A Mathematical Model for Hydraulic Characterization of Microtube Emitters Using Dimensional Analysis

G. T. Katsurayama¹, L. R. Sobenko²*, A. P. de Camargo³, T. A. Botrel², J. A. Frizzone², and S. N. Duarte²

ABSTRACT

A microtube emitter is a simple, low-cost emitter in which the length can be adjusted according to the distribution of pressures along an irrigation lateral line to deliver uniform discharge. To accurately design micro-irrigation systems using microtubes, it is necessary to use an equation that correlates hydraulic parameters, microtube characteristics, and fluid properties. Therefore, the objectives of this research were: (a) To develop an equation for design purposes using dimensional analysis by Buckingham’s Pi theorem to represent the hydraulic processes in a microtube emitter operating in the laminar flow regime and (b) To compare the accuracy of the developed model against models that are currently used for microtube sizing. The data required to develop and validate the model was obtained experimentally in the laboratory by evaluating three types of microtubes with nominal diameters of 0.7, 0.8 and 1.0 mm. A model using pressure head, microtube length, flow rate, internal diameter, gravitational acceleration, and water properties was proposed and validated. The model for estimating hydraulic parameters in microtube emitters also presented better performance than other models available in the literature. Finally, an application example was presented and an irrigation lateral line using microtubes as emitters was designed using the proposed model.

Keywords: Buckingham’s Pi theorem, Laminar flow, Micro-irrigation.

INTRODUCTION

Micro-irrigation systems are characterized by applying water with low flow rates for relatively long times with high frequency near the root zone through low operating pressure systems above or below ground level. These characteristics maintain a high level of moisture in a small volume of soil where the plant root system is usually contained. Based on this, microirrigation technologies are widely considered one of the most effective and efficient methods of irrigation (Keller and Bliesner, 1990).

In microirrigation system design, pressure differences at the emitters throughout the subunit must be maintained in a range that enables achieving a target design emission uniformity (Frizzone et al., 2012; ASAE, 2014). The lateral line length is calculated from the admissible flow rate variation in its extension, and the type of emitter has direct participation in this determination. Non-regulated drippers, despite allowing shorter lateral lines, can result in lower cost projects compared to regulated emitters due to the decrease in total annual costs for categories of similar operating pressures (Holzapfel et al., 2007; Kumar et al., 2015).

As an alternative to regulated emitters, microtube emitters, also called the “spaghetti tube”, can be chosen. The

¹ Federal Institute of Education, Science, and Technology of Santa Catarina, Araquari, Santa Catarina, Brazil.
² Biosystems Engineering Department, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, São Paulo, Brazil.
³ University of Campinas, Agricultural Engineering College, Campinas, São Paulo, Brazil.
* Corresponding author; e-mail: luizsobenko@usp.br
microtube is a simple, low-cost emitter that was widely used throughout the world in the early days of drip irrigation (Almeida et al., 2009). The microtube is a long-path emitter with an internal diameter typically ranging from 0.5–1.5 mm, with a flow exponent normally higher than 0.75. Since such emitters usually operate near the laminar flow regime, its discharge is prone to vary significantly due to pressure and temperature fluctuations; and these effects should be considered while designing laterals (Katsurayama et al., 2017). Microtubes can also be applied as an extension for micro-sprinkler or micro-jet systems to increase the outlet pressure and, therefore, to cover larger areas (Keshtgar et al., 2013). Microtubes are commercially available in coils, which allow them to be obtained at any length. Therefore, their length can be adjusted according to the distribution of pressures along the lateral line to deliver a uniform discharge (Souza and Botrel, 2004; Almeida et al., 2009). Theoretically, this allows all emitters to have the same flow rate and, therefore, near 100% uniformity in the lateral line. Therefore, in order to accurately design microirrigation systems with microtubes, it is necessary to use an equation that correlates the flow rate, length, inlet pressure at the microtube, internal diameter, and fluid properties. Previous experimental investigations determined relationships for sizing microtube emitters in the laminar flow regime, i.e. Reynolds number less than 2000. Vermeiren and Jobling (1980) proposed an equation, in which the flow rate \(Q \) is a function of the operating pressure Head \(H \), the Length \(L_m \) and internal Diameter \(D_{in} \), as follows:

\[
Q = Y_1 \frac{L_m}{D_{in}^2} H Y_2 D_{in}^{Y_4} \tag{1}
\]

Where, \(Q \) is the microtube flow rate (L h\(^{-1}\)), \(Y_1, Y_2, Y_3 \) and \(Y_4 \) are empirical coefficients (dimensionless), \(L_m \) is the microtube Length (m), \(H \) is the pressure Head (m), and \(D_{in} \) is the microtube internal Diameter (m).

