

Otherwise, these equations will have a 

significant error. On the other hand, measuring 

these parameters, such as thermal coefficients 

that change over time, can be difficult. 

Therefore, the use of artificial intelligence 

algorithms that directly and indirectly use the 

information of common sensors in the 

greenhouse, such as temperature, humidity, etc., 

can be more accurate in predicting the results of 

greenhouse climate behavior. Hence, an 

appropriate method for this issue was suggested 

in the following section. 

SD-QPSO Algorithm and ANFIS Training 

The SD-QPSO (Moghaddam and Bagheri, 

2015) is a metaheuristic optimization 

algorithm that is based on the Quantum 

Behaved Particle Swarm Optimization (QPSO) 

algorithm. In this section, the SD-QPSO 

algorithm is applied to optimize the ANFIS 

parameters (Jang, 1993) in the rules layer and 

the least square method is also employed to 

find the Takagi–Sugeno coefficients. The main 

idea of the SD-QPSO is based on the QPSO 

algorithm, in which a stable deviation function 

is considered to improve the domain search. 

For the N number of particles, swarm set can 

be defined as     *          +. The 

position and the velocity i
th

 of particles can be 

considered as    (             )
 and 

   (             )
  for          , 

respectively. In this algorithm, the best 

positions    (             )
  for a history 

set   *          + can be defined in 

which            ( ) for          . 

Here, t is an iteration counter and   ( ) is the 

objective function. In this study, the position 

and the velocity can be written as    
  and    

 , 

respectively. The basic iterative equations of 

the QPSO can be considered by the following 

forms: 

   
       

   |         
 |  .

 

 
/            

     (12) 
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   |         
 |  .

 

 
/           

     (13) 

Where,   is called contraction–expansion 

coefficient and   is a random number. 

   
  

     
       

 

     
     (14) 

The random numbers    and    are selected 

uniformly from the interval [0, 1]. The mean 

best (mbest) of population is defined as the 

mean of the best positions of all particles and 

can be obtained as: 

      
 

 
∑   
 
       (15) 

The history set can be also substituted by the 

best position and, therefore, the mbest can be 

expressed as:  
      

.
 

 
∑    
 
    

 

 
∑    
 
      

 

 
∑    
 
   /      (16) 

In the SD-QPSO algorithm, a swarm can be 

generated by a nonlinear function. The 

evaluation of new swarm shows that it can be 

accepted and replaced in position of the worst 

particle in the swarm. This way is applied, 

while no better solution is obtained, then, a 

particle that is selected as        with two 

randomly chosen swarm particles *   + from 

the population are used to generate a new 

particle with a fair fitness. So, a crossover 

operator is used to generate this solution 

vector at the minimum point of the quadratic 

curve passing through three different selected 

swarm particles *     +. Therefore, this 

method can improve diversity and probability 

to find a better particle in the search space. In 

this method, a recombination operator is 

defined to generate the first candidate particle 

   
  as follows: 

   
  

 

 

(  
    

 ) (  ) (  
    

 ) (  ) (  
    

 ) (  )

(     ) (  ) (     ) (  ) (     ) (  )
 (17)  

The stable deviation function as a parallel 

recombination operator is defined to generate 

the second candidate particle    
  by the 

following form: 

    
  

(     )
   (  )

(     )
   (  )  

    ((     ) (  )) 

  
(     )

   (  )

(     )
   (  )  

    ((     ) (  )) 

  
(     )

   (  )

(     )
   (  )  

    ((     ) (  )) (18) 

The sum of absolute errors was considered 

as an objective function. Finally, the global 

best position of the particles is considered as 

the optimized parameters in the rule layer. To 

develop the modeling, evaluation results, and 

sensitivity analysis, a PNN structure was also 

considered for the comparison purposes. The 

structure of the proposed PNN model, which 

was optimized by the SD-QPSO algorithm, is 

presented in the following section. 

 

Polynomial Neural Network (PNN) 

To show the model sensitivity analysis and 

model evaluation, a PNN was proposed and 

the SD-QPSO algorithm was utilized to obtain 

the constant parameters and coefficients. The 

main function of PNN can be written as: 

  (       )  ∑   (       )
 
      (19)  

Where, the linear and the nonlinear parts of 

function (19) are considered by the following 

forms: 

  (       )  ∑   (       )
  
      

∑       
  
           (20)  

  (       )  ∑ ∑       
  
     

  
        (21)  

  (       )  ∑ ∑     
   

  
       

  
               (22) 

Where, n is an appropriate increased counter 

and            are selected to be equal to 

the number of input variables. The Mean 

Absolute Error (MAE) between the observed and 

the experimental data are considered as the cost 

function that is presented by the following form: 

    ,∑ |               |  
 
   - (23) 

The learning methodology to train the 

proposed PNN model is developed by the 

following algorithm: 

Choose the number of inputs and constant 

parameters based on the polynomial degree of 

PNN. 

Choose 70% of data as the training procedure. 

Random initialize the constant parameters of 

PNN model. 

Set the evaluation and pop size number of SD-

QPSO algorithm in which the MAE results 

between output model and experimental data 

satisfy a predefined threshold. 

Use the SD-QPSO algorithm to find constant 

parameters of PNN model. 

