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ABSTRACT 

Spatially explicit estimates of aboveground biomass over large area are necessary for 

natural resources managers. This study examined aboveground biomass and carbon stock 

of the wild pistachio (Pistacia atlantica) based on individual tree crown detection and 

allometric development in the arid woodlands using high-resolution satellite images of 

GeoEye-1 in a reserved forest area of Wild Pistachio trees in the South Khorasan 

Province, East of Iran. Biomass of sampled trees was determined using field sampling and 

experimental tests. In addition, the biomass of stems was determined using volume and 

density. The allometric biomass and carbon stock equations of Wild Pistachio trees were 

developed based on crown area, diameter at breast height (1.3 m), and height of trees. The 

trees crowns were detected and delineated on the GeoEye-1 images, using local maxima 

filters, and region growing segmentation algorithms, respectively. In addition, a 

morphological watershed transformation method was applied to split the connected and 

overlapped tree crowns. Performing algorithms was assessed using the measured field 

crown of sample trees by precision, recall, and overall accuracy indices. The biomass and 

carbon stock of trees of the study area were estimated using delineated crown area and 

the developed allometric equations. The results showed that the equation that used crown 

area could explain more than 80% of the remarked variation in biomass and carbon 

stock. In addition, the crown detection method results showed that overall detection rate 

and the quality of crown boundaries were acceptable. In conclusion, the study confirmed 

that combining the allometric equations with crown information from high-resolution 

images could contribute to the explicit mapping of biomass and carbon stock of wild 

pistachio trees in the arid woodlands. 
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INTRODUCTION 

The wild pistachio (Pistacia atlantica), as 

a deciduous-broadleaved species, is 

dominant at this vegetation zone as one of 

the ecologically most important and native 

species of Iran. The wild pistachio forest 

stands play an important role in preventing 

destructive floods and helping soil 

conservation in the arid and semi-arid 

regions (Lal, 2004). Drylands are considered 

to have great potential for carbon 

sequestration and, therefore, could play an 

important role in combating the global 

climate change (FAO, 2004). Woodlands in 

the arid and semi-arid regions are facing 

desertification or degradation caused by 

human and climate change. The carbon kept 

in the aboveground living biomass of trees is 

typically the largest pool and directly 

affected by deforestation and degradation 
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(Gibbs et al., 2007). The international debate 

on Reducing Emissions of greenhouse gases 

from Deforestation and forest Degradation 

(REDD) has called for rigorous carbon stock 

measuring, reporting and corroborating the 

methods (Mukono and Sambaiga, 2016). 

Aboveground Biomass (hereafter, AGB) 

includes between 70 and 90% of total forests 

biomass (Cairns et al., 1997). 

Accurate measurement of the tree 

biomasses and carbon stocks and their 

temporal and spatial variations in the 

woodlands are important for the use and 

protection of woodland resources. Although 

the biomass data gathered from field data 

measurements is the most accurate, it is not 

a practical approach for broad-scale 

assessments since it is destructive. Different 

remote-sensing data sources and techniques 

have emerged as promising alternatives, 

particularly with collecting high-resolution 

imagery, allowing for individual-tree-level 

measurements such as height and crown area 

(Drake et al., 2003). So far, the researchers 

have tried to estimate the aboveground 

biomass by medium (Li et al., 2019; Wu et 

al., 2016; Mousavi, 2015) to high spatial 

resolution (Eckert, 2012; Hussin et al., 

2014) satellite data. The medium and coarse 

spatial resolution imageries have always 

been a potential AGB estimator at the 

national and regional scale, but in the sites 

with a complex biophysical environment, it 

possesses problems like mixed pixel and 

data saturation (Goetz et al., 2009). 

However, for plot level estimates of high-

precision results, especially for extracting 

the canopy crown, applying the high spatial 

resolution data is necessary. The high spatial 

resolution imagery has proper capacity for 

finer detection and recognition of spectral 

reflections of tree crowns and having lower 

mixed pixels in the edge of crowns. There 

are many pixel-based and object-based 

methods to detect and delineate the canopy 

crown on the 2D and colour-based optical 

imageries as well as 3D Lidar (Light 

Detection and Ranging) or photogrammetric 

point clouds data. Using proper techniques 

for accurate delineation and extraction of 

tree crown area as a segment or object is 

very important at tree level or individual 

tree-based estimates on high-resolution 

images. The most popular methods for 

automatic individual tree crown 

segmentation described in the literature are 

detecting local maxima, region growing 

techniques, edge detection, and watershed 

segmentation (Saliola, 2014). The benefit of 

region growing and watershed segmentation, 

which also is implemented on object-based 

software such as eCognition, is that they can 

both be used to analyze high spatial 

resolution images. 

