Effect of Eight Cucumis Genotypes on Life Table and Population Growth Parameters of Melon Aphid: An Approach to Assess Antibiosis Resistance

N. Doryanizadeh¹, S. Moharramipour¹*, V. Hosseininaveh², and M. Mehrabadi¹

ABSTRACT

The effect of eight Cucumis L. (Cucurbitaceae) genotypes, including native cucumber genotypes (Hormozgan, Bushehr and Gilan), greenhouse cucumber genotypes (Girtap, Negeen, Sepehr and Pouya) and Armenian cucumber (Cucumis melo var. flexuosus) was studied on the life table and population growth parameters of Aphis gossypii Glover to evaluate antibiosis resistance. The experiment was conducted at 25±1°C, 60±10% RH and a photoperiod of 16:8 hour (L:D). The data were analyzed by Two-Sex MSChart program. The most pre-adult mortality (22.6 %) and the shortest total life span (14.5 days) were recorded for ‘Bushehr’. The net Reproductive rate (R₀) ranged from 43.70 for ‘Bushehr’ to 92.39 nymphs per individual in the case of ‘Pouya’. The lowest value of the intrinsic rate of increase (r) and the finite rate of increase (λ) was observed in ‘Gilan’ (0.378 and 1.460 day⁻¹, respectively) and the highest in ‘Pouya’ (0.471 and 1.602 day⁻¹, respectively). The maximum and minimum mean generation Times (T) were 10.20 and 9.23 days in ‘Gilan’ and ‘Negeen’, respectively. On the basis of these parameters, ‘Gilan’ had the highest antibiosis resistance to A. gossypii. Information on life table of pests and subsequent host resistance evaluation improves IPM programs and leads us to genotype selection for crop breeding programs.

Keywords: Antibiosis, Aphis gossypii, Cucumis, Life table, Plant resistance.

INTRODUCTION

Aphis gossypii Glover (Hemiptera: Aphididae), cotton or melon aphid, is a highly polyphagous pest recorded on hundreds of host plants worldwide (van Emden and Harrington, 2007) and is the vector of more than 50 plant viruses (Blackman and Eastop, 2008). This pest is particularly damaging to cotton and cucurbits (Blackman and Eastop, 2008; van Emden and Harrington, 2007). Feeding on the leaves of watermelon, melons and cucumber causes leaf crumple and distortion and heavy infestations which can further result in yield loss. Excretion of honeydew on leaves and fruit help sooty mould to develop (van Emden and Harrington, 2007). Because of melon aphid resistance to organophosphate (Herron et al., 2001; van Emden and Harrington, 2007), carbamate, organochlorine and pyrethroid insecticides in various parts of the world, particularly in cotton, and also in cucurbits (van Emden and Harrington, 2007), we should find some other strategies to manage this pest. Due to ecological and economic benefits, use of resistant or less-favorable crop cultivars is considered as a key component of Integrated Pest Management (IPM) (Özgökçe and Atlhan, 2005).

1 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
2 Corresponding author; e-mail: moharami@modares.ac.ir
3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
Evaluating the influence of host plant on pest population development and investigating on the interaction between pest and its host plants can help us assess the suitability or resistance of different cultivars to pests (Safuraie-Parizi et al., 2014) and develop more effective pest management methods (Li et al., 2006; Takalloozadeh, 2010). However, not much information is currently available on the interaction between susceptible and resistant Cucumis L. (Cucurbitaceae) genotypes. A number of studies have been done on the performance of *A. gossypii* on cultivars of chrysanthemum, (Bethke et al., 1998; Markkula et al., 1969; Storer and Emden, 1995; Wyatt, 1969; Wyatt, 1965), melon (Shinoda and Tanaka 1987; Collins et al., 1994), *Capsicum* spp. (Da Costa et al., 2011), Colocasia esculenta (Coleson and Miller, 2005), and cotton (Razmjou et al., 2006a; Razmjou et al., 2006b; Weathersbee and Hardee, 1994; Weathersbee III et al., 1994). In this study, we used life table and population parameters of melon aphid reared on eight Cucumis genotypes to assess the degree of antibiosis resistance. Because the traditional female-only life tables (Birch, 1948; Carey, 1993) ignore the variable developmental rates among individuals, its application may cause errors in demographic parameters (Chi and Liu, 1985; Yu et al., 2013). In this study, the data were analyzed via age-stage two-sex life table to reveal the differences in the population parameters among the genotypes.