Use the optimized constant parameters from 

the last step in the PNN model and check the 

train and the test quality. 
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In modeling, it should be noted that data are 

collected and categorized at predetermined 

sample times. Therefore, any power failure or 

sensor failure that prevents the data from being 

recorded correctly can increase the modeling 

error. Mathematical identification algorithms can 

be used to ensure the accuracy of the measured 

variables. In addition, some of the necessary 

parameters in predicting the dynamic behavior of 

the greenhouse can be identified online using 

these mathematical methods. In this research, the 

robust identification method used to examine 

temperature data is presented in the following 

section. 

System Identification of Greenhouse 

To investigate the rate of heat transfer and to 

improve the energy consumption in a 

greenhouse, an identification method can be 

useful for on-line estimation of temperature 

changes in a greenhouse. However, many 

different identification systems have been 

developed recently; the use of sliding mode in hi-

tech greenhouses has interested many authors 

(Yau and Chen, 2011) because of its fast 

converging and easy implementation. To design 

a sliding mode identification system, the 

chattering phenomena can be considered as a 

major problem. Therefore, in this section, a 

system identification method based on the higher 

order sliding mode identification (Levant, 1993) 

is proposed to smoothly identify the average of 

daily temperature variables of soil surface, 

internal air, and roof cover of the constructed 

greenhouse. The proposed simple identification 

algorithm is presented by the following 

equations: 

 ̇̂   ̃    |  |
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(         
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    (    )  
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(     
 )
    (  )]  

 ̇̃        
  
 

(     
 )
    (  )   (24) 

Where,     ̃   ̂  is the error term 

between experimental ( ̃) and estimated data 

( ̂) for         with  ̃     and [ ̃   ̃ ] is 

the output of the proposed observer. There is a 

constant parameter    ,     - to have a 

smooth response. | ( )|    is a bounded 

smooth scalar function and   is a positive 

constant. In Equation (24), the sign function in 

the original sliding mode identification 

(Levant, 1993) has been replaced by 
  
 

(     
 )
    (  ) to induce more smooth 

response. The scalar functions    are defined 

as  

        |  |  | ̃   ̂ |              

                 (25) 

Where,   is a small positive constant.  

In the following, the experimental conditions 

and the result of using the mentioned modeling 

and identification functions are described. 

RESULTS AND DISCUSSION 

Structure of Greenhouse and Data 

Recording  

In this study, the experimental data was 

collected in an arch greenhouse that was 

designed and constructed at the Southeast of 

Iran, in Kerman Province, city of Jiroft, with 

geographical coordinates of 57° 51′ E and 28° 

32' N, at an altitude of 750 m above the sea level. 

The structure of the constructed greenhouse is 

shown in Figure 1, with the base dimension of 

5.5×40 m. It had a height of 3.5 m and designed 

according to receive maximum solar radiation. 

This experimental greenhouse was equipped 

with natural ventilation system, etc. The heating 

system with hot water was off during the data 

gathering. Therefore, due to the ability of loggers 

and its available space to store information, 6 
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Figure 1. Outside and inside views of the 

constructed greenhouse. 

 

Table 1. Parameters used in calculations. 

Parameter Value Parameter Value Parameter Value 
𝜌𝑠 1400 𝑐𝑝𝑎 1000 𝑑𝑠 0.8 
𝑐𝑝𝑠 800 𝐸𝑠 0.7 𝜌𝑟 2500 
𝑉𝑠 352 𝐸𝑟𝑖 0.95 𝜂𝑟𝑜𝑜𝑓𝐼𝑠 0.0173 

𝐴𝑠𝑜𝑖𝑙 440 𝐹𝑠𝑟𝑖 0.8 𝜌𝑎 1.21 
𝜂𝑠𝐼𝑠 0.86 𝑇𝑠𝑠 4 𝑐𝑝𝑟 840 
𝐴𝑟𝑜𝑜𝑓 314 𝑉𝑟 0.9420 𝜆𝑠 0.6 
𝑇𝑛𝑤𝑜 𝑇𝑜𝑢𝑡     𝑇𝑎𝑖𝑟 𝑉𝑎 1382.5 𝑑𝑛𝑤 0.25 
𝑇𝑛𝑤𝑖 𝑇𝑎𝑖𝑟    9𝑇𝑜𝑢𝑡 𝜆𝑛𝑤 0.397 𝑓𝑎 1 
𝐴𝑛𝑤 34.5625     

 
 

data were collected daily for the following 

variables every one hour (between 10:00 to 

17:00) and the average (to reduce the sensitivity 

of the model) was used as daily data (Dates of 

data recording and measurement  22/11/2007 to 

05/04/2008,):     ,      ,     ,      ,     , 

     ,       and      . Then, it was applied as 

a new sampling time in modelling. To do this, 

four CEM DT-171T sensors were used to 

measure the temperature of the inside air, soil, 

and roof cover as well as relative humidity 

inside/outside the greenhouse. The constructed 

greenhouse was partitioned by sensors located on 

the soil, air (middle part of the greenhouse), 

inside the roof, and outside the greenhouse. 

Figure 2 shows the greenhouse dimensions and 

the sensor locations of the data logger system. It 

should be noted that the critical area of 

temperature in the greenhouse was located 

between the soil and indoor air sensors, which 

could be used to determine the optimal 

conditions for plant growth. In the next section, 

to demonstrate the efficiency of the dynamic 

equations, the results are compared with the data 

collected by the greenhouse sensors. Simulations 

in this study were performed using MATLAB 

software version 2016A. Moreover, ANFIS and 

PNN models as well as identification and SD-

QPSO algorithms were programmed in this 

software. 