The object-based approaches do not run 

directly on individual pixels, but rather on 

objects consisting of many pixels that are 

grouping together in a meaningful way by 

image partition. This approach, when 

undertaken with geospatial data, are often 

termed as Geographic Object-Based Image 

Analysis (GEOBIA) (Hay and Castilla, 

2008). Commercial software, such as the 

eCognition package (Definiens, 2006), 

provides the object-based classifiers, but 

they are supervised and need human 

intervention. Several automated and semi-

automated approaches have been developed 

to extract objects from satellite data, 

especially for high spatial resolution data 

(Benediktsson et al., 2003; Evans et al., 

2002; Huang and Zhang, 2008; Mayer, 

2008; Myint et al., 2011). Remote sensing 

and Geographic Information System (GIS) 

are some of the indirect approaches that can 

adequately avoid the challenges associated 

with conventional biomass estimation 

methods (Brown, 2002); making it possible 

to measure and survey biomass in large 

areas with potentially low cost and less time 

(Wulder et al., 2008; Drake et al., 2002). 

The relationship between stem Diameter at 

Breast Height (DBH) and Crown Projection 

Area (CPA) of a tree enables calculation of 

AGB (Feldpausch et al., 2011). Recent 

developments in high resolution space-borne 

and airborne remote sensing data have 

provided an opportunity to better estimate 

and map AGB across different spatial and 

temporal scales. Challenges with using the 
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crown area as a predictor variable still 

remain, ranging from inability to measure 

crown area accurately to lack of consistent 

allometric equations (Gibbs et al., 2007). 

Kuyah et al. (2012) studied crown area 

variable for estimation of aboveground tree 

biomass in agricultural landscapes of 

western Kenya and the results showed that 

the equations developed to fit the data well 

with about 85% of the observed variation in 

AGB explained by crown area. The object-

based image analysis is providing new 

opportunities to improve biomass and 

carbon stock estimation and mapping by 

delineating and classifying a crown 

projection area of individual trees. Many 

researchers (Brandtberg and Walter, 1998; 

Leckie et al., 2003; Erikson and Olofsson, 

2005; Ke and Quackenbush, 2011; Pu and 

Landry, 2012) could study individual tree 

crown delineation or segmentation using 

high-resolution images. Tree crown 

delineation and extraction are important to 

obtain information at the individual tree 

level. Several algorithms have been 

presented for automatic individual tree 

delineation and crown extraction on satellite 

images, such as region growing, watershed 

segmentation, and template-matching-based 

methods (Ke and Quackenbush 2011). The 

region growing approach assumes that the 

center of a crown is brighter than the edge of 

the crown (Culvenor, 2002). Thus, detecting 

the brightest pixel of the crown gives a 

chance to find the crown center, and 

growing a region from the crown center 

based on illumination image helps to 

delineate tree crowns (Ke and Quackenbush, 

2007). Culvenor (2002) applied a region-

growing approach from local maxima and 

resulted in up to 77% of agreement between 

segmented tree crowns and digitized tree 

crowns. Zaki et al. (2015) studied an 

individual tree crown delineation method for 

tropical lowland Dipterocarp using 

watershed transformation algorithm. Their 

results showed the watershed transformation 

algorithm was suitable to delineate the tree 

crown of the tropical lowland Dipterocarp 

forest area. Therefore, it is given that 

performance of algorithms for crown 

delineating can be different based on tree 

and in any studies. Therefore, its ability 

should be investigated based on the shape of 

crowns, canopy cover conditions, and 

satellite images. 

The first objective of this study was to 

introduce a tree crown delineation method 

on the GeoEye imagery for Wild Pistachio 

trees crown extraction in the sparse 

woodlands. The other objective was to 

create and find the proper allometric 

equation based on extracted tree crowns to 

estimate the AGB and carbon stocks through 

a nondestructive method for Wild Pistachio 

trees in the center and east of Iran. 