Souza and Botrel (2004) used the Bernoulli equation applied between the inlet and outlet section of the microtube and associated the equations of friction and minor losses and kinetic energy in a single equation (Equation 2). Equation (2) is determined based on experiments using microtube emitters with nominal diameters ranging from 0.6–1.0 mm and considers the minor losses as a function of Reynolds number as well.

\[
H = \frac{64}{\pi^2 g} \left(\frac{L_m}{D_{in}^4} Q \right) + \frac{16}{\pi^2 g} \left(\frac{Q^2}{D_{in}^4} \right) + \left[\alpha_K \ln(Re) + \beta_K \frac{16}{\pi^2 g} \left(\frac{Q^2}{D_{in}^4} \right) \right] \tag{2}
\]

Where, \(\alpha_K \) is the water kinematic viscosity \((m^2 s^{-1}) \), \(g \) is the gravitational acceleration \((m s^{-2}) \), \(Re \) is the Reynolds number (dimensionless), and \(\alpha_K \) and \(\beta_K \) are empirical coefficients which represent the minor loss coefficients as a function of \(Re \) (dimensionless).

The coefficients of these equations to design microtubes are usually tabulated according to their diameter. This means that values for intermediate diameters must be obtained by interpolation, which can lead to error because the values may not present linear variation. Emitters designed erroneously can lead to water application that differs from the design and, consequently, is lower than desired application uniformity, causing water stress in plants, either due to excess or deficit, and heterogeneity in the stand, hindering cultural treatment.

A model for estimating discharge of microtubes operating at any flow regime based on dimensional analysis was proposed and validated by Vekariya et al. (2010) (Equation 3).

\[
Q = \left(\frac{20 D_{in}^5 H g}{L_m} \right)^{1/2} \tag{3}
\]

Where, \(Q \) is the microtube flow rate \((cm^3 s^{-1}) \), \(D_{in} \) is the microtube internal Diameter (cm), \(H \) is the pressure Head (cm), \(g \) is the gravitational acceleration \((cm s^{-2}) \) and \(L_m \) is the microtube Length (cm).
Equation (3) is valid for microtubes with a nominal diameter ranging from 1.2–2.0 mm. According to Vekariya et al. (2010), that range is commonly used by drip manufacturers in India. In Brazil, microtubes for irrigation purposes are used mainly by small-holders (Souza et al., 2009) and usually manufactured in nominal diameters varying from 0.7–1.0 mm. The equation proposed by Vekariya et al. (2010) might not be suitable for sizing microtubes with a nominal diameter smaller than 1.2 mm.

The objectives of this research were: (a) To develop an equation for design purposes based on dimensional analysis to represent the hydraulic processes inside a microtube emitter operating in the laminar flow regime; (b) To compare the accuracy of the developed model against models that are currently used for microtube sizing.

MATERIALS AND METHODS

The tests were performed at the Irrigation Testing Laboratory (LEMI) of the College of Agriculture “Luiz de Queiroz” (ESALQ/USP), Piracicaba, São Paulo State, Brazil. Three types of microtube emitters with Nominal Diameters (DN) of 0.7, 0.8 and 1.0 mm were evaluated. The emitters were made of low-density polyethylene with a 2.5 mm external diameter, and they were manufactured by Plasnova Inc. (Brazil).