Dynamic Results 

In this section, the results of differential 

Equations (8), (10) and (11) are compared with 

the experimental data. All initial conditions were 

based on experimental data at the beginning of 

the operation. The conditions considered for 

input variables were as follows:        , 

         ,          , and          . The 

initial values for the state variables were      
      ,          , and           . 

Moreover, other nominal parameters of 

greenhouse dynamic equations were considered 

according to Table 1. 
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Figure 2. The greenhouse dimensions and the sensor locations. 

 

To solve the differential equations of the 

system, two MATLAB Files (m.file: 

MATLAB programming environment) were 

programmed in MATLAB environment. The 

program of the first m.file included the function 

of greenhouse dynamic equations, constants, 

variables and how to receive and send input and 

output variables. The second file program 

included the method of solving the differential 

equation of the first m.file, reading experimental 

data for comparison from an Excel file, and 

instructions for drawing 2D and 3D graphs. To 

solve the differential equations, the ode45 

Toolbox was used with automatic accuracy. The 

statistical results of the dynamic greenhouse 

model for       were presented as follows: 

           ,      9   ,      
   99 ,             and      9   . 

Moreover, the results of statistical calculations 

using dynamic model for prediction of      
    , and            are in  Tables 2 and 3. 

Figures 3a) and 3b) show the results of the 

dynamic model and the comparison of the error 

response of the experimental data over a period 

of 134 days. In the use of dynamical method, 

researchers have accepted the error less than 

20% (Joudi and Farhan, 2007). It should be 

noted that, because of the materials properties 

and some assumptions to derive the equations, 

comparison between the measured data and 

dynamical response are not recommended. 

Therefore, it can be shown as differences 

between nominal and real conditions during the 

work. These differences can be sorted as      , 
     and      . The small error response before 

day 90
th
 shows that in cold weather the results of 

dynamical model were close to the experimental 

data. Closing the opening in winter was the 

main reason, because it reduced the effect of 

disturbances caused by outside wind speeds. In 

this study, we tried to select the constant 

coefficients of dynamic equations in such a way 

to have the highest correlation between the 

results of dynamic equations of the greenhouse 

and experimental data. Figure 3 shows that the 

maximum and minimum differences are between 

the roof temperature and the soil temperature, 

respectively. The reason can be attributed to the 

effect of wind speed outside the greenhouse and 

the intensity of radiation on the roof of the 

greenhouse. In addition, the temperature close to 

the greenhouse cover was strongly influenced by 

the climate outside the greenhouse. On the other 

hand, due to sunlight on the soil surface and 

increasing heat, the air movement will always be  

in the direction perpendicular to the soil and, as a 

result, the temperature steady state changes in the 

experiment. In this case, we cannot expect the 

results of dynamic equations to be very accurate 

without calibrating their coefficients. The 

following shows how the use of predictive 

numerical algorithms can increase the accuracy 

of predicting greenhouse climate behavior. 

Results of ANFIS and PNN Modeling by 

SD-QPSO 

The average of one day was considered as an 

experimental data to reduce the computation and, 

thus, 134 experimental data was gathered for 

each variable parameters of     ,      ,     , 
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     ,     ,      ,       and      . Two 

different ANFIS and PNN structure were 

obtained to predict the      and       due to the 

inputs of      ,     ,      ,     ,       and 

     . It is noted that the relation between       
with      and       can improve the results of 

modeling (Taki et al., 2016) and, therefore, the 

values of       were considered as an input. 

 In the ANFIS mechanism, the three bell 

membership functions were considered for each 

input layer and ANFIS and PNN constant 

parameters were found by the SD-QPSO 

algorithm. Thirty-five constant parameters were 

used in PNN system and the numbers of 

population size and evaluation functions to train 

the ANFIS and PNN structure were set as [175, 

210] and [112, 196], respectivelyIn order to 

equalize the effect of data type on 

computations, in many artificial intelligence 

systems and machine learning algorithms, the 

data should be normalized in the range [0, 1]. 

In the modeling procedure, a wavelet 

transformed was employed to denoise all data 

(To et al., 2009).  

Three m.files were programmed for ANFIS 

model. The first m.file was for starting and 

running the program. At first, the data was read 

from an Excel file. The wavelet transform 

toolbox was then used to denoise measured data. 

After normalization, the data were entered into 

the SD-QPSO algorithm. In each evaluation, the 

ANFIS program written in the second m.file was 

called by the mentioned optimization algorithm. 

After optimizing the coefficients of the ANFIS 

function based on the training data, the test data 

in the optimized function were used to show the 

performance of ANFIS model in the prediction. 

After that, the statistical results whose 

calculation program was written in the third 

m.file were called and printed. Finally, the 

program for creating custom graphs was 

implemented. The number of m.files and 

programming steps of the PNN model were the 

same as for ANFIS. The difference was that, in 

the second file, the PNN function program was 

written and all the coefficients and programming 

in the related files were changed according to the 

number of coefficients of this function. 

The results of ANFIS model are depicted in 

Figure 4, from which the train and test data set 

were selected as 70% and 30%, respectively. 

