Molecular Characterization of *Peach Latent Mosaic Viroid* Variants Isolated From Stone Fruit Trees in Kurdistan Province, Iran

M. Karagahi¹, and M. Hajizadeh¹*

ABSTRACT

In order to investigate the possible presence and molecular features of *Peach Latent Mosaic Viroid* (PLMVd) in west Iran (Kurdistan Province), a total of 132 leaf samples from almond, apricot, nectarine, peach, plum, sour cherry, and sweet cherry were collected from orchards during the summer of 2016 and 2017. Reverse transcription-polymerase chain reaction amplified an expected ~350 base pair DNA fragment from 34 samples. The complete genome sequencing of 17 cloned isolates was determined. Sequence alignment of the new sequences showed 94.3-100% nucleotide identity, and 79.2-100% nucleotide identity with other previously reported PLMVd isolates. In phylogenetic analysis, isolated viroid variants from this study and 32 previously reported isolates were placed in two groups (I and II). All the isolated viroid variants in the present study were placed in group II-A (mosaic-inducing isolates), together with other isolates from Australia, China, India, Iran, Spain, Tunisia, and Turkey. The secondary structure of the Iranian variants revealed their unique structures as compared with previously reported isolates of the viroid. To our knowledge, this is the first report of PLMVd infection on apricot, sweet cherry, sour cherry, and nectarine in Iran.

Keywords: Phylogenetic analysis, PLMVd hosts, Secondary structure, Sequence alignment.

INTRODUCTION

Up to now, 32 viroid species have been identified, which are classified into two families: *Pospiviroidae* and *Ausunviroidae* (Di Serio et al., 2014). In contrast to *Pospiviroidae*, members of *Ausunviroidae* do not possess a Central Conserved Region (CCR) and they are able to catalyze self-cleavage of multimers produced during symmetric rolling-circle replication mechanism (Flores et al., 2017).

The family Ausunviroidae includes three genera: Ausunviroid with the mono species Avocado sunblotch viroid, Pelamoviroid with two species *Chrysanthemum chlorotic mottle viroid* and *Peach latent mosaic viroid*, and Elaviroid with the species Eggplant latent viroid (Di Serio et al., 2014). Peach Latent Mosaic Viroid (PLMVd) is circular single-stranded RNA molecule comprising 335-351 nucleotides (nt) and high degree of base pairing, possesses a branched secondary structure containing 11 stems (P1-P11), 11 loops (L1-L11), and one or more pseudoknots (Bussière et al., 2000; Pelchat et al., 2000; Fekih Hassan et al., 2007). PLMVd has hammerhead conserved domains in both polarity strand that serve for self-cleavage during replication (Flores et al., 1992).

PLMVd is the causal agent of Peach latent mosaic (PLM) disease, which was reported for the first time in France when the peach “GF-305” indicator graft was indexed by new peach cultivars imported from the USA and Japan (Desvignes, 1976). Most of *PLMVd*...
variants are latent and the infected trees remain non-symptomatic for several years and then develop different leaf symptoms including mosaic, chlorosis, blotching, vein banding, severe chlorosis or albinism called Peach Calico (PC) disease. Tree species of the family Rosaceae including apple, almond, apricot, peach, sweet cherry, plum, quince, and cultivated and wild pear have been considered as hosts for PLMVd (Kyriakopoulou et al., 2017). PLMVd can be transmitted by pollen (Barba et al., 2007), grafting and budding (Desvignes, 1986; Hadidi et al., 1997), but not by seeds (Howell et al., 1998). PLMVd was reported to be transmitted by aphids under greenhouse condition and still less is known about its epidemiology (Desvignes, 1986; Flores et al., 1992).