Materials and Functional Tests

The first stage of tests aimed to determine the emitter D_in of the three types of microtubes using the hydraulic measurement model from the methodology described by Almeida and Botrel (2010). The water temperature was monitored using a temperature transmitter (accuracy 0.5°C). Water density (ρ) and water kinematic viscosity (ν) were estimated according to Equations (4) (Pinto et al., 2014) and (5) (Kell, 1975), respectively. The nominal diameters 0.7, 0.8 and 1.0 mm presented the following D_in: 0.79, 0.87 and 1.11 mm. According to Almeida and Botrel (2010), the experimental determination of D_in should be performed whenever possible by the designer for the correct sizing of microirrigation systems using microtubes, since it is a common problem in the Brazilian industry that the DN informed by the manufacturer presents deviations in relation to D_in, due to lack of quality control in the manufacturing processes. Almeida and Botrel (2010), Alves et al. (2012) and Katsurayama et al. (2017) identified, respectively, D_in deviations of up to 11.3, 10.3, and 5.6% in relation to the informed DN.

\[
\rho = (999.8676 + 17.801161T - 7.942501 \times 10^{-3}T^2 - 52.56328 \times 10^{-6}T^3 + 137.6891 \times 10^{-9}T^4 - 364.4647 \times 10^{-12}T^5) / (1 + 17.735441 \times 10^{-3}T)^4)
\]

Where, ρ is the water density (kg m⁻³) and T is the water Temperature (°C).

In order to determine the pressure-discharge curves, 10 microtube samples were used for each D_in and L_m evaluated. The emitter lengths ranged from 0.3–1.5 m in 0.15 m increments. The spacing and insertion depth of the microtubes in the lateral line were standardized at 0.1 m and 5 mm, respectively. Polyethylene tubes with a 12.7 mm internal diameter were used as lateral lines.

The microtubes were evaluated under operating pressure heads ranging from 4.90–93.16 kPa in 9.81 kPa increments. During the tests, the operating pressure was controlled by two procedures: (a) For pressures lower than 30 kPa, the pressure head was provided by a suspended tank whose height was adjusted according to the required pressure; also, minor adjustments were made using a needle valve and monitored by a piezometer (Figure 1-a); and (b) For pressures higher than 30 kPa, the
tests were undertaken in a testing bench that consisted of a pump and an automated pressure control system equipped with a variable frequency drive and a Proportional-Integral-Derivative (PID) controller (Figure 1-b). The PID controller used a pressure transmitter (accuracy 0.1% of full scale; Full scale= 100 kPa), installed at the inlet of the lateral lines, to calculate the error between the pressure set point and the measured pressure and then apply an output signal to the Variable Frequency Drive (VFD).

During the tests, volumes of water were collected over a time interval that varied as a function of pressure. In addition, the time interval was constrained using 5 min as the minimum test time and 0.5 kg as the minimum water mass collected. Immediately after the test, the volume of water in each collector was weighed and converted into a flow rate.

The Coefficient of Variation of discharge (CVQ) was calculated for a set of 10 emitters with the same D and L using Equation (6) and classified according to ASAE (2014). For this research, this coefficient enables to quantify discharge variations due to internal diameter (manufacturing process) and length imperfections (segments were manually cut).

\[
CV_Q = \frac{S_Q}{\overline{Q}}
\]

Where, CVQ is the Coefficient of Variation of discharge (dimensionless), S_Q is the Sample standard deviation (L h⁻¹), and \(\overline{Q}\) is the mean emitter discharge (L h⁻¹).

Model Development Procedure Using Dimensional Analysis

Dimensional analysis is a simple, clear, and intuitive method that is useful for solving fluid flow problems (Lemons, 2017). A combination of theoretical and experimental approaches is often required to develop practical solutions to problems in hydraulics and fluid mechanics (Zitterell et al., 2013; Vilaça et al., 2017; Sobenko et al., 2019). Dimensional analysis enables the reduction of physical quantities into dimensionless groups called Pi-terms (Π)
and is a useful tool for developing predictive equations (Vilaça et al., 2017). In this research, the dimensional analysis was based on Buckingham’s Π theorem (Buckingham, 1914) and the method of repeating variables following practical procedures defined by Munson et al. (2009) and Fox et al. (2011).