MATERIALS AND METHODS 

Study Area 

The Irano-Touranian vegetation zone is 

extensive and covers the center and east of 

Iran. It is one of the five different vegetation 

zones in Iran having an arid and semi-arid 

climate, with an area of 3.5 million hectares. 

The study was carried out in Tage-e Ahmad 

Shahi, which is a reserve forest of wild 

pistachio trees and covers an area of 25 km
2
, 

however, the core zone of reserve forest 

with 5.15 km2 area (red doted line) was 

selected for this study. (Figure 1). This 

region is located in Nehbandan County, 

South Khorasan Province of Iran, and lies 

between 60° 10' E to 60° 16' E longitudes 

and 31° 53' N to 31° 57' N latitudes. The 

average annual rainfall is about 180 mm, the 

climate is typically arid (average annual 

temperature of 21.2
o
C, maximum of 45

o
C), 

with hot and intensive radiation in the 

summer, and the mean of altitude is 1,800 m 

above the sea level. The reserved area 

includes a pure stand of Pistachio Atlantica; 

but a few other associated shrubs such as 

Pteropyrum aucheri, Atraphaxis spinosa and 

Ephedra strobilacea and some bushes such 

as Achillea wilhelmsii and Astragalus 

schistocalyx are seen in the study area. 
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Figure 1. (a) Location of study area in Iran; (b) southern Khorasan Province; and (c) The boundary of the study 

area overlaid with a false color composite (432) of Geo-Eye1 image.  

 

Datasets 

In this study, we used the GeoEye-1 

VHRS images, with a spatial resolution of 

panchromatic and multispectral 0.5 and 2 m, 

respectively, which was acquired on 30 

August 2012. The GeoEye-1 multispectral 

image consists of four spectral bands in the 

visible and NIR part of the electromagnetic 

spectrum, including blue (450–510 nm), 

green (510–580 nm), red (655–690 nm), 

near-infrared (780– 920 nm), and 

panchromatic (450–800 nm). 

About 145 wild pistachio trees, which had 

different canopy area sizes with 2.5 to 89.3 m
2
, 

were selected for field sampling. The 

biophysical attributes including crown area, 

DBH, and crown diameter; and tree heights 

were measured accurately by different tools. 

The tree crown ground truth was prepared 

through accurate positioning of trees by 

Trimble DGPS using Post Processing 

Kinematic (PPK) method and surveying the 

boundary points of crowns by Total Station 

surveying instrument (Figure 3). In addition, 

the positions of all trees in 60 plots (1-hectare 

area) were registered using Trimble R3 DGPS 
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by the Post Processing Kinematic (PPK) 

method. These positions were used for 

accuracy assessment of the tree detection and 

delineations. From the previous stage on 

sample trees (145 trees), 30 trees with different 

diameters and crown sizes were randomly 

selected and their quantitative variables were 

measured for biomass and carbon stock 

estimation. Considering the legal rules 

limitation and prohibition of the tree cutting 

and foliage falling in the reserved area, 

generally, the biomass measurement of tree 

trunks is calculated using the volume and 

wood density of tree species. In this study, the 

calculated volume from field measuring the 

DBH and height of trees and wood density of 

pistachio trees from laboratory measuring 

were used for trunk biomass estimations. For 

stem density calculation, a selected tree was 

cut and then, some samples from different 

sections of the stem were sampled and wet 

weights of samples were measured using a 

balance. In addition, the crown biomass of 

trees including foliage and thin stems was 

determined using a subsampling method. In 

this method, a quarter of leaves, stems, and 

branches from the 30 sample trees were 

selected and cut and then the wet weights of 

30 leaves, stems, and branches with different 

diameters and sizes were selected and weighed 

immediately. The samples were transported to 

the laboratory to measure the dry weight, 

wood density, and carbon stock. The samples 

were oven-dried at 75 
o
C (24 h) and weighed 

after weight stabilization. The Biomass of each 

Component (BC) including leaves, branches, 

and stems was determined as a product of the 

Fresh (wet) Weight of parts (FWc) and the 

ratio of „Dry Weight (DWs): Fresh Weight 

(FWs)‟of the sample was computed as 

Equation (1). Enough quantity of each 

component was burned in electric Kiln to 

calculate the carbon stock. 