MATERIALS AND METHODS

Plant Materials

In this experiment, eight Cucumis genotypes, including three native cucumbers (Hormozgan (TN-186), Bushehr (TN-221) and Gilan (TN-250), four greenhouse cucumbers (Girtap, Negeen, Sepehr and Pouya) and Armenian cucumber (*Cucumis melo* var. *flexuosus*) were selected. The seeds of native genotypes were obtained from Seed and Plant Improvement Institute, Karaj, Iran. The seeds were sown in 20-cm plastic pots filled with fertilized field soil and maintained in the greenhouse condition at 25±1°C, 60±10% RH and a photoperiod of 16:8 hour (L:D).

Aphid Colonies

Colonies of *A. gossypii* used in this experiment were initiated by individuals of the aphids collected from cucumber fields in Tehran, Iran. The stock was maintained on potted *Cucumis sativus* var. Beith alpha in screened cages in greenhouse condition at 25±1°C, 60±10% RH and a photoperiod of 16:8 hour (L:D).

Life Table Experiment

Before conducting the demography experiment, the aphids from stock maintained on Beith alpha cucumber were transferred onto each genotype and reared on them for three consecutive generations to remove the host-shifting effect (Li et al., 2006).

To obtain synchronized nymphs, apterous female adults of melon aphid were placed on the leaf disc and allowed to reproduce nymphs. After 24 hours, the females were removed and each first nymph instar was transferred to a leaf disc of Cucumis genotype. Each leaf disc was placed with the upper surface facing down on a cotton layer in a Petri dish (6 cm in diameter). Water was added daily to keep the leaves fresh. During the experiments, the leaf discs were replaced every three days. The experiment was conducted under laboratory condition as mentioned above. The experimental units were checked daily using a stereo-microscope. The development and survivorship of different immature stages were monitored. In reproduction period, after a nymph count, they were removed daily from the leaf discs. The data collection
continued until the death of the last individual.

Life Table Analysis

The collected data were analyzed according to age-stage, two-sex life theory (Chi, 1988; Chi and Liu, 1985) using TWOSEX-MSChart 2015 program. According to this method, age-stage-specific survival rate (s_{xj}; the probability of a newborn nymph surviving to age x and stage j) and age-stage specific fecundity (f_{xj}; daily number of nymphs produced per female of age x) were calculated from the raw data. Then, the age-specific survival rate (l_x; the probability of a newborn nymph reaching to age x), the age-specific fecundity (m_x; daily number of nymphs produced per individual) and the net Reproductive rate (R_0) were calculated as:

$$l_x = \sum_{j=1}^{m} s_{xj}$$ \hfill (1)
$$m_x = \frac{\sum_{j=1}^{m} s_{xj} f_{xj}}{\sum_{j=1}^{m} s_{xj}}$$ \hfill (2)
$$R_0 = \sum_{x=0}^{\infty} \sum_{j=1}^{m} s_{xj} f_{xj}$$ \hfill (3)

The intrinsic rate of increase (r) is calculated using the bisection method from the Euler- Lotka formula with age indexed from zero (Goodman, 1982).

$$\sum_{x=0}^{\infty} e^{-\lambda x} l_x m_x = 1$$ \hfill (4)

The finite rate of increase (λ) was calculated as $\lambda = e^r$, and the mean generation Time (T) was calculated as $T = \frac{\ln R_0}{r}$ \hfill (5)

Based on the age-stage, two-sex life table, the life expectancy (e_{xj}; the time that an individual of age x and stage j is expected to be alive) was estimated according to Chi and Su (2006). The age-stage-specific reproductive Value (ν_{xj}) was calculated according to Tuan et al. (2014). The means and standard errors of the measured parameters were estimated using bootstrap technique (Huang and Chi, 2012) by 40,000 bootstraps. Bootstrapping generated a normal frequency distribution that was essential for the following analysis and comparisons. The differences among the cultivars were compared using paired bootstrap test (Polat-Akköprü et al., 2015).