Boubourakas et al. (2011) pointed out that the titer of PLMVd in non-peach hosts was about 0.4% of that in cultivated peach by quantitative real time PCR tests. Also, plant species outside the Rosaceae, such as grapevine and mango, have been reported as hosts of PLMVd by tissue print hybridization (El-Dougdoug et al., 2012). The genome size of PLMVd isolates from peach is varied and consists of 335 to 351 nt (Ambros et al., 1998; Fekih Hassan et al., 2007; Malfitano et al., 2003) and the nucleotide range from other trees are about 337-340 nt (Kyriakopoulou et al., 2017). PLMVd shows high natural polymorphism (Pelchat et al., 2000; Fekih Hassan et al., 2007) and replicates in its host based on quasi-species manner. Analysis of the progenies of a single PLMVd isolate revealed extreme variation of this viroid, which might be due to high mutation rate (Ambros et al., 1999; Loreti et al., 1999; Glouzon et al., 2014). Such heterogeneity property causes difficulties in the recognition of the relationship between any individual genotype and phenotype. However, PC symptom has been shown to be incited by the PLMVd variants that contain additional 12-13 nt insertion at the end of PLMVd genome along with a “UUUU” core in L11 between position 1 and 337 in the predicted secondary structure of PLMVd RNA (Flores et al., 2017; Mavric Plesko et al., 2012). Also, in another study, it has been shown that residue U at position 338 is responsible for the yellowish symptom and C at position 338 is responsible for the chlorosis-edge symptom (Wang et al., 2013).

PLMVd occurs in most commercial peach varieties worldwide and its occurrence in Iran was reported seven years ago just in one study. Yazarlou et al. (2012) tested 100 peach trees and 10 plum trees in northeastern Iran by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and compared them with Australian isolates. The authors found that 34 peach trees and 5 plum trees were positive for PLMVd. They also showed that the infectious clone generated two progeny viroid molecules with 10 different mutations compared with the parent clone inoculated 30 days before. PLMVd is on the list of the diseases for quarantine in Iran and there is lack of information about the presence of this viroid in fruit trees other than peach and plum.

In the present work, we aimed to analyze some stone fruit trees from several locations in west Iran (Kurdistan Province) to evaluate the incidence and genetic diversity of new sequences of Iranian variants of PLMVd.

MATERIALS AND METHODS

Sample Collection

During July, August, and September of 2016 and 2017, leaf samples from 132 stone fruit trees including almond, apricot, nectarine, peach, plum, sour cherry and sweet cherry showing viroid-like symptoms were collected from several locations of Kurdistan Province, Iran.

Total nucleic acid extraction

Total Nucleic Acid (TNA) was extracted from each leaf sample as described by Foissac et al. (2000) with minor
modifications. At first, 100 mg of leaf tissue were homogenized in a mortar with 1 mL of grinding buffer (4.0 M guanidine thiocyanate, 0.2M NaOAc, 25 mM EDTA, 1.0M KOAc, 2.5% w/v Polyvinylpyrrolidone (PVP-40), 1% β-mercaptoethanol), and centrifuged at 900 g for 4 minutes. Then, 500 µL of supernatant were mixed with 100 µL of 10% (w/v) sodium N-lauroylsarcosyl solution, and incubated for 10 minutes at 70°C, with intermittent shaking. After centrifugation at 12,500×g for 5 minutes, 300 µL of the supernatant were mixed with 1 g mL⁻¹ silica suspension at pH 2, 300 µL of 6M NaI and 150 µL of 95% ethanol, and incubated for 10 min at room temperature with intermittent shaking. Silica was pelleted and washed twice with washing buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, and 50% ethanol). Finally, TNA was eluted by incubation for 4 min at 70°C with 70 µL of RNase-free water.

RT-PCR

RT reactions were performed in 10 µL final volume containing 1µL (0.2 µg mL⁻¹) random hexamer primer, 4 µL aliquot of extracted total RNA and 5 µL cDNA synthesis solution from the kit (HyperScriptTM Reverse Transcriptase, GeneAll, Seoul, Korea). The mixture was incubated at 55°C for 60 minutes in a BioRad thermocycler (BioRad, USA). PCR reactions were done using PCR master mix (Tris-HCl pH 8.5, (NH₄)₂SO₄, 3 mM MgCl₂, 0.2% Tween 20, 0.4 mM dNTPs, 0.2 U µL⁻¹ Ampliqon Taq DNA polymerase) (GeneAll, Seoul, Korea). The PCR reaction contained 1X Kapa buffer A (+Mg), 0.4 µM RF43 and RF44 primers (Ambros et al., 1998) 0.2 µM dNTPs, 1X cresol loading dye (20% w/v sucrose, 1 mM cresol red), 4.75 µl RNase-free sterile distilled water and 1 µL cDNA in a 12.5 µL reaction. The cycling conditions of the PCR were 94°C for 2 minutes for the initial denaturation, 35 cycles of 94°C for 30 seconds, annealing temperature for 30 seconds and 72°C for 1 minute for the extension followed by a final elongation step for 7 minutes at 72°C. PCR products were electrophoresed on a 1.2% (w/v) agarose gel (containing 0.5 µg µL⁻¹ EtBr) in 1X TAE buffer. Electrophoresis was carried out at 80 V for approximately 1 h. Fragments were visualized with a UV transilluminator and photographed in a gel documentation (UVP, USA) apparatus.