(1)  

  

The satellite images were ortho-rectified 

using rational polynomial coefficients and a 

horizontal 20-m topographic digital elevation 

model in Universal Transverse Mercator 

(UTM) coordinate system and the WGS84 

datum. A Differential Global Positioning 

System (DGPS) receiver was used for the 

accurate assessment of ortho-rectified satellite 

dataset. The permanent reference point was 

acquired from the National Cartographic 

Center of Iran (NCC), to fix the reference 

DGPS set at that particular point. The HPF 

fusion algorithm (Chavez et al., 1991) was 

used to merge the panchromatic and 

multispectral images for producing the pan-

sharpened four-band images with 0.5 m 

resolution and similar spectral characteristics 

(Figure 2). The GEOBIA methodology was 

implemented on the Digital Values (DNs) of 

the pan-sharpened images. Before 

segmentation, a low pass median filter (3 by 3 

kernel size) on fused images was applied to 

avoid over-segmentation (Platt and 

Schoennagel, 2009) to produce more 

homogeneous image segments. Applying low 

pass median filter reduced the number of 

convolutions in the final segmented polygons 

because of the VHRS images (Mora et al., 

2010). A Normalized Difference Vegetation 

Index (NDVI) data was created from the 

GeoEye-1 images for applying local maxima 

filtering as a start point of region growing 

segmentation performance. 

Allometric Equation Development 

 To estimate biomass and carbon stock of 

delineated trees from the satellite image, the 

relationship between the biophysical 

features (i.e. DBH, tree and crown heights 

and crown area) and the biomass and carbon 

stock of all sampled trees were developed 

for this species. Several empirical methods 

were available for biomass and carbon stock 

estimation. However, in this study, we 

preferred using allometric equations because 

an allometric model is a useful tool that can 

estimate the biomass and carbon stock of 

single trees according to some easily 

measured variables by satellite images, such 

as crown area (Brown, 1997). Allometric 

equations between lab-calculated rates of 

biomass and carbon stocks and tree feature, 

particularly crown area and crown 

c s
c
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Figure 2. Tree crown reference polygons of the sample trees on a Pan-sharpened false colour composite of 

GeoEye-1images. 

 

Figure 3. Over-identification and under-identification for a reference object Rj and an identified object Oi 

(Ardila et al., 2012). 

 

diameters, were investigated using different 

regression models. The most common 

regression allometric model in biomass 

studies is the power function (Brown, 1997) 

as Equation (2), which was developed by 

Sohrabi and Shirvani (2012) for estimating 

standing biomass of Pistachio Atlantica with 

a power regression model. We used this 

model for allometric equations, too. 
1

0

b
Y b x

     (2) 

Where, Y is the total aboveground 

biomass or carbon stock, x is the 

independent variable, b0 and b1 are the 

scaling coefficient and scaling exponent, 

respectively. 

Tree Crown Detection and Delineation 

In this study, the region growing 

segmentation algorithm in eCognition 

software as an object-based classification 

program was used for individual tree crown 

delineation and accurate carbon stock 

mapping purposes. The region-growing 

algorithm assumes that the center of tree 

crown is brighter than the edge of the crown 

(Culvenor, 2002), then, the treetops are 

identified as maxima and the shadows 

between trees as the minimum. The 

segments are “grown” from these maxima 

and the valleys act as boundaries. The first 

step of the region growing is creating the 

small size, homogeneous objects through the 
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so-called chessboard segmentations from 

which the brightest pixels are identified as 

seed pixels (treetops). Radiometric profile of 

tree crowns was drawn and thresholds 

determined for local maxima. After 

chessboard segmentation, a radiometric 

maximum was identified within each of the 

individual trees. Different kernel sizes (3, 5, 

7 and 9) were designed and evaluated for 

local maxima algorithm. Finally, radiometric 

maxima were identified using NDVI and 

Near-Infrared (NIR) bands and served as the 

starting points for region growing 

segmentation. A region-growing process 

was constrained by two spectral thresholds 

based on the difference in NDVI and NIR 

between the original seed and the adjacent 

candidate pixels, a sharp decrease in NDVI 

and NIR values showed the crown boundary. 

