In vitro Culture of Endemic Astragalus gymnolobus Fischer and Comparison of its Antibacterial, Antioxidant, and Phenolic Profiles with Field Grown Plants

A. B. Yildirim¹, E. Uyar², and A. Ucar Turker²*

ABSTRACT

Astragalus gymnolobus Fischer (Leguminosae family) is an endemic plant to Turkey. Firstly, an in vitro regeneration system was achieved using leaf and petiole explants on Murashige and Skoog (MS) medium supplemented with different cytokinins [Thidiazuron (TDZ), Kinetin (KIN), Benzyladenine (BA)], auxins [Indole-3-Butyric Acid (IBA), Indole-3-Acetic Acid (IAA), 2,4-Dichlorophenoxyacetic acid (2,4-D) and Naphthalene Acetic Acid (NAA)] and Gibberellic Acid (GA₃) at diverse concentrations. Best shoot formation was obtained with leaf explants and only TDZ alone or TDZ and IAA combinations were effective for shoot forming. The best shoot inducing response (17.60 shoots per explant at 23.81% shoot frequency) was recorded at 0.5 mg L⁻¹ TDZ alone. Among the TDZ stand-alone treatments, 0.05 and 0.1 mg L⁻¹ TDZ were also effective in terms of shoot induction frequency (31.82 and 30.43%, respectively). Root formation was obtained after 3 months (3.5 roots per shoot with 77.8% root frequency) only in auxin free MS medium (control) when regenerated shoots were cut off 0.5-1 cm from the base to exclude the callus part.

This study also aimed to determine and compare the antibacterial and antioxidant properties and phenolic composition of in vitro-regenerated and field-grown A. gymnolobus. The results revealed that field-grown leaves generally showed higher biological activities and had higher amounts of phenolic compounds. Furthermore, A. gymnolobus leaves were noteworthy sources of rutin. This initial in vitro culture protocol for endemic A. gymnolobus is valuable for genetic resources conservation and can be used in stress application studies to increase the level of phenolic substances in in vitro-grown plants.

Keywords HPLC, Micro-propagation, Murashige and Skoog (MS) medium, Phenol.

INTRODUCTION

Astragalus gymnolobus Fischer is an endemic, perennial plant belonging to the Leguminosae family and is found throughout the Northern and Southern part of Turkey (Davis, 1970). Astragalus species are some of the largest flowering plants, containing approximately 3000 species worldwide (Lock and Simpson, 1991). It is also the largest genus in Turkey with 439 species and about 47% of these species are endemic to Turkey (Akan and Civelek, 2001). Threat category of A. gymnolobus is determined as LC (Least Concern) (IUCN, 2015). Members of Astragalus genus are used in traditional medicine to cure leukemia, healing of wound and injuries in Anatolia (Bedir et al., 2001). In traditional medicine, various Astragalus species have been used to treat nephritis, diabetes, leukemia and cancer. They have adaptogenic, vasodilator, immunostimulant, hepatoprotective, antiperspirant, antiviral, anti-diabetic, diuretic, and tonic properties (Tang and Eisenbrand,
Astragalus species are rich in polysaccharides, alkaloids, saponins and phenolics (Pistelli et al., 2003; Bourezzane et al., 2018). Antibacterial and antitumor potential of A. gymnolobus were investigated (Türker et al., 2009; Turker and Koyluoglu, 2012). Some members of the genus Astragalus are important for gum production and some of them are used as fodder (Baytop, 1999). They are also important for erosion control because of their tap root system (Erisen et al., 2010).

The most significant problems in cultivation of Astragalus species are low seed germination rates, low seed set number and slow seedling development due to the hard seed coat. Because of these drawbacks, their propagation by tissue culture techniques has been required (Yorgancilar and Erisen, 2011). In vitro culture is an effective method for ex situ conservation of plant diversity, especially in the conservation of the endemic or threatened plants. It is a potent agent for germplasm conservation and mass multiplication of many threatened plant species (Purohit et al., 2015; Turker et al., 2018).

While Astragalus species have a potential for commercialization and are used in many fields in medicine, to our knowledge, regeneration studies were not reported in A. gymnolobus. In this regard, we aimed to obtain a successful in vitro culture protocol of A. gymnolobus using plant tissue culture methods. This study also intended to reveal and compare the medicinal potential of in vitro-regenerated and field-grown A. gymnolobus, by investigating antibacterial activities, antioxidant properties and phenolic profiles of their leaves.

MATERIALS AND METHODS

Plant Materials and Seed Germination

Astragalus gymnolobus seeds were collected from Abant Lake, Bolu, Turkey, in September 2014. It was classified using “Flora of Turkey and The East Aegean Island” (Davis, 1970) and voucher specimens (AUT-2025) were deposited in Abant Izzet Baysal University Herbarium.