RESULTS

The duration of different melon aphid stages is presented in Table 1. There was a significant difference among development time of each preadult instar as well as adult longevity of aphids reared on different Cucumis genotypes. The longest adult development time was 17.47 days that was observed in Pouya. Preadult duration was affected by the genotypes. The longest preadult duration was recorded for Girtap (5.200 days) and the lowest for Pouya (4.326 days). The total life span value ranged from 14.55 days for Bushehr to 21.39 days for Pouya (Table 1).

Total pre-reproduction period of melon aphid feeding on different Cucumis genotypes was significantly different. The female reared on Gilan and Girtap had the shortest total pre-reproduction period (5.61 and 5.63 days, respectively) compared to other genotypes. Preadult survival rates were 0.814, 0.774, 0.810, 0.903, 0.857, 0.900, 0.977 and 0.944 on Pouya, Sepehr, Armenian cucumber, Negeen, Girtap, Hormozgan, Gilan and Bushehr. Hence the immature mortality on these genotypes was 21.86, 22.6, 19, 9.7, 14.3, 10, 2.3 and 5.6 percent, respectively (Table 2).

There were significant differences among different genotypes in terms of fecundity (Table 2). The highest mean fecundity was
94.56 nymphs per female recorded on Pouya and the lowest on Bushehr, Gilan, Armenian cucumber and Girtap (56.41, 58.59, 54.06, 62.51 nymphs per female, respectively) (Table 2).

Based on the analysis, R_0 value of melon aphid on Pouya was significantly higher than those estimated for the other genotypes and the lowest belonged to Bushehr, Gilan and Armenian cucumber (43.70, 47.41 and 48.79 nymphs, respectively). The aphids on Pouya had the highest r value (0.471 day$^{-1}$), and on Gilan had the lowest quantity (0.378 day$^{-1}$). Moreover, there was a significant difference in finite rate of increase (λ) of melon aphid on Cucumis genotypes; the highest and lowest values of this parameter were obtained for Pouya and Gilan, respectively (1.602 and 1.460 day$^{-1}$). The mean generation Time (T) was significantly different among varieties. The highest was observed on Gilan (10.20 days) and the lowest was recorded for Negeen (9.23 days) (Table 3).

According to the curves of age-stage survival rate (s_{xj}), we can estimate the probability that a newly born nymph surviving to age x and stage j. Due to the variable developmental rates among individuals, stages’ overlap can be observed in all s_{xj} curves. The probability that a newly born nymph would reach to an adult stage was 0.698, 0.742, 0.619, 0.878, 0.829, 0.900, 0.9318 and 0.926 for ‘Hormozgan’, ‘Bushehr’, ‘Gilan’, ‘Armenian cucumber’, ‘Girtap’, ‘Negeen’, ‘Pouya’ and ‘Sepehr’, respectively (Figure 1).

The curves of l_x (the age-specific survival rate of all individuals) and m_x (the age-specific fecundity of the total population) and l_xm_x (the age-specific maternity) shows the trend of changes in survival and fecundity of this pest on the hosts (Figure 2). The curve of l_x is actually simplified overview of s_{xj} curves hence the overlap between stages cannot be seen. The highest age-specific fecundity (m_x) peak were 9.04, 8.07, 7.46, 7.52, 7.71, 9.65, 10.45 and 8.34 nymphs per female on ‘Hormozgan’,