The NDVI is insensitive to within-crown 

brightness variation and, therefore, suitable 

for detecting true crown edges while 

minimizing over-segmentation (Blaschke, 

2010). This process was iterated until each 

object was contained by a potential 

singletree crown. The morphological 

watershed transformation (Dougherty, 1993) 

was applied to split the connected and 

overlapped tree crowns for cluster and 

conflicted crown separation, and delineation. 

Tree Crown Delineation Assessment 

The assessment focuses on two aspects of 

accuracy, including tree detection accuracy and 

crown delineation accuracy on the images and 

indices. To evaluate the tree detection rate, we 

calculate the precision, recall, and overall 

accuracy measures of the wild pistachio tree 

detections through comparison with the 

reference. The precision is the likelihood that a 

detected wild pistachio tree is valid, as described 

in Equation (3). The recall is the probability that 

a wild pistachio tree in reference is detected, as 

described in Equation (4). The overall accuracy 

is the average of precision and recall, as 

described in Equation (5). 
The number of correctly detected wild pistachio trees

Precision
The number of all detected objects



      (3) 

The number of correctly detected wild pistachio trees
Recall

The number of wild pistachio trees in ground truth


 
 (4) 

Precision + Recall
Overall Accuracy

2


  
(5) 

For accuracy assessment of tree crowns 

delineations, we adopted the accuracy 

indicators that tell the quality of the 

boundary extent of detected objects, namely, 

under- and over identification area errors 

(Ardila et al., 2012). As shown in Figure 3, 

the delineation accuracy indicators are 

quantifying how well the extent of an 

identified object Oi fits a reference object Rj 

at over and under-identification as Equations 

(6) and (7): 
i j

i

i

area(O R )
OverID(O )=1-

area(O )    (6) 

i j

i

j

area(O R )
UuderID(O )=1-

area(R )    (7) 

Where, values of OverID (Oi) and 

UnderID (Oi) close to zero represent a good 

match between classified and reference 

objects and values close to 1 represent a 

large difference in extent between 

classification and reference. 

The total delineation error indicator in [0, 

1] using Equation (8): 
2 2

i i
i

OverID(O ) UnderID(O )
total error(O )=

2



 (8) 

2.6. Biomass and Carbon Stock Estimation 

The biomass and carbon stock of trees 

were estimated by using the developed 

allometric equations and the delineated tree 

crowns from the satellite image. The 

estimated biomass and measured (observed) 

biomass were compared using a paired t-test 

analysis. Finally, the biomass and carbon 

stock were estimated for all delineated trees 

in the study area. 

RESULTS 

Data Analysis 

Descriptive statistics of biophysical 

features of sample trees are presented in 
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Table 1. Descriptive statistics of biophysical attributes of sample trees. 

Tree attribute Mean Std. D Max Min 

DBH (cm) 40.8 12.7 79 8 

Height (m) 4.5 1.0 7.3 2.1 

Crown area (m
2
) 30.7 16.1 89.3 2.5 

Biomass (kg) 292.9 207.3 961.5 24.2 

Carbon stock (kg) 140.0 99.3 460.2 11.5 

 

Table 2. Validation results of allometric equations for wild pistachio biomass and carbon stock.  

Variables Predictors R
2 

F Sig Std Error Equation 

Biomass 
DBH 0.92 329.7 *** 0.24 2.2830.053Y x  

Height 0.84 145.5 *** 0.34 3.1222.175Y x  
Crown area 0.80 110.0 *** 0.38 1.00711.028Y x  

Carbon stock 
DBH 0.92 331.4 *** 0.24 2.2890.025Y x  

Height 0.84 145.6 *** 0.34 3.1301.027Y x  
Crown area 0.80 110.3 *** 0.39 1.0105.225Y x  

 

 

Table 1. The means and ranges of sample 

trees show that a wide range of trees with 

different biophysical features was used for 

modeling. 

Biomass and Carbon Stock Allometric 

Equations 

To predict biomass and carbon stock, 

allometric models were developed using 

DBH, tree height and crown area as 

predictors. The allometric equations could 

fit the data, and more than 80% of observed 

variation in biomass and carbon stock could 

be explained by tree crown area. The 

calculated power model and their results are 

presented in Table 2. 