Cloning, Sequencing and Sequence Analysis

To verify the PCR results, amplified fragments of eighteen isolates were ligated into the pTG19 vector (SinaClon, Iran) by T4 DNA ligase (SinaClon, Iran) according to the manufacturer’s instruction with the minor modification using 25 ng of the vector and about 10 ng of the PCR product. The ligation mixture was incubated at 16°C for 1 hour and then at 22°C overnight as instructed by the manufacturer. The recombinant vector was introduced into competent *Escherichia coli* strain DH5α cells and the transformed cells were selected on LB plate containing ampicillin (100 µg mL⁻¹), IPTG (50 µL of 0.1M per plate) and X-Gal (10 µL of 50 mg mL⁻¹) as described elsewhere (Sambrook et al., 1989). Three white colonies for each PLMVd isolate growing on the LB selection plate were grown in 5 mL LB medium, and kept overnight at 37°C before subjecting to plasmid purification by the alkaline lysis method (Ish-Horowicz and Burke, 1981) or using Exprep plasmid SV (GeneAll, Seoul, Korea). Purified plasmids were digested with *Bam*HI restriction enzyme, followed by electrophoresis on 1.5% agarose. Each colony carrying the cloned cDNA was isolated, purified and sequenced with T7promoter universal primers by Macrogen Inc. (Seoul, South Korea) and compared to GenBank isolates using the BLASTn program (Altschul et al., 1990).
Phylogenetic, Genetic Diversity Parameters, and Secondary Structure

Neighbor joining (NJ) phylogenetic trees were constructed using the MEGA7 program (Kumar et al., 2016) with 1,000 replications to assess node support. The program DnaSP version 6.10.01 (Rozas et al., 2017) was used to assess genetic differentiation and estimate number of Haplotypes (H), Haplotype diversity (Hd), number of polymorphic (Segregation) sites (S), the overall average number of differences, k, and total number of mutations η (Eta). The predicted secondary structure of minimal free energy of the new Iranian PLMVd variants from stone fruits were obtained with the MFold program for circular molecules (Zuker, 1989).

RESULTS

Detection of PLMVd by RT-PCR

During survey of stone fruits in Kurdistan Province, 132 trees from seven different geographic areas were tested by RT-PCR for the presence of PLMVd infection. This viroid was detected in 34 samples in stone fruits. PLMVd was detected in 1 out of 5 samples (20%) of almond, 4 out of 29 samples (13.8%) of apricot, 5 out of 8 samples (62.5%) of nectarine, 10 out of 37 samples (27%) of peach, 6 out of 22 samples (27.3%) of plum, 1 out of 10 samples (10%) of sour cherry, and 7 out of 21 samples (33.3%) of sweet cherry (Table 1). No amplifications were obtained from healthy and water controls. Sporadic symptoms observed in stone fruit trees were not consistently associated with the presence of PLMVd.

Molecular Characterization of the Stone Fruits Isolates of PLMVd

For each of the PLMVd isolates, one complete cDNA clone was sequenced. Nucleotide sequence analysis of cloned PLMVd from stone fruits plants indicated that the apricot isolates were 339 nt long, sweet cherry, sour cherry and nectarine isolates 337 and 339 nt long, peach isolates 338 to 340 nt long, and plum isolates 339 and 340 nt long (Table 2).

To estimate genetic diversity of the PLMVd sequences based on full-genome sequence, several genetic diversity parameters were calculated (Table 3). The nucleotide diversity (π, 0.029), the Daplotype diversity (Hd, 0.993), the average number of differences (k, 10 nt), the number of Segregation sites (S, 38 sites) and mutations within the segregating sites (η, 42) were found in the new Iranian PLMVd isolates.