Table 1. The mean (±SE) duration of stages of Aphis gossypii reared on different Cucumis genotypes under laboratory conditions.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Nymph I</th>
<th>Nymph II</th>
<th>Nymph III</th>
<th>Nymph IV</th>
<th>Adult longevity</th>
<th>Total life span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormozgan</td>
<td>1.63±0.0086 b c</td>
<td>1.33±0.0035 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Bushehr</td>
<td>1.53±0.0060 a</td>
<td>1.18±0.0036 a</td>
<td>0.94±0.0062 b c</td>
<td>0.75±0.0126 d</td>
<td>8.20±0.0347 a</td>
<td>14.95±1.4672 a</td>
</tr>
<tr>
<td>Gilan</td>
<td>1.48±0.0060 a</td>
<td>1.23±0.0036 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Armenian cucumber</td>
<td>1.61±0.0086 ab c</td>
<td>1.31±0.0035 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Girtap</td>
<td>1.43±0.0080 ab</td>
<td>1.26±0.0035 ab c</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Negeen</td>
<td>1.46±0.0071 ab c</td>
<td>1.31±0.0035 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Pouya</td>
<td>1.35±0.0053 ab c</td>
<td>1.18±0.0036 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
<tr>
<td>Sepehr</td>
<td>1.48±0.0060 a</td>
<td>1.23±0.0036 a</td>
<td>1.00±0.0063 a</td>
<td>0.80±0.0111 a</td>
<td>8.47±0.0337 b c</td>
<td>15.30±1.4769 a</td>
</tr>
</tbody>
</table>

Means followed by the same letters in each column are not significantly different (paired bootstrap test at 5% significance level).
Table 2. The mean (±SE) pre-reproduction period and fecundity of Aphis gossypii reared on different Cucumis genotypes.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Total pre-reproduction period (Day)</th>
<th>Fecundity (Nymphs/Female)</th>
<th>Preadult survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormozgan</td>
<td>5.177 ± 0.169 bc</td>
<td>67.943 ± 6.449 b</td>
<td>0.814 ± 0.059 bc</td>
</tr>
<tr>
<td>Bushehr</td>
<td>5.499 ± 0.119 ab</td>
<td>56.409 ± 6.259 b</td>
<td>0.774 ± 0.074 c</td>
</tr>
<tr>
<td>Gilan</td>
<td>5.606 ± 0.172 a</td>
<td>58.591 ± 5.616 b</td>
<td>0.810 ± 0.061 c</td>
</tr>
<tr>
<td>Armenian cucumber</td>
<td>5.405 ± 0.130 ab</td>
<td>54.057 ± 4.828 b</td>
<td>0.903 ± 0.046 abc</td>
</tr>
<tr>
<td>Girtap</td>
<td>5.634 ± 0.153 a</td>
<td>62.513 ± 4.859 ab</td>
<td>0.857 ± 0.059 abc</td>
</tr>
<tr>
<td>Negeen</td>
<td>5.148 ± 0.092 cd</td>
<td>73.698 ± 3.663 ab</td>
<td>0.900 ± 0.039 abc</td>
</tr>
<tr>
<td>Pouya</td>
<td>4.810 ± 0.091 d</td>
<td>94.555 ± 8.330 a</td>
<td>0.977 ± 0.023a</td>
</tr>
<tr>
<td>Sepehr</td>
<td>5.099 ± 0.107 c</td>
<td>77.044 ± 5.859 a</td>
<td>0.944 ± 0.031 ab</td>
</tr>
</tbody>
</table>

Means followed by the same letters in each column are not significantly different (paired bootstrap test at 5% significance level).