Tree Crown Detection and Delineation 

Assessment 

Because of solar illumination and different 

reflectance of trees, a local NIR peak is 

normally found near the top of a tree crown 

(Figure 4) which is used to detect local 

maxima algorithm. The result of tree 

detection using this algorithm are presented 

in Table 3, the highest rate of overall 

accuracy belongs to kernel size of 7. Figures 

5, 6 and 7 show the results and steps of tree 

crown detection and delineation. 

The linear regression (Figure 8) exposed a 

strong relationship with the significant level 

of α= 0.05 (R
2
= 0.95) between the crown 

area gathered from field surveys and 

detected by GEOBIA algorithm with a 

relatively suitable approval of root Means 

Square error percent (RMSE%) of 14.67% 

(Table 4). However, this rate was different 

for different tree crown classes (Table 4). 

The results showed that more than 88% of 

delineated crowns had been matched with 

reference. The total error in small crowns 

was higher than large crowns and the lowest 

RMSE (%)= 10.43% and Bias (%)= -0.24% 

belonged to large crowns. 

Biomass and Carbon Stock Estimation 

Based on the results, the number of 

detected wild pistachio tree counted equal to 

18301 in the reserved forest of the study 

area (25 km
2
). The average number of trees 

per hectare was counted about 7.3 in the 

study area. Based on extracted crowns, the 

tree level biomass and carbon stock were 

computed and were calculated in the 
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Table 3. Tree crown detection evaluation results of applying the local maxima filter algorithm using different 

kernel size. 

Evaluation index Kernel size 

 3 5 7 9 

The number of correctly detected trees 465 483 483 463 

The number of all detected objects 582 535 517 508 

The number of trees in reference 489 489 489 489 

Precision (%) 95.1 98.8 98.8 94.7 

Recall (%) 79.9 90.3 93.4 91.1 

Overall accuracy (%) 87.5 94.5 96.1 92.9 

Figure 4. Tree crown is shown on the false colour composite [RGB (432)] with it‟s near infrared radiometric 

profile (c) measured along the yellow line (a). The NDVI image of a tree crown (b) with its radiometric profile 

measured along the yellow line (d). 

 

reserved area (Table 7). The result of the 

paired t-test showed that there was no 

significant difference between the estimated 

biomasses and measured biomasses (Table 

6). In addition, the relative RMSE was 

obtained about 23.6% (Table 5). However, 

the trees with a small crown class less than 

25 m
2
 had the highest RMSE compared with 

other tree crown classes. This means the 

crown area allometric equation could not 

accurately estimate the biomass and carbon 

stock of the trees with small crowns. Figure 

9 shows the biomass distribution map of the 

study area. 

DISCUSSION 

The methods proposed in this work 

represent a special approach for individual 

tree detection in woodland areas that relies 

only on the availability of VHR imagery. 

This is useful since satellite imagery 

provides continuous and systematic 

coverage over large areas. Images captured 

by airborne platforms are also an alternative  

 [
 D

O
R

: 2
0.

10
01

.1
.1

68
07

07
3.

20
21

.2
3.

1.
6.

9 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ja

st
.m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
5-

16
 ]

 

                             9 / 17

https://dorl.net/dor/20.1001.1.16807073.2021.23.1.6.9
https://jast.modares.ac.ir/article-23-31570-en.html


  _______________________________________________________________________ Bagheri et al. 

116 

 
 

Figure 5. The seed points resulting from running the local maxima filter is shown on Picture 1, and Pictures 

2 to 15 show the steps of a region growing algorithm for complete tree crown delineation. 
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Figure 6. (a) A small window of the false colour composite image [RGB (432)], (b) Delineated crowns after 

applying the region growing algorithm, and (c) Splitting the cluster connecting crowns using a watershed 

transformation approach . 

 

Figure 7. (a) Tree crowns detected by the region growing algorithm (yellow) compared with the reference 

(blue), and (b) Delineated crowns after refinement and smoothing. 