Models based on dimensional analysis have been developed to estimate pressure losses and optimum lengths in drip irrigation laterals (Perboni et al., 2015; Yurdem et al., 2015), pressure loss in filters (Yurdem et al., 2008; Duran-Ros et al., 2010; Yurdem et al., 2010, Wu et al., 2014), minor losses in microirrigation connectors (Zitterell et al., 2013; Vilaça et al., 2017), energy losses in open channels (Gupta et al., 2013; Helal et al., 2018; Zayed et al., 2018), injection rate in venturi injectors (Sobenko et al., 2019) and to study the hydraulics of microtubes emitters (Vekariya et al., 2010).

This theorem requires knowledge of the pertinent, nonredundant quantities affecting the physical system. The hydraulic processes in a microtube emitter are mainly influenced by its H, D_in, Q, L_m and fluid properties. In addition, to facilitate grouping of Π-terms, Q was expressed as flow velocity (v). For the model development, we assume that H is the dependent variable and, based on an empirical interpretation of this physical process, a mathematical relationship can be defined (Equation 7).

\[H = f(v, D_{in}, L_m, \rho, \mu) \]

Where, H is the pressure Head (Pa), v is the mean flow velocity (m s^{-1}), D_in is the microtube internal Diameter (m), L_m is the microtube Length (m), \rho is the water density (kg m^{-3}) and \mu is the water dynamic viscosity (Pa s).

Lemons (2017) claimed that the number of variables necessary to represent a process should be minimized. Including unnecessary predictors in the model complicates the description of the process and may result in poor predictions, while omitting important effects reduces its predictive power (Chatterjee and Simonoff, 2013). A model should be as simple as possible while still accounting for the important relationships in the data (Vilaça et al., 2017).

The difference between the number of variables that describe a process (k) and the number of reference dimensions (r) required to define units in the list of variables results in the number of dimensionless groups (i.e., the Π-terms). In Equation (7) we can observe 6 variables (k= 6) associated with 3 reference dimensions (r= 3; Table 1). Therefore, the number of Pi-terms is equal to 3 (Equation 8).

\[\Pi_1 = \phi(\Pi_2, \Pi_3) \]

Where, \Pi_1, \Pi_2, and \Pi_3 are the Pi-terms (dimensionless).

H was chosen as the dependent variable and the repeating variables were v, D_in and \rho. The repeating variables were systematically combined with the remaining variables to define the Π-terms. As a result of the derivation processes, the Π-terms were expressed as dimensionless terms:

\[\frac{H}{\rho v^2} = \phi \left(\frac{\rho v D_{in}}{\mu}, \frac{L_m}{D_{in}} \right) \]

A multivariate power-law model (Equation 10) was fit to the data using the Least Squares Method. This type of model has been employed successfully for modeling processes related to fluid flow in hydraulics and irrigation applications (Yurdem et al., 2008; Vekariya et al., 2010; Zitterel et al., 2013; Perboni et al., 2015; Vilaça et al., 2017).

\[H_1 = \beta_1 H_2 \beta_2^2 \Pi_3^{\beta_3} \]

Where, \beta_1, \beta_2, and \beta_3 are empirical coefficients (dimensionless).

The dataset obtained experimentally was randomly divided into two subsets: (a) The calibrating dataset accounted for 70% of the experimental data and was used to fit the models; (b) The testing dataset consisted of the remaining 30% of the data and was used to validate the accuracy/performance of the model. Models were assessed using the Root Mean Square Error (RMSE) and by graphical error analysis with the objective of evaluating their accuracy to predict the following variables, H, Q and L_m. The RMSE is a common index to measure the
accuracy of models and quantifies differences between observed and estimated values (Duran-Ros et al., 2010; Provenzano et al., 2016). Graphical error analysis is also useful to quantify prediction errors associated with their frequency of occurrence (Vilaça et al., 2017).

RESULTS AND DISCUSSION

Experimental Dataset

A dataset with 205 sets of Q as a function of H and L_m in the Laminar flow regime was obtained. The observed Q for various combinations of microtube length (0.30–1.50 m), nominal diameter (0.7, 0.8 and 1.0 mm) and operating pressure (4.90–93.16 kPa) are shown in Figure 2. The C_V ranged from 0.40–2.39%, with an average of 1.07±0.45%. Based on the C_V values, the microtube emitters could be classified as "excellent" according to the ASA E (2014).