Table 3. Life table parameters of Aphis gossypii on different Cucumis genotypes under laboratory conditions.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>R_0 (Offspring)</th>
<th>r (Day$^{-1}$)</th>
<th>λ (Day$^{-1}$)</th>
<th>T (Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormozgan</td>
<td>55.394 ± 6.670 bcd</td>
<td>0.417 ± 0.013 cd</td>
<td>1.517 ± 0.020 cd</td>
<td>9.616 ± 0.224 abc</td>
</tr>
<tr>
<td>Bushehr</td>
<td>43.703 ± 6.443 d</td>
<td>0.391 ± 0.014 dc</td>
<td>1.478 ± 0.020 dc</td>
<td>9.638 ± 0.224 abc</td>
</tr>
<tr>
<td>Gilan</td>
<td>47.406 ± 5.778 d</td>
<td>0.378 ± 0.014 e</td>
<td>1.460 ± 0.020 e</td>
<td>10.202 ± 0.272 a</td>
</tr>
<tr>
<td>Armenian cucumber</td>
<td>48.792 ± 5.045 d</td>
<td>0.418 ± 0.011 cd</td>
<td>1.519 ± 0.017 cd</td>
<td>9.296 ± 0.264 bc</td>
</tr>
<tr>
<td>Girtap</td>
<td>53.601 ± 5.581 cd</td>
<td>0.411 ± 0.013 cde</td>
<td>1.508 ± 0.019 cde</td>
<td>9.685 ± 0.207 abc</td>
</tr>
<tr>
<td>Negeen</td>
<td>66.362 ± 4.364 bc</td>
<td>0.454 ± 0.008 ab</td>
<td>1.575 ± 0.013 ab</td>
<td>9.228 ± 0.141 c</td>
</tr>
<tr>
<td>Pouya</td>
<td>92.390 ± 8.371 a</td>
<td>0.471 ± 0.009 a</td>
<td>1.602 ± 0.014 a</td>
<td>9.596 ± 0.176 abc</td>
</tr>
<tr>
<td>Sepehr</td>
<td>72.746 ± 6.071 ab</td>
<td>0.437 ± 0.009 bc</td>
<td>1.548 ± 0.0142 bc</td>
<td>9.808 ± 0.216 ab</td>
</tr>
</tbody>
</table>

R_0: Net Reproductive rate; r: Intrinsic rate of increase; λ: Finite rate of increase, T: Mean generation Time. Means followed by the same letters in each column are not significantly different (paired bootstrap test at 5% significance level).

According to the results, resistance was the most in Gilan. Pouya was the most susceptible genotype and was very different from the others. Hormozgan, Bushehr and Girtap were very similar in the aspect of terms antibiosis and same degree of resistance.

DISCUSSION

Using resistant host plants is one of the most important components of integrated pest management programs. Plant resistance mechanisms to a pest are antixenosis, antibiosis, tolerance, or some combinations of these mechanisms (Smith, 2005).
Figure 1. Age-stage specific survival rate (s_{xj}) of *Aphis gossypii* reared on different *Cucumis* genotypes.
Knowing the biology of the pest on host plants is fundamental to IPM programs (Sedaratian et al., 2009). Therefore, because of the negative effects of antibiosis on the biology of pests, it can be considered in IPM programs (Smith, 2005). Hence, in this study, we evaluated the effects of different Cucumis genotypes on demography of melon aphid in laboratory conditions to assess antibiosis resistance.

As we cannot show the stage structure and stage differences using traditional female-based life tables, TWOSEX-MSChart program was performed in this study. Ignoring differences in the stages often results in errors in l_x and m_x curves (Chi and Liu, 1985). Moreover, the jackknife method may overestimate the variances of life table parameters. Therefore, bootstrap technique was used to estimate the parameters of life table (Huang and Chi, 2012).

Figure 2. Age-specific survival rate (l_x), age-stage specific maternity (l_xm_x), and age-specific fecundity (m_x) of Aphis gossypii reared on different Cucumis genotypes.
Figure 3. Age-stage-specific life expectancy (e_{xj}) of $A. gossypii$ reared on eight $Cucumis$ genotypes.
Figure 4. Age-stage-specific reproductive Value (v_j) of *A. gossypii* reared on eight *Cucumis* genotypes.