Sequence alignment of new Iranian PLMVd sequences with all the PLMVd variants in databases revealed that the 16 out of 17 sequences were novel variants. The observed substitutions, insertions, and deletions were unevenly distributed along the PLMVd molecule. Mutational analysis

Table 1. Results of RT-PCR for PLMVd detection in stone fruits from different regions of Kurdistan Province, Iran.
Table 2. List of samples collected, leave symptom observed, sequence analysis and accession numbers.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Host</th>
<th>Symptoms</th>
<th>Length (nt)</th>
<th>Acc Nos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba8</td>
<td>Sour cherry</td>
<td>N</td>
<td>337</td>
<td>KU903003</td>
</tr>
<tr>
<td>BH5</td>
<td>Peach</td>
<td>M</td>
<td>340</td>
<td>MF574156</td>
</tr>
<tr>
<td>BSh4</td>
<td>Nectarine</td>
<td>M</td>
<td>337</td>
<td>MF574158</td>
</tr>
<tr>
<td>BSh9</td>
<td>Nectarine</td>
<td>M</td>
<td>339</td>
<td>MF574159</td>
</tr>
<tr>
<td>D1</td>
<td>Apricot</td>
<td>N</td>
<td>339</td>
<td>MG788240</td>
</tr>
<tr>
<td>D2</td>
<td>Sweet cherry</td>
<td>NS</td>
<td>339</td>
<td>MG788241</td>
</tr>
<tr>
<td>D4</td>
<td>Plum</td>
<td>NS</td>
<td>340</td>
<td>MG788242</td>
</tr>
<tr>
<td>D6</td>
<td>Peach</td>
<td>M</td>
<td>338</td>
<td>MG788244</td>
</tr>
<tr>
<td>K2</td>
<td>Plum</td>
<td>N</td>
<td>339</td>
<td>MG788245</td>
</tr>
<tr>
<td>K3</td>
<td>Sour cherry</td>
<td>NS</td>
<td>339</td>
<td>MG788243</td>
</tr>
<tr>
<td>K5</td>
<td>Sweet cherry</td>
<td>M</td>
<td>339</td>
<td>MG788246</td>
</tr>
<tr>
<td>K6</td>
<td>Apricot</td>
<td>CS</td>
<td>339</td>
<td>MG788247</td>
</tr>
<tr>
<td>K9</td>
<td>Sweet cherry</td>
<td>CS, NS</td>
<td>339</td>
<td>MG788248</td>
</tr>
<tr>
<td>KH10</td>
<td>Peach</td>
<td>LD, M</td>
<td>338</td>
<td>MF574157</td>
</tr>
<tr>
<td>MH35</td>
<td>Peach</td>
<td>LD, M</td>
<td>339</td>
<td>MF574160</td>
</tr>
<tr>
<td>S2</td>
<td>Peach</td>
<td>YM</td>
<td>339</td>
<td>MG788249</td>
</tr>
<tr>
<td>S1</td>
<td>Nectarine</td>
<td>YM</td>
<td>339</td>
<td>KU903007</td>
</tr>
</tbody>
</table>

* N: Non-symptomatic; M: Mosaic; NS: Necrotic Spot; CS: Chlorotic Spot; LD: Deformation, YM: Yellow Mosaic.

Table 3. Genetic analysis of complete genome of PLMVd from different stone fruit trees.

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Π</th>
<th>N</th>
<th>H</th>
<th>Hd</th>
<th>S</th>
<th>η</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequences from this study</td>
<td>0.029</td>
<td>17</td>
<td>16</td>
<td>0.993</td>
<td>38</td>
<td>42</td>
<td>9.772</td>
</tr>
<tr>
<td>GenBank sequences</td>
<td>0.106</td>
<td>23</td>
<td>23</td>
<td>1.000</td>
<td>102</td>
<td>117</td>
<td>33.455</td>
</tr>
<tr>
<td>All sequences</td>
<td>0.084</td>
<td>40</td>
<td>38</td>
<td>0.997</td>
<td>106</td>
<td>125</td>
<td>26.049</td>
</tr>
</tbody>
</table>

* Π: Sample size; H: Number of Haplotypes/isolates; S: Number of polymorphic (Segregating) sites; η (Eta): Total number of mutations; k: Average number of nucleotide differences between sequences; Π: Nucleotide diversity.