Figure 2 shows emitter discharge as a function of microtube diameter, microtube length, and operating pressure. The emitter discharge showed the following expected trends: (a) It decreased with increasing microtube length; (b) It increased for larger microtube diameters; (c) It increased as the pressure head was raised. These observations are theoretically expected, and they were also reported by Souza and Botrel (2004), Almeida et al. (2009), Vekariya et al. (2010) and Keshtgar et al. (2013).

The Prediction Model

The empirical coefficients of Equation (10) were fit using the calibration dataset, resulting in Equation (11).

$$
H = \frac{14.8365}{\rho v^2} \left(\frac{\rho v D_{in}}{\mu}\right)^{-0.7906} \left(\frac{L_m}{D_{in}}\right)^{0.9408} \tag{11}
$$

Expressing v as Q and re-arranging the terms in Equation (11), the proposed model is obtained:

$$
H = 19.883 \rho^{0.2095} \mu^{0.7905} L_m^{0.9408} Q^{1.2095} \frac{1}{D_{in}^{1.7314}} \tag{12}
$$

Equation (12) is valid under certain constraints, $8.540 \times 10^4 \leq \mu \leq 9.518 \times 10^4$ Pa s, $0.3 \leq L_m \leq 1.5$ m, $3.545 \times 10^4 \leq Q \leq 1.539 \times 10^6$ m3 s$^{-1}$ and $7.96 \times 10^4 \leq D_{in} \leq 1.11 \times 10^3$ m. Also, H and ρ are given in Pa and kg m$^{-3}$, respectively.

The testing dataset also served to validate the proposed model and to compare its predictions against those obtained using the models developed by Souza and Botrel.
For this, first, we isolate the variables “H”, “Q” and “Lm” of the 3 models and compare the estimated and observed data, as can be seen in Figures 3, 4 and 5, respectively.

Interpretation of the results shown in Figure 3 leads to the following observations: (a) Equation (1)- Proposed by Vermeiren and Jobling (1980), underestimated the values of H (Figure 3-c); (b) Equation (3)-Proposed by Vekariya et al. (2010), overestimated 70.1% of the H values (Figure 3-c); (c) A comparison of RMSE values for predicting H indicates Higher accuracy for the proposed model, with RMSE values from Souza and Botrel’s (2004), Vermeiren and Jobling’s (1980), and Vekariya et al.’s (2010) models being higher by 3.1, 6.8 and 26.7 times, respectively; (d) The graphical error analysis (Figure 3-e) demonstrates that the proposed model presents lower relative errors (δ) that also occur less frequently compared to the three literature models. The importance of Figure 3-e can be clearly understood from the examples presented in Table 1, which shows that 95% of H predictions using the proposed model presented relative errors of up to 11.7%, while relative errors reached 52.9, 27.7 and 90.8% for the models proposed in Equations (1), (2) and (3), respectively.

For predicting Q, the proposed model also presented good performance, with a lower RMSE than the other models evaluated (Figure 4). From the scattering data presented in Figure 4-b, it is possible to observe that for Q higher than 3 L h⁻¹, the model proposed by Souza and Botrel (2004) could not fit the testing dataset. On the other hand, the model proposed by Vermeiren and Jobling (1980) tended to overestimate all predicted Q values (Figure 4-c). Figure 4e and Table 1 show that 95% of Q predictions using the proposed model presented relative errors of up to 13.3%, while relative errors...
Table 1. Error analysis interpretation for the evaluated models for the prediction of operating pressure Head (H), flow rate (Q) and microtube Length (l_m).