Figure 4b shows a small error between trained 

model output and experimental data, which 

increased in the test region. Figure 4a shows that 

this small error has a negligible effect on ANFIS 

model response. Here, the train and the test 

region were separated by a dashed line. The 

efficiency values such as the Mean Absolute 

Percentage Error (MAPE), Modelling Efficiency 

(EF), average (TSSE), coefficient of 

determination (  ) and the Root Mean Squared 

Error (RMSE) due to ANFIS, PNN, and 

dynamic models are shown in Tables 2 and 3 for 

     and      , respectively. The high accuracy 

and model performance of the ANFIS and PNN 

structure can be shown by the values of    and 

RMSE. It has a value less than 0.99 and 0.28 in 

ANFIS and PNN modeling, respectively. Table 3 

shows that, by using this structure to model 

     , the maximum RMSE value decreased to 

less than 0.99. PNN model was more effective 

than ANFIS and dynamic models because of 

small values for RMSE, TSSE, MAPE, large 

values for    and EF. The PNN model results 

and error response are depicted in Figures 5a and 

5b, respectively.  

In this study, the sensitivity analysis was 

performed to sort the effectiveness inputs in two 

different strategies. In the first strategy, based on 

the optimized PNN parameters, which were 

founded by the SD-QPSO algorithm, a +0.1 and 

a -0.1 deviation were added to each normalized 

input, while the others were fixed. The results 

can be obtained in Figures 6 and 7. Figures 6a 

and 7a show that      and       are the most 

and least important inputs to model the     , 
respectively. It shows that changing of the 

outside temperature of greenhouse should be 

considered to design a temperature control 

system and the required power. Moreover, the 

relation between       and       are shown in 

Figures 6b and 7b. Solar radiation from the soil 

to the roof and the effect of RHair on this 

reflection can be considered as the main 

reason in the results of sensitivity analysis. 

Because sunlight is refracted or absorbed by 

water droplets suspended in the air. In the 

second strategy, an input was removed and the 

effect of removed input on the output was 

investigated. The results shown in Figure 8 

confirm the first strategy.

As mentioned, various assumptions should be 

considered to obtain the equations and the 

dynamic model of the greenhouse. These 
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Table 2. Efficiency values of 𝑇𝑎𝑖𝑟 model. 

Modelling  

structure 

ANFIS Polynomial Dynamic 

Model 

Identification 

system 
Train data Test data Train data Test data 

MAPE 6.8381 5.0798 1.4925 1.2199 

6.3553 

0.8460 

3.3683 

1.8353 

0.8855 

2.5643 

0.9752 

0.5419 

0.7361 

0.9784 

EF 0.8068 0.9718 0.9907 0.9983 

TSSE 1.3513 1.3355 0.0643 0.0770 

RMSE 1.1624 1.1556 0.2537 0.2775 

𝑅  0.99991 0.99987 0.999934 0.99997 

 

Table 3. Efficiency values of  𝑇𝑟𝑜𝑜𝑓 model. 

Modeling 

 structure 

ANFIS Polynomial Dynamic 

Model 

Identification 

system Train data Test data Train data Test data 

MAPE 5.3639 4.4446 0.8933 0.8770 8.0991 3.1946 

EF 0.8909 0.9797 0.9969 0.9992 0.7996 0.9365 

TSSE 0.8315 0.8902 0.0230 0.0323 6.7062 2.1234 

RMSE 0.9118 0.9811 0.1518 0.1798 2.5896 1.4572 
𝑅  0.99996 0.99984 0.999997 0.999996 0.8944 0.9441 

 

  

Figure 3. (a) Simulation results due to dynamical model and experimental data, and (b) Error responses. 

 
assumptions are necessary to simplify these 

equations. Otherwise, measuring some 

coefficients will cost significantly. Therefore, 

with these simplifications, dynamic equations 

cannot be used to predict the greenhouse climate 

in a practical way. Therefore, models such as 

ANFIS and PNN can be simply implemented by 

using machine learning methods. They have 

lower coefficients than other methods such as 

multilayer neural networks and can be trained 

faster in industrial applications. It should be 

noted that, in this case, the only limitation of 

using these algorithms is to keep constant the 

variables that affect the physics of the problem 

but are not involved in modelling. Otherwise, the 

model coefficients must be trained and updated 

at different predefined times.  

Development of Greenhouse Climate 

Modeling with ANFIS and PNN

The modelling performed by Hongkang et al. 
(2018) by using the neural network method used 

80% of the data for training and increased the 

modelling accuracy for      to      9  , 

           and           . In other 

studies, on neural networks, to predict 
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Figure 4. (a) Simulation results due to ANFIS model and experimental data, and (b) Error responses.  

 
 

Figure 5. (a) Simulation results due to PNN model and experimental data, and (b) Error responses.  

 greenhouse temperatures, the RMSE was 0.94 

and 0.9412, respectively for Tair (Jung et al., 
2020; Miranda and Castaño, 2017). Compared to 

Tables 2 and 3, the results show that ANFIS and 

PNN algorithms have higher accuracy than the 

neural network model. Furthermore, it should be 

noted that we used only 70% of the data set for 

training. Moreover, we used three and one layer 

of neurons in, respectively, ANFIS and PNN 

models. Therefore, the number of constant 

variables was lower, and the convergence rate of 

the model was higher than the neural network, 

which used more than 35 neurons in 3 hidden 

layers. As a result, the training speed in the 

proposed models was higher than neural 

networks.  