showed that most of the variations were located in the regions spanning nucleotides 340 to 68 and 101 to 150 of the alignment (Figure 1). Figure 1 also shows the primary structure of the 17 Iranian PLMVd RNAs characterized in this study aligned with respect to the PLMVd reference sequence (Hernandez and Flores, 1992). Of a total of 341 nucleotide positions in the alignment, 29 positions (8.5%) were polymorphic for isolate K5; 28 positions (8.2%) were polymorphic for isolates D1, D6, K6 and K9; 27 positions (7.9%) were polymorphic for isolates S1, and D2; 26 positions (7.6%) were polymorphic for isolates S2, and BSh9; 25 positions (7.3%) were polymorphic for isolates K2, and K3; 24 positions (7%) were polymorphic for isolate BH5; 22 positions (6.4%) were polymorphic for isolates BSh4, and MH35; 20 positions (5.9%) were polymorphic for isolates KH10, and, D4, and 19 positions (5.6%) were polymorphic for isolate Ba8. Collectively, 42 (12.3%) polymorphic positions were identified in the PLMVd variants characterized in this study.

Phylogenetic Analysis

In phylogenetic tree, the 49 isolates were divided into two major phylogenetic groups: Groups I and II, with two subgroups in each group (Figure 2). Of these, eight isolates from Canada, South Korea, Turkey, China, Spain and Tunisia were placed in Group I. Other PLMVd isolates including all 17 isolates sequenced in this study, six isolates from Iran, three isolates from Greece, three isolates from
Turkey, two isolates from Australia, two isolates from Spain, two isolates from Italy, two isolates from India and one isolate from China, South Korea, the USA and Tunisia were in Group II. Genetic mean distance within Group I isolates was 0.066±0.008, while this ratio was 0.055±0.007 within Group II isolates.

Secondary Structure of Iranian PLMVd Isolates

Secondary structure revealed the highest thermodynamic stability (i.e. the lowest Gibbs free energy, ΔG) and nucleotide covariation analysis. Excluding the P8 stem, in all variants the P1, P2, P3, P4, P5, P6, P7, P9, P10, and P11 stems appeared in the most stable structures. As the P8 stem sequences were covered by RF-44 primer, nucleotide changes in this region were not detected. Variations appeared predominantly in the regions including the P1, P3, P7, and P11 stems, as opposed to those forming the P2, P6, and P9 stems (Figure 3).

We found frequent nucleotide covariations in the new Iranian PLMVd variants for the formation of a pseudoknot by the nucleotides of the positions 339 to 2 in the loop 11 with those of the positions 64 to 67 in the L1 and L11 loops (Figure 4). Also, a similar interaction was obtained with the minus-polarity PLMVd strand (data not shown).

Figure 1. Sequence alignment of the 17 molecular sequences of PLMVd derived from stone fruit trees of Kurdistan Province, Iran. For comparative purposes, the reference sequence of PLMVd (Acc. No. NC_003636) is included at the top with two corrections, a deletion of one of the three Cs at positions 117 to 119 and a duplication of the G at position 257, with respect to that published previously (Hernandez and Flores, 1992). Dots indicate residues identical to the reference sequence, and dashes denote gaps. Regions involved in forming plus- and minus-polarity hammerhead structures are flanked by horizontal arrows, the conserved nucleotides present in most natural hammerhead structures are indicated on a box, and the self-cleavage sites are shown by vertical arrows. Primers used for RT-PCR amplification cover positions 178 to 225.
DISCUSSION

A study on the identification and characterization of PLMVd isolates from several stone fruit trees in west of Iran was performed by more sensitive RT-PCR method using RF43 and RF44 primers. The reason for using these primers was sequence conservation in the P6 and P7 stems of the Iranian isolates in the previous study by Yazarlou et al. (2012). Although in a study (Serra et al., 2017), multiple changes in the P6 stem delimited by positions 161–197 (corresponding to the 5’ part of RF43 primer) were identified in two isolates, V1 and V2, these primers were used extensively.
in the characterization of PLMVd isolates and progeny variants (Ambros et al., 1999; Yazarlou et al., 2012). Besides, the P7 stem (corresponding to the RF44 primer) appeared to be more conserved (Glouzon et al., 2014) and suited to this purpose. PLMVd detection by RT-PCR in apricot, nectarine, peach, plum, sweet cherry, and sour cherry trees was also confirmed using a second pair of primers, C1/C2 (Loreti et al., 1999).