 

Figure 8. The correlation analysis between detected crown area by algorithm and field surveyed crowns in the 

sample trees. 
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Table 4. Tree crown delineation errors in different crown size 

Crown area class size (m
2
) Under ID Over ID Total error RMSE (%) RMSE (m

2
) Bias (%) Bias (m

2
) 

Small (< 25) 0.11 0.14 0.14 18.02 2.99 -3.71 -0.61 

Medium (25-50) 0.07 0.12 0.11 14.24 5.00 -6.39 -2.25 

Large (> 50) 0.06 0.10 0.09 10.43 6.40 -0.24 -0.15 

All 0.09 0.12 0.12 14.67 4.52 -5.28 -1.63 

 

Table 5. Bias, Bias%, RMSE and RMSE% of the estimated biomass using delineated tree crown. 

Allometric equation Tree crown class RMSE (%) RMSE (Kg) Bias (%) Bias (Kg) 

Y= 11.028x
1.007

 

Small (< 25) 44.3 53.2 3.1 3.7 

Medium (25-50) 15.1 45.9 1.9 5.8 

Large (> 50) 25.8 102.8 23.1 92.1 

All 23.6 56.7 7.6 18.2 

 

Table 6. Paired t-test result of measured and estimated biomass comparison. 

 
Mean 

Std. 

Deviation 

Std. Error 

Mean 
Mean difference t Sig. 

Measured biomass 292.9 207.4 37.8 
-5.6 

-

0.246 
0.807 

Estimated biomass 299.3 169.0 30.8 

 

Table 7. The estimated biomass and carbon stock in the reserved area and per hectare using satellite 

imagery. 

Variable Per hectare (Mg h
-1

) Reserved Forest (Mg) 

Biomass 1.49 3725.0 

Carbon stock 0.71 1775.0 

 

 

Figure 9. Biomass estimated map of the study area 
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as the input data set for tree detection, as they 

can provide a higher spatial resolution (for 

example < 0.5 m) allowing small tree 

detection. Our result pointed out the 

application of a segmentation technique 

(region growing and watershed 

transformation) was effective in distinguishing 

tree crowns. The results in crown area 

detection and delineation showing a higher 

detection rate (more than 96%) in comparison 

with similar studies that have been applied for 

tree crown detection using local maxima. For 

instance, Karlson et al (2014) reported a 

detection rate of 85.4% in woodland of West 

Africa using Worldview-2 images, Ardila et 
al. (2012) reported a detection rate between 

70–80% using Quickbird imagery to map 

urban tree cover in the Netherlands, and 

Bunting and Lucas (2006) reported a detection 

rate of 71% using Compact Airborne 

Spectrographic Imager (CASI) imagery in 

Australian woodlands. Leckie et al. (2005) 

achieved a detection rate between 50–60% of 

an old growth conifer area in Canada. Higher 

accuracies have been reported in less complex 

tree cover conditions, for example, by Pouliot 

et al. (2002), who achieved a detection rate of 

91% for a spruce plantation using a modified 

local maxima approach and multispectral 

aerial imagery. In addition, Li et al. (2017) 

studied the oil palm tree detection and 

achieved a detection rate of more than 96% of 

the oil palm trees, which is similar to our 

results. The isolated individual trees and low-

density of trees in our study area as well as 

using very high-resolution GeoEye fused 

images were the important reasons for getting 

a high detection rate in this study compared 

with other studies with more complex and 

dense regions. The relative error in overall 

delineation accuracy in this study was 14.7%. 

The results of this study were better compared 

with previous researches, such as Ardila et al. 

(2012). They reported a relative error of 17-

30% compared with a manually delineated 

reference dataset. Delineation errors as 17.9% 

have been achieved in even-aged and well-

spaced plantation forests (Pouliot et al., 2002). 

Panagiotidis et al. (2017) got a range of 14.3-

18.6% for tree crown diameter estimation. 

However, lower delineation accuracies are to 

be expected where the tree cover is 

characterized by high variation in tree crown 

size distribution (Leckie et al., 2005) and tree 

species diversity (Ke and Quackenbush 2011). 

In the study area, despite of varying crown 

area sizes, the crown of pure stand of wild 

pistachio trees could be separated better and 

fewer cluster trees decreased the delineation 

error. Since there were no allometric equations 

available for the study area, we developed the 

local allometric equations. The results showed 

that the biomass of individual trees can be 

accurately estimated using allometric 

equations based on the DBH and the height 

and crown of the trees (Sohrabi and Shirvani 

2012; Chave et al., 2005; He et al., 2013; Lu, 

2006). 