The artificial intelligence algorithm can 

provide accurate predictions of parameters 

when there are no significant changes in the 

data pattern. In other words, when using the 

trained algorithm, the pattern of climate 

outside the greenhouse or the rate of 

evapotranspiration inside the greenhouse 

should not change much compared to the time 

of data collection. In this case, the mentioned 

algorithms can be well used to predict and 

manage the climate inside the greenhouse or in 

the relevant climate control systems. In 

intelligent algorithms, type and data diversity 

will play an important role in application 

quality. At the time of data collection, the 

model can be made more practical by 

considering a greater variety of data that are 

more effective in greenhouse climate. In 

general, despite disturbances, uncertainties, 

and perturbations, the modelling response 

cannot be expected to be reliable in all 

circumstances. Therefore, the use of online 

identification algorithms along with modelling 

can provide a measure of system performance 

accuracy. The results of the identification 

algorithm used in this research are presented in 

the next section. It can be seen how this 

algorithm can be successful in confirming the 

greenhouse modelling response.
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Figure 6. Sensitivity analisys due to deviation of +0.1.  Figure 7. Sensitivity analisys due to deviation of -0.1. 

 
Results of Greenhouse Temperature 

Identification  

The proposed system identification Equation 

(24) was employed to identify the temperatures 

of      ,      and      . Figure 9a shows the 

response of identification system with the use of 

sign function as To et al. (2009). The response of 

identification with sign function was much 

noisier than the response of system identification 

that was presented by Equation (24). Moreover, 

to achieve the performance of the identification 

procedure, the wavelet transform can be applied 

to denoise the data before use of Equation (24). 

The response of this procedure is depicted in 

Figure 9b, where the output of algorithm has 

converged to the experimental data. This method 

can be used on-line to identify the required states 

such as temperature and humidity everywhere in 

a greenhouse. Figure 9c shows that the proposed 

identification algorithm was converged after 5 

sample times for       and less than 2 sample 

times for      and      . Therefore, it can be 

applied as an on-line estimator to predict all 

requirement states in a greenhouse or in the other 

industrial applications. The statistical results of 

the identification system for       were presented 

as follows:             ,      9 9  , 

            ,             , and 

     99 9. Moreover, the results of statistical 

calculations using identification system for 

prediction of          , and            

are in Tables 2 and 3.  

 Comparing Figures 4, 5 and 9, we see that the 

results of modelling and online system 

identification were close to each other, and the 

results can be used with confidence. Since the 

mentioned identification method uses the results 

of differential equations online, the way it works 

is different from numerical modeling and 

artificial intelligence algorithms. Therefore, by 

comparing the model responses and 

identification, the system performance can be 

ensured. If there is a difference between the 

results, the system can be reset or a warning 

message or stop command can be sent to the 

operators and the user.

Depending on the application, modeling 

operations can deal with different types of data 

and sampling times. Since reducing the sampling 

time increases the sensitivity and increasing it 

reduces the accuracy, the choice of this sampling 

time will be different depending on the use. 

Moreover, one can never be sure that the 
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Figure 9. Identification responses as the results of 

(a) Sign function, (b) Smooth function, (c) Smooth 

function and wavelet transform. 

 

 

Figure 8. Sensitivity analisys due to removed inputs. 

 boundary conditions at the time of modeling 

exist is the same as the time of operation. 

Therefore, based on this study, to apply 

mathematical models industrially, it is suggested 

that several models should be used 

simultaneously with different identification 

algorithms and sampling time. It is also 

suggested that off-line modeling can be used to 

predict parameters whose sampling time is daily 

and longer. Additionally, on-line methods and 

identification algorithms can be used to predict 

the parameters to be measured at shorter sample 

times.

It should be noted that machine learning 

methods can predict any repetitive pattern with 

varying accuracy. In modelling, if we use many 

effective variables on the target, the accuracy of 

the model and the modeling challenge increases. 

This is more evident in the physical modelling of 

the system. To obtain a more complete dynamic 

model of the greenhouse, the Penman-Monteith 

Equation can be used to calculate the rate of 

evapotranspiration from meteorological. 

However, obtaining the parameters of these 

equations and measuring them will be costly and 

time consuming, which is beyond the scope of 

this study. However, it should be considered that 

sub-reactions and sub-dynamics are always 

present, and, therefore, their effect will be 

present in the data measured by the sensors. The 

trained model can be used independently to 

predict the desired parameters such as 

temperature, air, humidity, condensate, 

evapotranspiration as well as other greenhouse 

parameters. In this case, there will be an 

advantage that, without the use of direct data, the 

effect of all sub-reactions and sub-dynamics is 

easily considered. 

CONCLUSIONS 

In this study, a set of differential equation was 

derived as a dynamical model to find the 

temperature of inside air, inside roof cover, and 

topsoil for the constructed arch greenhouse. 

Moreover, a ANFIS mechanism and a PNN 

structure were proposed to predict and model the 

     and       based on     , wind speed,      , 
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      and      . The SD-QPSO algorithm as a 

metaheuristic optimization algorithm was 

successfully applied to train the constant 

parameters of ANFIS and PNN structures.  

The results showed that the proposed models 

were more accurate in predicting greenhouse 

climate and could be used more easily.

Moreover, this study showed that the PNN 

model with less pop-size and evaluation function 

was more effective than the ANFIS structure to 

predict the temperatures of inside air and inside 

roof cover. We showed that by teaching the 

proposed models with only 70% of the data, their 

accuracy was higher than other similar 

references. Statistical analysis showed that    
and      increased by more than 0.08 and 

0.34%, respectively. The sensitivity analysis was 

successfully performed by two different 

strategies. The results confirmed that the Tout, 

Tsoil, RHair, and RHout were more effective on the 

Tair and Tsoil. Moreover,  Tout, RHair and RHout 

were also effective on the Troof. An accurate 

dynamical model is hard to derive and needs 

much time for computation. Therefore, the 

proposed ANFIS and PNN structures with the 

SD-QPSO algorithm can be applied to nonlinear 

model and complicated physical behavior and its 

relations. Also, an identification system was 

proposed for real time prediction purposes and 

was successfully used to predict the      ,      
and      . It was shown that the use of wavelet 

transforms and substituting the sign function by 

the proposed function can improve the 

performance of the identification operation. The 

results showed that the online identification 

system could increase the prediction of      and 

      by, respectively, 2.47 and 2.53 times in   

compared to the dynamic model. This accuracy 

showed that the identification system can be used 

for confirmation of the model and increasing the 

reliability of predicting operations. Therefore, 

this advantage can be used in greenhouse climate 

controllers. 