<table>
<thead>
<tr>
<th>Estimated variable</th>
<th>Model</th>
<th>Frequency occurrence: Relative error (δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Proposed</td>
<td>95% : δ \leq 11.7%</td>
</tr>
<tr>
<td></td>
<td>Souza and Botrel (2004)</td>
<td>95% : δ \leq 27.4%</td>
</tr>
<tr>
<td></td>
<td>Vermeiren and Jobling (1980)</td>
<td>95% : δ \leq 52.9%</td>
</tr>
<tr>
<td></td>
<td>Vekariya et al. (2010)</td>
<td>95% : δ \leq 90.8%</td>
</tr>
<tr>
<td>Q</td>
<td>Proposed</td>
<td>95% : δ \leq 13.3%</td>
</tr>
<tr>
<td></td>
<td>Souza and Botrel (2004)</td>
<td>95% : δ \leq 18.5%</td>
</tr>
<tr>
<td></td>
<td>Vermeiren and Jobling (1980)</td>
<td>95% : δ \leq 69.6%</td>
</tr>
<tr>
<td></td>
<td>Vekariya et al. (2010)</td>
<td>95% : δ \leq 164%</td>
</tr>
<tr>
<td>l_m</td>
<td>Proposed</td>
<td>95% : δ \leq 6.2%</td>
</tr>
<tr>
<td></td>
<td>Souza and Botrel (2004)</td>
<td>95% : δ \leq 38.4%</td>
</tr>
<tr>
<td></td>
<td>Vermeiren and Jobling (1980)</td>
<td>95% : δ \leq 132%</td>
</tr>
<tr>
<td></td>
<td>Vekariya et al. (2010)</td>
<td>95% : δ \leq 265%</td>
</tr>
</tbody>
</table>

Figure 4. Comparison between the proposed model (Equation 12) and Equations (1), (2) and (3) for predicting the flow rate (Q) in microtube emitters. (a), (b), (c) and (d) observed versus estimated values of Q from the models; and (e) graphical error analysis presenting relative errors (δ) versus frequency of errors in predictions of Q.
reached 69.6, 18.5 and 164% using the models proposed in Equations (1), (2) and (3), respectively.

For L_m prediction from a given H and Q, the proposed model also presented the best performance, with a lower RMSE than the other models evaluated (Figure 5). Table 1 and Figure 5-e show that 95% of L_m predictions using the proposed model presented relative errors of up to 6.2%, while the relative errors reached 132, 38.4 and 265% for the models proposed in Equations (1), (2) and (3), respectively.

As already mentioned, the Souza and Botrel (2004) and Vermeiren and Jobling (1980) model coefficients were tabulated and it was necessary to perform interpolations to obtain them. However, the variations in these coefficients are not linear, which may impair the accuracy of the model. In order to explain this, first, the coefficient K from the Souza and Botrel (2004) model was isolated, which represents the minor losses by the terms “a_q ln (Re) + βK” from Equation (2). K was then plotted as a function of the Reynolds number of the testing dataset (Figure 6). From Figure 6, the scattering and values of K tend to decrease as Re increases, which corroborate the results reported by Juana et al. (2002) and Flores et al. (2017).

Secondly, the model proposed by Vermeiren and Jobling (1980) does not use U in its equation, i.e. does not consider the variation of the water temperature. Microtube emitters operating in the laminar flow regime are highly sensitive to variations in temperature and pressure (Katsurayama et al., 2017), as well as greater risks of clogging (Souza and Botrel, 2004). This also explains the better performance of Souza and Botrel’s (2004)
model compared to Vermeiren and Jobling’s (1980) model since there is also a theoretical deduction for the first model.

Regarding the Vekariya et al. (2010) model, the results confirmed the hypothesis that this model is not applicable for sizing microtubes with nominal diameters smaller than 1.2 mm in the laminar flow regime. Therefore, the proposed model complements the results of Vekariya et al. (2010) and it enables accurate estimation of hydraulics variables for smaller microtubes.

Application example

Usually, the design of microtubes is done by calculating the \(L_m \) for a given \(Q \), \(H \) and head loss condition (Frizzone et al., 2012). In order to demonstrate the use of the proposed model, let’s suppose the design of an irrigation lateral line using the step-by-step method. The lateral is 100 m long with a 12.7 mm internal diameter and emitting points spaced 0.5 m. The average flow rate of the microtubes is 2 L h\(^{-1}\) and the pressure head at the last emission point is 100 kPa. The internal diameter of the available microtube is 0.7 mm, and laminar flow regime (i.e., \(\text{Re} < 2000 \)) in all emitters along the lateral is mandatory.