CONCLUSIONS 

The object-based image classification 

techniques available in commercial software 

are facilitated practicable and more reliable 

methods for estimating forest crown in 

fragmented and degraded dry forest 

ecosystems. In conclusion, the canopy 

delineation algorithm used in this study 

revealed a robust method could produce good 

estimations of biomass and carbon stock at the 

individual tree and regional scale level. The 

relationship between the crown area and 

carbon stock can be explained by power 

regression models. The optical images 

collected from satellite images can be directly 

used to collect the tree crown area, and 

indirectly for tree height and or diameter. 

Allometric relationships between ground-

based measurements of tree carbon stock and 

its crown area with or without tree height can 

be applied to estimate forest carbon stocks 

with high certainty. These data are collected 

over small areas (several hundred of ha) but 

could be used for inaccessible areas or in 

sampling design. However, satellite-based 

estimates of forest biomass and carbon stock 

will likely be more accessible over the next 

decade as new technologies emerge and 

technical capacities are strengthened. 

Collecting more ground-based data using a 

proper sampling method, which considers 

forest type and structure conditions, will be 
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necessary for improving biomass and carbon 

stock estimations in arid and semi-arid forests. 
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از تصاویر توده و ذخیره کربن گونه بنه در نواحی خشک با استفاده برآورد میسان زی

 GeoEye-1ماهواره ای 

 ی. عرفانی فرد و . شتایی جویباری،شر. باقری، 

 چکیده

ایي تاشذ. ریساى هٌاتغ طثیؼی هیترًاهِ ازیً هَردتَدٓ رٍی زهیي در هٌاطك ٍسیغ ترآٍرد دلیك هکاًی زی

هحذٍدُ تاج درختاى درختاى تٌِ تر اساس تشخیص ٍ شٌاسایی  تَدُ ٍ رخیرُ کرتيهٌظَر ارزیاتی زیتحمیك تِ

در شْرستاى  ایي گًَِ گاُ خٌگلیدر رخیرُ ٍ رٍاتط آلَهتریک GeoEye-1تا استفادُ از تصاٍیر هاَّارُ 

تَدُ درختاى ًوًَِ تا استمادُ از ًوًَِ ترداری زیاًدام شذ.  در شرق ایراى خراساى خٌَتیاستاى ًْثٌذاى 

از حدن ٍ چگالی چَب تؼییي  استفادَُدُ تٌِ درختاى تا تػلاٍُ زیّای تدرتی تؼییي شذ. تِهیذاًی ٍ رٍش

تَدُ ٍ رخیرُ کرتي تر اساس سطح تاج، لطر تراتر سیٌِ ٍ ارتفاع درختاى تْیِ شذ. شذ. هؼادلات آلَهتریک زی

ّای حذاکثر هحلی ٍ رشذ ًَاحی شٌاسایی ای تا استفادُ از الگَریتنتاج درختاى تر رٍی تصَیر هاَّارُ
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ّای اخرا پیَستِ استفادُ شذ. الگَریتنّنّای تِتٌذی حَضِ ترای خذاسازی تاجي رٍش لطؼِگردیذ. ّوچٌی

شذُ تا استفادُ از تاج درختاى ترداشت زهیٌی ارزیاتی گردیذ. ًتایح ًشاى داد هؼادلِ آلَهتریک تر اساس سطح 

ٍُ رٍش تشخیص ٍ تؼییي ػلاکٌذ. تِتَدُ ٍ رخیرُ کرتي را تثییي هیدرصذ تغییرات زی 08تاج تیش از 

ٍ ترکیة هؼادلات  هَرداستفادُی ًتایح ًشاى داد رٍش طَرکل تِ هحذٍدُ تاج درختاى لاتل لثَل تَد.

اهکاى تْیِ  ای تا لذرت تفکیک هکاًی تالاآلَهتریک تا استخراج تاج درختاى تٌِ تر اساس تصاٍیر هاَّارُ

 ًوایذ.خشک فراّن هیهٌاطك خشک ٍ ًیوِتَدُ ٍ رخیرُ کرتي درختاى تٌِ را در ًمشِ دلیك زی
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