Nomenclature 

                    Soil, roof, and north 

wall surface area (  ) 
             The volume of Soil, inside air 

and roof (  ) 

             Density of soil, inside air, roof 

cover (    ⁄ ) 
                Specific heat capacity 

(   ⁄  ) of soil, air and roof 

           Soil and north wall thermal 

conductivity (  ⁄  ) 
               Emission coefficient of soil, 

roof and sky 

                     Temperature of Soil, 

inside air and roof (  ) 
     Temperature of the outside ( ) 
    Heat transfer coefficient, inside air to soil 

(   ⁄  ) 

     Heat transfer coefficient, inside roof to 

outside (   ⁄  ) 
    Heat transfer, radiation absorption by soil 

(W) 

     Heat transfer, soil to inside roof (W) 

      Inside air humidity 

    Temperature of the lower soil ( ) 
     Out wind speed (  ⁄ ) 
           Upper soil and north wall 

Thickness ( ) 
          North wall out and in temperature 

( ) 
   Infiltration Factor 

           Soil-roof and roof-sky View factor 

     Absorption coefficient of shortwave 

radiation by soil 

        Absorption coefficient shortwave 

radiation by roof 

      Solar radiation, inside roof (   ⁄ ) 

    Solar radiation, upper soil (   ⁄ ) 
      Heat transfer, inside roof to sky (W) 

      Heat transfer, radiation absorption by 

roofs (W) 

      Outside air humidity

REFERENCES 

1. Chen, J., Yang, J., Zhao, J., Xu, F., Shen, Z. 

and Zhang, L. 2016. Energy Demand 

Frecasting of the Greenhouses Using 

Nonlinear Models Based on Model Optimized 

Prediction Method. Neurocomputing, 

174(Part B):1087-1100. 

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
7-

05
 ]

 

                            14 / 17

https://jast.modares.ac.ir/article-23-42853-en.html


 Machine Learning for Predicting Climate Variables _______________________________  

631 

2. De-Zwart, H. F. 1996. Analyzing Energy-

Saving Options in Greenhouse Cultivation 

Using a Simulation Model. PhD Dissertation, 

Agricultural University, Wageningen, The 

Netherlands, 236 PP. 

3. Ferreira, P. M., Faria, E. A. and Ruano, A. E. 

2002. Neural Network Models in Greenhouse 

Air Temperature Prediction. Neurocomputing, 

43: 51–75.  

4. Fidaros, D. K., Baxevanou, C. A., Bartzanas, 

T. and Kittas, C. 2010. Numerical Simulation 

of Thermal Behavior of a Ventilated Arc 

Greenhouse during a Solar Day. Renew. 

Energy, 35: 1380–1386. 

5. Floquet, T. and Barbot, J. P. 2007. Super 

Twisting Algorithm-Based Step-by-Step 

Sliding Mode Observers for Nonlinear 

Systems with Unknown Inputs. Int. J. Syst. 

Sci., 38(10):803–815. 

6. Fourati, F. and Chtourou, M. 2007. A 

Greenhouse Control with Feed-Forward and 

Recurrent Neural Networks. Simul. Model. 

Pract. Theory. 15:1016–1028. 

7. Fridman, L., Levant, A. and Davila, J. 2007. 

Observation of Linear Systems with Unknown 

Inputs via High-Order Sliding-Modes. Int. J. 

Syst. Sci., 38(10): 773-791. 

8. García, A. E., Zarazúa, G. M. S., Ayala, M. T., 

Araiza, E. R. and Barrios, A. G. 2020. 

Applications of Artificial Neural Networks in 

Greenhouse Technology and Overview for 

Smart Agriculture Development. Appl. Sci., 

10: 3835.  

9. Grigoriu, R. O., Voda, A., Arghira, N. and 

Iliescu, S. S. 2015. Modelling of Greenhouse 

using Parabolic Trough Collectors Thermal 

Energy. IFAC-Papers OnLine, 48(30): 450–

455. 

10. González, I. and Calderón, A. J. 2018. Neural 

Networks-Based Models for Greenhouse 

Climate Control. The XXXIX Automatic 

Conference, September 5-7, Badajoz, Spain. 

11. He, F. and Ma, C. 2010. Modeling Greenhouse 

Air Humidity by Means of Artificial Neural 

Network and Principal Component Analysis. 

Comput. Electron. Agric., 71: 19–23. 

12. Hongkang, W. Li, L., Yong, W., Fanjia, M., 

Haihua, W. and Sigrimis, N. A. 2018. 

Recurrent Neural Network Model for 

Prediction of Microclimate in Solar 

Greenhouse. IFAC Papers OnLine, 51(17): 

790-795. 

13. Hu, H., Xu, L., Goodman, E. D. and Zeng, S. 

2014. NSGA-II-Based Nonlinear PID 

Controller Tuning of Greenhouse Climate for 

Reducing Costs and Improving Performances. 