First, we must calculate the head loss between two consecutive emitters of the lateral line using the Darcy-Weisbach equation, considering the coefficient of friction calculated by the Blasius equation. This procedure allows to obtain the pressure values at the inlet of each emission point, and, by accumulating this head loss along the lateral line, a value of 134.4 kPa is obtained at the lateral line inlet.

By applying Equation (12), rearranged with the explicit term \(L_m \), the length of each microtube for the lateral line will be obtained (Figure 7). As can be observed in Figure 7, microtubes length range from 0.79 to 1.09 m along the lateral line to provide \(Q=2\) L h\(^{-1}\). It is assumed that the water dynamic viscosity is \(1.003 \times 10^{-3} \) Pa s and its density is 1000 kg m\(^{-3}\).

CONCLUSIONS

1. Based on dimensional analysis, a model was developed for sizing microtube emitters operating in the laminar flow regime as a function of pressure Head (H), microtube Length (\(L_m \)), flow rate (Q), internal Diameter (\(D_{in} \)), gravitational acceleration (g), and water properties;
2. The proposed model for estimating hydraulic parameters in microtube emitters presented better performance than other models available in the literature;
3. The model proposed by Vekariya et al. (2010) does not properly estimate flow parameters of microtubes with internal diameters less than 1.2 mm.
4. An example application was presented and an irrigation lateral line using microtube emitters was sized using the proposed model.

ACKNOWLEDGEMENTS

The authors are grateful to the following Brazilian institutions for their financial support: the Federal Department of Science and Technology (MCT), the National Scientific and Technological Development Council (CNPq), the São Paulo State Scientific Foundation (FAPESP) and the National Institute of Science and Technology in Irrigation Engineering (INCTEI).

REFERENCES

یک مدل ریاضی برای مشخص کردن ویژگی‌های هیدرولیکی ریزولوژی قطره چکان (میکرو تیوب) با استفاده از تجزیه تحلیل ابعادی

گ. ت. کانسوریاف، ل. ر. سویکو، ا. ب. دامارگو، ت. ا. بورترل، ج. ا. فریزون، و س. ن. دوارت

چکیده

ریزولوژی قطره چکان (میکرو تیوب)، قطره چکان ساده و ارزانی است که در آن طول ریزولوژی را می‌توان مطابق با توزیع فشار در طول لوله لنز الیافی تنظیم کرد تا دی‌پی‌ایکنوختی داشته باشد. برای طراحی درست سامانه ریز آبیاری (micro-irrigation)، لازم است از مدل‌هاي ای استفاده کرد که پارامترهای هیدرولیکی و ویژگی‌های ریزولوژی، و خصوصیات ماده سیال (آب) را به هم ارتباط می‌دهد.

تا برای این‌ها، اهداف این پژوهش عبارت بود از (1) بر پایان مدل‌های با استفاده از تحلیل ابعادی (dimensional analysis) مطابق نظریه Buckingham استفاده از تحلیل ابعادی (dimensional analysis) مطابق نظریه Buckingham

فرایند های هیدرولیکی در یک ریزولوژی قطره چکان در یک رژیم با جریان ورقه ای و (2) مقایسه صحت نتایج این مدل با مدل‌های سایری که اکنون برای تصمیم‌گیری از این‌ها ریزولوژی ها به کار برده می‌شود.

برای نشان دادن فرایند‌های آزمایشگاهی و ارزیابی سه نوع ریزولوژی قطره‌ای اسامی برای 7/8، 1/10 میلی‌متر، داده های مورد نیاز برای برآورد مدل‌ها یک مدل و صحت سنجه‌ای آن به دست آمد. مدل‌های مدل‌یابی با استفاده از پارامترهای ریزولوژی، نرخ جریان، قطر داخلی لوله، شتاب لوله، و ویژگی‌های آب بر این شد و صحت سنجه‌گردد. مدل برآورد پارامترهای هیدرولیکی در ریزولوژی قطره چکان (کرد طراحی شده) بهتری از دیگر مدل‌های موجود در منابع علمی نشان داد. در این آزمایش، یک مدل کاربردی ارائه شد و با کار یک بست مدل‌های مجزا، یک خط لوله لنز الیافی که از ریزولوژی‌ها به عنوان قطره چکان استفاده می‌کرد طراحی شد.