This method has been used not only for two sex insects, but also for parthenogenetic female populations such as *Panaphis juglandis* (Goeze) (Hemiptera: Callaphididae) can be applied (Polat-Akköprü *et al.*, 2015). There are limited works on performance of melon aphid on cucurbits. The demography of *A. gossypii* has been studied on several host plants from Cucurbitaceae such as field pumpkin *Cucurbita pepo* L. (Aldyhim and Khalil, 1993) and garden cucumber *Cucumis sativus* L. (Kocourek *et al.*, 1994; Satar *et al.*, 1999;
Steenis and El-Khawass, 1995; Takalloozadeh, 2010. On the basis of our study, pre-adult developmental time of A. gossypii on the studied genotypes ranged from 4.426 for Pouya to 5.265 for Gilan. These results are comparable to the development time of this aphid on Beith alpha (4.6±0.08 days) (Satar et al., 1999) but do not overlap with the range of pre-adult development of this aphid on Cucumis sativus cv. Sporu that has been recorded 4.8 days at 20°C to 3.2 days at 30°C (Steenis and El-Khawass, 1995), the lower limit i.e. 3.2 is lower than our range that is due to the effect of temperature on development time (Steenis and El-Khawass, 1995). The warmer condition (30 vs. 25°C) has been resulted in faster development. It has been revealed that plant defense mechanism will increase pre-adult risk to predation or parasitism by slowing down the pre-adult growth (Coley et al., 2006). Hence, the genotypes with longer pre-adult duration, i.e. Gilan and Bushehr are more resistant than the others. The results of population growth parameters in this study are in agreement with other studies on the demography of melon aphid on Aramon cucumber cultivar (R₀ = 65.9, r = 0.556) (Steenis and El-Khawass, 1995); Beith alpha cucumber cultivar (R₀ = 82.1, r = 0.526, T= 10.1) (Satar et al., 1999); a cucumber cultivar (R₀ = 61.201, r = 0.347, λ = 1.415, T= 11.85) (Takalloozadeh, 2010). Immature mortality was 2.27 to 22.58% which is in line with the 20% of pre-adult mortality on Aramon cucumber cultivar (Michaud, 1999) and 2.3% on Beith alpha (Satar et al., 1999).

The life table parameters, particularly, the intrinsic rate of natural increase (r), are the most important parameters that can be used to assess plant resistance level to insects as reported in similar works (Goodarzi et al., 2015; Khanamani et al., 2013). Developmental and reproduction rates of the insects should be associated with other parameters, such as mortality, before making decisive conclusions on the host suitability (Liu et al., 2004). Longer immature development time, higher mortality and lower fecundity of a pest indicate high resistance of its host as mentioned in other studies (Alami et al., 2014; Khanamani et al., 2013; Safuraie-Parizi et al., 2014; Soufbaf et al., 2010b). According to our results, among these genotypes, due to more pre-adult mortality, longer development period and lower net reproductive rate, intrinsic rate of increase and finite rate of increase; ‘Gilan’ had the highest antibiotic resistance degree to melon aphid and based on these parameters ‘Pouya’ was the most susceptible one.

Expression of antibiosis in these genotypes may result from both chemical (allelochemicals, toxins, growth inhibition, reduced levels of nutrients or the presence of inhibitors) and morphological (tissue toughness or physical tissue strength, epicuticular lipids, trichomes and etc.) plant features (Moharramipour et al., 1997; Smith, 2005). In this study more resistant genotypes had more hair underside of the leaves and more total phenolic compounds (unpublished data). Host plant quality is a factor affecting the development, survivorship, reproduction and life table parameters of herbivorous pests (Golizadeh et al., 2014; Khanamani et al., 2013; Michaud, 1999; Razmjou et al., 2006a; Safuraie-Parizi et al., 2014; Soufbaf et al., 2010a; Soufbaf et al., 2010b; Wermelinger et al., 1991) and it is a key determinant of the fecundity of herbivorous insects (Awmack and Leather, 2002). The plant suitability often depends on the level of primary plant metabolites or secondary metabolites (Akköprü et al., 2015; Khanamani et al., 2015; Ode, 2006). Thus, analysis of the sap composition of the host plants will help to clarify the factors affecting the population growth of a pest (Akköprü et al., 2015). For an herbivore insect, two of the most important nutritional components of leaves are nitrogen and water. Both have been shown to affect growth and diet choice in laboratory and field studies with herbivorous insects. The higher nitrogen and water content of plant accelerates the growth rate of the pests.
(Coley et al., 2006). Hence, secondary metabolite, plant toughness and nitrogen content of genotypes may be the key factor in the expression of antibiosis. Du et al. (2004) mentioned high gossypol of cotton as a reason for antibiosis to melon aphid. Mansour et al. (1997) reported a negative correlation between the tannins content of cotton and the population density of this aphid. Other authors have considered the negative effects of trichome density on the aphid performance in cotton (Maxwell and Jennings, 1980; Zarpas et al., 2006).