Neural Comput. Appl., 24(3-4): 927-936. 

14. Isaev, S. M. and Sadykov, Z. D. 2014. A 

Mathematical Model of Heat Exchange 

Control in Solar Greenhouses. Appl. Solar 

Energy, 50(2):103–109. 

15. Jang, J. S. R. 1993. ANFIS: Adaptive-

Network-Based Fuzzy Inference System. IEEE 

Trans. Syst. Man Cybern. Syst., 23(3). 

16. Joudi, K. and Farhan, A. 2007. A Dynamic 

Model and an Experimental Study for the 

Internal Air and Soil Temperatures in an 

Innovative Greenhouse. Energy Convers. 

Manage., 91: 76–82. 

17. Jung, D. H., Kim, H. S., Jhin, C., Kim, H. J. 

and Park, S. H. 2020. Time-Serial Analysis of 

Deep Neural Network Models for Prediction 

of Climatic Conditions inside a Greenhouse. 

Comput. Electron. Agric., 173: 105402. 

18. Kurtulus, B., Flipo, N. and Goblet, P. 2010. 

Sensitivity Analysis on an Adaptive Neuro 

Fuzzy Inference System (ANFIS) for 

Hydraulic Head Interpolation: Orgeval 

Experimental SITE/FRANCE. In: “XVIII 

International Conference on Water Resources 

CMWR 2010”, (Ed.): Carrera, J. ©CIMNE, 

Barcelona. 

19. Levant, A. 1993. Sliding Order and Sliding 

Accuracy in Sliding Mode Control. Int. J. 

Control, 58(6): 1247–1263. 

20. Márquez-Vera, M. A., Ramos-Fernández, J. C. 

and Cerecero-Natale, L. F. 2016. Temperature 

Control in a MISO Greenhouse by Inverting its 

Fuzzy Model. Comput. Electron. Agric., 124: 

168–174. 

21. Miranda, A. C. and Castaño, V. M. 2017. 

Smart Frost Control in Greenhouses by Neural 

Networks Models. Comput. Electron. Agric., 

137: 102-114. 

22. Mobtaker, H. G., Ajabshirchi, Y., Ranjbar, S. 

F. and Matloobi, M. 2016. Solar Energy 

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
7-

05
 ]

 

                            15 / 17

https://jast.modares.ac.ir/article-23-42853-en.html


  _____________________________________________________________ Javadi Moghaddam et al. 

632 

Cconservation in Greenhouse: Thermal 

Analysis and Experimental Validation. Renew. 

Energy, 96: 509-519. 

23. Moghaddam, J. J. and Bagheri, A. 2015. A 

Novel Stable Deviation Quantum-Behaved 

Particle Swarm Optimization to Optimal 

Piezoelectric Actuator and Sensor Location for 

Sctive Vibration Control. Proc. Inst. Mech. 

Eng. Pt. I: J. Syst. Contr. Eng., 229(6): 485-

494. 

24. Pasgianos, G. D., Arvanitis, K. G., Polycarpou, 

P. and Sigrimis, N. 2003. A Nonlinear 

Feedback Technique for Greenhouse 

Environmental Control. Comput. Electron. 

Agric., 40: 153-177. 

25. Patila, S. L., Tantaua, H. J. and Salokheb, V. 

M. 2008. Modelling of Ttropical Greenhouse 

Temperature by Auto Regressive and Neural 

Network Models. Biosyst. Eng., 99: 423-431.  

26. Perez-Gonzalez, A., Begovich-Mendoza, O. 

and Ruiz-Leon, J. 2017. Modeling of a 

Greenhouse Prototype Using PSO and 

Differential Evolution Algorithms Based on a 

Real-Time LabViewTM Application. Appl. 

Soft Comput., 62: 86 – 100. 

27. Rosas, A. R., Molina-Aiz, F. D., Valera, D. L., 

López, A. and Khamkure, S. 2017. 

Development of a Single Energy Balance 

Model for Prediction of Temperatures inside a 

Naturally Ventilated Greenhouse with 

Polypropylene Soil Mulch. Comput. Electron. 

Agric., 142: 9–28. 

28. Sethi, V. P., Sumathy, K., Lee, C. and Pal, D. 

S. 2013. Thermal Modeling Aspects of Solar 

Greenhouse Microclimate Control: A Review 

on Heating Technologies. Solar Energy, 96: 

56–82. 

29. Speetjens, S. L., Stigter, J. D. and Straten, G. 

V. 2009. Towards an Adaptive Model for 

Greenhouse Control. Comput. Electron. Agric., 

67: 1–8. 

30. Su, Y. and Xu, L. 2017. Towards Discrete 

Time Model for Greenhouse Climate Control. 

Eng. Agric. Environ. Food, 10(2): 157-170. 

31. Su, Y., Xu, L. and Li, D. 2016. Adaptive 

Fuzzy Control of a Class of MIMO Nonlinear 

System with Actuator Saturation for 

Greenhouse Climate Control Problem. IEEE 

Trans. Autom. Sci. Eng., 13(2): 772 - 788. 

32. Taki, M., Ajabshirchi, Y., Ranjbar, S. F., 

Rohani, A. and Matloobi, M. 2016. Heat 

Transfer and MLP Neural Network Models to 

Predict Inside Environment Variables and 

Energy Lost in a Semi-Solar Greenhouse. 

Energy Build., 110: 314-329. 

33. To, A. C., Moore, J. R. and Glaser, S. D. 2009. 

Wavelet Denoising Techniques with 

Applications to Experimental Geophysical 

Data. Signal Proces., 89(2): 144-160. 