PLMVd was detected in 25.7% of collected samples by RT-PCR (Table 1). In
Peach Latent Mosaic Viroid Variants

comparison with other countries, these results showed that stone fruit trees grown in commercial orchards in west of Iran are not frequently infected by this viroid. The infection level of PLMVd in other countries is relatively high, i.e. 82% in Spain (Badenes and Llacer, 1998); 70% in Italy (Faggioli and Barba, 2006); 63-80% in different regions of Tunisia (Fekih Hassan et al., 2007); 62% in Syria (ismaeli et al., 2001); 52% in Albania (Torres et al., 2004); 50% in the USA (Skrzeczkowski et al., 1996); and 40% in Montenegro (Mavric Plesko et al., 2012). However, a low incidence of PLMVd was also reported in eastern part of Turkey (3%) (Sipahioglu et al., 2006), in western Anatolia (17%) (Gumus et al., 2007) and in the eastern Mediterranean Region (19.6%) (Gazel et al., 2008). Yazarlou et al. (2012) reported the presence of the viroid in peach and plum trees in east and north of Iran with an incidence of 34 and 50%, respectively. Two possibilities may explain the low incidence of PLMVd in Iran. First, PLMVd is on the list of pathogens for quarantine in Iran but as this viroid can be latent for a long time in the plant nurseries (Flores et al., 2006), the disease can be imported by non-tested and apparently healthy material as rootstocks or grafted scions. Second, due to traditional agriculture in Iran, most gardeners use their own rootstocks or grafted scions and, therefore, the possibility of the viroid infection by imported infected-material would be decreased. Indeed, to limit further dissemination of PLMVd in a country, implementation of large-scale certification program is necessary.

RT-PCR products of PLMVd amplification were cloned and sequenced. A total of 17 sequences were obtained. We observed no sequence variant–host correlation and no regional specificity (Figure 1). For example, D6 sequence was obtained from peach tree but most closely related to D1 isolated from apricot (genetic distance: 0.003±0.003) in comparison to other variants isolated form peach trees (genetic distances: S2 (0.015±0.006), BH5 and MH35 (0.065±0.013), and KH10 (0.057±0.012). Also, the isolates K6 and K9 from apricot and sweet cherry, respectively (Table 2), had 100% identity. In the same way, we found no sequence basis for distinguishing PLMVd variants isolated from apricot, nectarine, peach, plum, sweet cherry, and sour cherry trees, which indicated that there was no host-related sequence specificity. This circumstance was already reported for PLMVd variants isolated from peach, pear, and almond (Fekih Hassan et al., 2007).

In agreement with previous studies (Bussi‘re et al., 2000; Gumus et al., 2007; Hadidi et al., 1997), PLMVd variants were placed in two groups (I and II) and the new Iranian variants were clustered in Group II (Figure 2), similar to that of typical yellow mosaic-inducing PLMVd variants in peach (Malfitano et al., 2003). Variants of Groups I and II had differences in several positions in the PLMVd sequence alignment (Table 4) including 168, 170, 172, 174-176, 187-189, 198, 267-268, 274, 279, 284, 291-292, 330-331, and 339-340. Also, in the subgroups of Group II, distinct differences were observed between subgroup II-A and II-B (PC-inducing symptom) in positions 17, 20, 24, and 106. Note that some variants of subgroup II-B containing additional 12-13 nt insertion in the end of PLMVd genome and this part of the genome is responsible for inducing PC symptoms (Malfitano et al., 2003) (Table 4). In Group I, subgroups I-A and I-B showed several differences in positions 177, 190-193, 204, 208-209, 227, 242-243, 247, 258, 262, and 266 (Table 4).

Since stone fruit trees are naturally infected by PLMVd, a broad range of sequence heterogeneity should be expected. Variations appear predominantly in the regions including the P1, P3, P7, and P11 stems, as opposed to those forming the P2, P6, and P9 stems (Figure 3). In the new Iranian sequences, P3 was very variable while this motif in pervious study (Yazarlou et al., 2012) showed less variation. Based on the sequence variation and secondary structure, PLMVd comprises two domains.
Karagahi and Hajizadeh