In conclusion, the information obtained from this research will help us to use resistant and partially resistant cultivars to improve biological and chemical control methods in the IPM programs. In addition, further experiments are necessary to understand more details about plant–herbivore interactions to find out the chemical and physical basis of the resistance.

ACKNOWLEDGEMENTS

We are very thankful to Seed and Plant Improvement Institute, Karaj, Iran for providing us the native cucumber seeds.

REFERENCES

Phthorimaea operculella, on Leaves and Tubers of Different Potato Cultivars. J. Insect Sci., 14: 42.
36. Safuraie-Parizi, S., Fathipour, Y. and Talebi, A. A. 2014. Evaluation of Tomato Cultivars to Helicoverpa armigera Using Two-sex...
Antibiosis of Cucumis Genotypes to Melon Aphid

Life Table Parameters in Laboratory. J. Asia-Pacific Entomol., 17: 837-844.

47. Van Emden, H. F. and Harrington, R. 2007. Aphids as Crop Pests. CABI.

تأثیر هشت زنوتیپ خیار Cucumis بر پارامترهای رشد جمعیت و جدول زندگی

شته جالیز: رويکردن برای ارزیابی مقاومت آنتی بیوزی

دن. دریانی زاده، س. محرمی بور، و حسینی نوه و م. مهرآبادی

چکیده

برای تعیین مقاومت آنتی بیوزی زنوتیپ های خیار Cucumis (Cucurbitaceae) به شته جالیز، Cucumis سایت‌های بومی (هرمزگان، بوشهر و گیلان)، گلخانهای Aphis gossypii Glover (گیارا، نگین، پویا و سپهر) و خیار چند جنگ (Cucumis melo var. flexuosus) بر پارامترهای رشد جمعیت و جدول زندگی این شته مطالعه شد. این آزمایش در شرایط دما‌ی 15 ± 5 درجه سیلزوس، و رطوبت نسبی 70 ± 5 درصد و دوره‌ی نوری 16 ساعت روشناهی و 8 ساعت تاریکی انجام شد. دادها با استفاده از نرم‌افزار Two-Sex MSChart تجزیه و تحلیل شدند. بیش 39 تریت میزان مرگ و میر بیش از بلعه (22/8 درصد) و کوانتیتین طول عمر (14/528 مربوط به زنوتیپ بوشهر بود. نرخ خالص تولید مثل (R0) بین 43/60 تا 92/239 ثانیه هر یازه هر فرد ماده روز زنوتیپ بویا بود. کم ترین میزان نرخ ذاتی افزایش جمعیت (λ) و نرخ متابالی افزایش جمعیت (λm) روز رقم گیلان (به ترتیب 1/42 و 1/640 ب zeigt روز) و بیشترین آنها روز زنوتیپ بویا (به ترتیب 771/602 و 1/640 بزی روز) مشاهده شد. بیش ترین و کم ترین میانگین مدت زمان یک نسل (T) بین 10/00 و 9/33 بزی روز و به ترتیب روز زنوتیپ گیلان و نگین بویا. بر اساس پارامترهای انداره و گیری شده، زنوتیپ گیلان بیش ترین و بویا کم ترین مقاومت آنتی بیوزی به شته جالیز را داشتند. اطلاعات در مورد جدول زندگی آفت به دنبال آن ارزیابی مقاومت، می‌تواند پرینامه‌های مدیریت تلفیقی آفت را بهبود بخشید و ما را به سمت انتخاب زنوتیپ‌های مناسب برای پرینامه‌های بزنادی رهنمون می‌سازد.