34. Vadiee, A. 2011. Energy Analysis of the 

Closed Greenhouse Concept-Toward one 

Sustainable Energy Pathway. Division of Heat 

and Power Technology, KTH School of 

Industrial Engineering and Management, 

Department of Energy Technology, SE-100 44 

Stockholm. 

35. Van-Ooteghem, R. J. C. 2007. Optimal 

Control Design for a Solar Greenhouse, 

Systems and Control. Wageningen University, 

The Netherland. 

36. Van-Straten, G., Van-Willigenburg, G., Van-

Henten, E. and Van-Oothghem, R. 2011. 

Optimal Control of 682 Greenhouse 

Cultivation. CRC press, Taylor and Francis, 

New York. 

37. Yau, H. T. and Chen, C. L. 2011. Fuzzy 

Sliding Mode Controller Design for Maximum 

Power Point Tracking Control of a Solar 

Energy System. Trans. Inst. Meas. Control, 

34(5): 557–565. 

38. Yu, H., Chen, Y., Gul Hassan, S. and Li, D. 

2016. Prediction of the Temperature in a 

Chinese Solar Greenhouse Based on LSSVM 

Optimized by Improved PSO. Comput. 

Electron. Agric., 122: 94–102. 

39. Ziapour, B. M. and Dehnavi, R. 2012. A 

Numerical Study of the Arc-Roof and the One-

Sided Roof Enclosures Based on the Entropy 

Generation Minimization. Comput. Math. 

Appli., 64: 1636–1648.  

  

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
7-

05
 ]

 

                            16 / 17

https://jast.modares.ac.ir/article-23-42853-en.html


 Machine Learning for Predicting Climate Variables _______________________________  

633 

 متغیرهای ینیب برای پیش یک شبکه عصبی چنذ جمله ایو  ANFISهای حرارتی،  مذل

 گلخانه کمانی اقلیمی یک

 زارعی. قو مومنی،  .جوادی مقذم، د. ج

 چکیذه

ٍ یک ضبکِ عصبی  (ANFIS) ّذف اص ایي هطالعِ طشاحی یک هکاًیسن استٌتاج عصبی فاصی تطبیقی

ساصی ٍ ضٌاسایی بشخی هتغیشّای آب ٍ َّایی دس یک گلخاًِ است.  بشای بْبَد هذل (PNN) ای چٌذ جولِ

بِ عٌَاى یک  (SD-QPSO) ساصی اصدحام رسات با سفتاس کَاًتَهی پایذاس علاٍُ بش ایي، یک الگَسیتن بْیٌِ

استفادُ ضذ. بشای حزف  ANFIS ٍ PNN الگَسیتن یادگیشی بشای آهَصش پاساهتشّای ثابت ساختاسّای

ًَیض دادُ ّای اًذاصُ گیشی ضذُ، اص سٍش تبذیل هَجک استفادُ هی ضَد تا اطویٌاى حاصل ضَد کِ ّیچ دادُ 

اًذاصُ گیشی ضذُ اص یک باصُ اص پیص تعشیف ضذُ فشاتش ًوی سٍد. علاٍُ بش ایي، بشای ًطاى دادى عولکشد 

عٌَاى یک هذل دیٌاهیکی بش اساس سابطِ اًشطی ٍ تعادل ای اص هعادلات دیفشاًسیل بِ  ساصی، هجوَعِ هذل

. بشای اّذاف ضبیِ ساصی، دهای سطح خاک، َّای داخلی ٍ آهذًذجشم دس یک گلخاًِ هطخص بِ دست 

ساصی ٍ  ٍ دیٌاهیکی دس ًظش گشفتِ ضذ. ًتایج هذلANFIS، PNNپَضص سقف گلخاًِ بشای هذل 

ّای پیطٌْادی دس  ی کواًی اسصیابی ضذ. ًتایج ًطاى داد کِ هذلساصی با ًتایج تجشبی یک گلخاًِ آصهایط ضبیِ

 تش بَدُ ٍ بِ ساحتی قابل استفادُ ّستٌذ. علاٍُ بش ایي، ایي هطالعِ ًطاى داد کِ هذل بیٌی اقلین گلخاًِ دقیق پیص

PNN  اص ساختاس کوتشبا اًذاصُ جوعیت ANFIS بیٌی دهای َّای داخل ٍ سقف هؤثشتش بَد. دس  بشای پیص

ایي هطالعِ، یک سیستن ضٌاسایی آًلایي ًیض بشای ضٌاسایی بلادسًگ دادُ ّای تجشبی پیطٌْاد ضذ. ًتایج 

بیٌی ٍ ضٌاسایی  پیطٌْادی ٍ سیستن ضٌاسایی بشای پیص  هذل کِ عولکشد دادآهذُ ًطاى  دست ساصی بِ ضبیِ

ى داد کِ الگَسیتن ضٌاسایی دهای سطح خاک، َّای داخلی ٍ پَضص سقف گلخاًِ هؤثش بَد. ایي هطالعِ ًطا

ّا ًطاى  هی تَاًذ بشای پیص بیٌی ٍ تاییذ ًتایج هذل استفادُ ضَد. دس ًْایت، ًتایج تحلیل حساسیت سٍی هذل

 .داد کِ دهای داخل ٍ سقف گلخاًِ چگًَِ تَاًست تحت تأثیش دهای بیشٍى ٍ خاک قشاس بگیشد
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