(Pelchat et al., 2000; Fekih Hassan et al., 2007): a sequence variation with conserved secondary structure (left domain), and a relatively conserved sequence (right domain). The main difference between the new Iranian variants and previously studied variants (Pelchat et al., 2000) concerns stem P3. In the former, this stem shows low variability, but in the new Iranian variants it shows a high level of nucleotide variability. Moreover, in agreement with the Tunisian variants (Fekih Hassan et al., 2007) and in contrast to the other previously published PLMVd variants (Pelchat et al., 2000), stem P2 showed less variability. Our data suggests that stem P3 belongs to the left domain, and the right domain is limited to stems P4 to P9. Moreover, we found only two co-variations in P3 stem and one co-variation in P11 stem in the Iranian PLMVd variants, and this contrasts with previous analyses that failed to detect co-variation in the P3 stem (Fekih Hassan et al., 2007) and is in agreement with previous analyses that failed to detect co-variation in the P6 and P7 stems (Pelchat et al., 2000), and in the P4 stem (Fekih Hassan et al., 2007). The co-variations for the formation of a pseudoknot by the nucleotides of the positions 339 to 2 in the loop 11 with those of the positions 64 to 67 in the L1 and L11 loops (Figure 4) has been observed previously in Spanish isolates (Ambros et al., 1998, 1999; Fekih Hassan et al., 2007). Accordingly, it has been argued that the Iranian isolates might have originated from the Spanish isolates. Further support for this conclusion comes from placement of the Spanish isolate gds 15-10 as with the Iranian isolates in the same clade. The results of the co-variations for the formation of this pseudoknot agreed with those of the phylogenetic analysis (Figures 2 and 4).

In conclusion, this study was conducted for the first time in Iran to assess the incidence of PLMVd in apricot, sweet cherry, sour cherry and nectarine hosts and this is the first report of infection by PLMVd in these hosts. Alignment and phylogenetic analysis of the peach and non-peach...
sequences in this study showed that they were clustered in almost all phylogenetic groups, indicating that PLMVd variants are not host- or geographic origin-specific. We also showed that the Iranian variants belong to Group II, which shows symptoms in their hosts. Therefore, to limit further dissemination of graft-transmissible diseases in the country, implementation of a national certification program is highly desirable.

ACKNOWLEDGEMENTS

The authors would like to thank University of Kurdistan for the use of their facilities and support of this project.

REFERENCES

Peach Latent Mosaic Viroid Variants

مشخصات مولکولی واریانت‌های ویروئید موزاییک نهان هلو جدا شده از باغات

۳۲. کاراکاهی و م. حاجی زاده

چکیده

به منظور بررسی حضور و تعیین مشخصات مولکولی PLMVd در غرب ایران (استان کردستان)، طی بهار و تابستان ۱۳۹۶ و ۱۳۹۷ تعداد ۱۲۳ نمونه برگی از هلول، آلو، زردآلو، شلیل، گیلاس، بادام و آلبانو cDNA از باغات استان جمع آوری شد. استخراج اسید نوکلئیک کل با استفاده از روش سیلیکا و سنتر با استفاده از آغازگرهای نادیده گرفته شد. PCR این اعضای از آغازگرهای اختصاصی این ویروئید منجر به تکثیر قطعه مورد انتظار حدود ۳۵۰ جفت با زمان ۳۸ ثانیه شد. به منظور بررسی صحت قطعات تکثیر یافته و تعیین مشخصات مولکولی آن‌ها، فرآورده ۱۶ نمونه از یک اصل به پلاسمید pTG19-T و همسان‌سازی در باکتری E. coli DH5α با سایر تولید نشان داد که ۹۶/۴–۱۰۰/۳ تهایه بین جدایی‌های این تحقیق و ۷۹/۴–۱۰۰/۳ با سایر جدایی‌های گزارش شده شیب‌های نوکلئوتیدی و وجود دارد. در بررسی تیازایی، جدایی‌های حاصل از این تحقیق با ۲۲ جدایی منتشر شده تا ۳۳ کریتوکپ (جدایی ایجاد شده تا ۳۳) گرفته شد که جدایی‌های این تحقیق در گروه دوم (جدایی‌های ایجاد کننده مواد کبود) با جدایی‌های این تحقیق در هنگام انتقال، ساده‌ای، استرالیا و ایران هم‌گونه جدایی شدند. همچنین ارتباط بین مشا جدایی‌ها و دیگر شیب‌های نوکلئوتیدی آن‌ها به دست نیامد. ساختار تانه ترسیم شده برای برخی جدایی‌های این تحقیق حاکی از ساختاری جدید در این جدایی‌ها بود. بنابر اطلاعات موجود
این اولین گزارش از رتبه‌بندی پیامدهای مرگ‌بار به‌نام PLMVd از میزان‌های هلو، شل، گیلاس، آل، زردآل، بادام و آلبانو از استان کرمانستان و از میزان‌های زردآل، گیلاس، بادام و آلبانو از ایران می‌باشد.