To germinate seeds aseptically, seeds were firstly sterilized in 70% ethanol for 10 minutes, then in 20% bleach (Domestos®, 5% sodium hypochloride) for 10 minutes, and finally, washed five times with sterile water. Then, they were placed on basal MS medium (Murashige and Skoog, 1962) including 4.43 g L⁻¹ Murashige and Skoog medium (Sigma Chemical Co., St. Louis, MO, USA), 30 g L⁻¹ Sucrose (SC) and 8 g L⁻¹ Difco Bacto-agar (pH 5.7, autoclaved for 20 minutes at 121°C and 105 kPa) in sterile petri plates and incubated in climate room conditions (22±2°C, 16-hours photoperiod, 200 μmol m⁻² s⁻¹ fluorescent light and 55-65% relative humidity). Germinated seeds were transferred into Magenta jars (GA-7 Vessel, Sigma Chemical Co.) containing MS medium for an additional three weeks.

Plant Regeneration and Rooting of Propagated Shoots

For shoot regeneration, petiole (4 mm; horizontally oriented) and leaf lamina explants (16 mm²; adaxial side up) from one-month-old seedlings were placed in sterile petri plates containing MS medium supplemented with different combinations and concentrations of cytokinins [Thidiazuron (TDZ), Kinetin (KIN) and Benzyladenine (BA)] and auxins [Indole-3-Butyric Acid (IBA), Indole-3-Acetic Acid (IAA), 2,4-Dichlorophenoxyacetic acid (2,4-D) and Naphthalene Acetic Acid (NAA)]; TDZ (0.01, 0.05, 0.1 and 0.5 mg L⁻¹)+IAA (0.1, 0.25, 0.5 and 1 mg L⁻¹); TDZ (0.5 and 1 mg L⁻¹)+2,4-D (0.5 and 1 mg L⁻¹); TDZ (0.5 and 1 mg L⁻¹) +2.4-D (0.5 and 1 mg L⁻¹)+Gibberellic Acid (GA₃; 0.5 mg L⁻¹) ; TDZ (0.5 and 1 mg L⁻¹)+IBA (0.5 and 1 mg L⁻¹); BA (0.5, 1, 3 and 5 mg L⁻¹)+IAA (0.1, 0.25, 0.5 and 1 mg L⁻¹); BA (1, 2 and 4 mg L⁻¹)+NAA (0.2, 0.5 and 1 mg L⁻¹); BA (0.5 and 1 mg L⁻¹)+IBA (0.5 and 1 mg L⁻¹); BA (0.5, 1 and 3 mg L⁻¹)+ 2.4-D (0.1 and 0.5 mg L⁻¹);
Biological Activity of A. gymnolobus

KIN (0.5, 1 and 3 mg L\(^{-1}\))+IAA (0.1, 0.5 and 1 mg L\(^{-1}\)); KIN (0.5, 1 and 3 mg L\(^{-1}\))+2,4-D (0.1 and 0.5 mg L\(^{-1}\)); KIN (0.5, 1 and 3 mg L\(^{-1}\))+NAA (0.5 and 1 mg L\(^{-1}\)). All cultures were incubated in climate room. Two months later, regenerated shoots were transferred to Magenta containers on MS medium including 0.5 mg L\(^{-1}\) GA\(_3\) for shoot elongation. On the 8\(^{th}\) week of culture, shoot number per shoot explants and percentage of explants producing shoots were noted. Experiment was repeated three times for each treatment having 3 replications (each replication contained 5 explants and totally 15 explants were used for each treatment; totally 45 explants per treatment throughout the whole experiment).

After 10 weeks of culture, individual shoots were separated and their base callus was completely cut out. For root inducti

Field-grown leaves of A. gymnolobus were collected from Abant Lake, Bolu/Turkey in May 2014. In vitro-grown leaves obtained from 0.5 mg L\(^{-1}\) TDZ were obtained from in vitro-regenerated A. gymnolobus. The collected plant sources were powdered after drying for preparation of extracts. Ten grams of plant materials were extracted with 100 mL methanol at 40°C by using water bath for 24 hours and then filtered. After extraction, methanol was concentrated using rotary evaporator to obtain the crude extract. Extract yields were determined with the following formula:

\[
\text{Yield (g) } = \frac{\text{Weight of extract}}{\text{Powdered plant material}} \times 100
\]

Antibacterial Assay

The antibacterial effect of each plant extract against 10 human pathogenic bacterial strains

817
was evaluated by using disc diffusion method (Kirby-Bauer Method) (Andrews, 2009). Gram-positive bacteria [Streptococcus pyogenes (ATCC 19615), Staphylococcus aureus (ATCC 25923), and S. epidermidis (ATCC 12228) and Gram-negative bacteria [Escherichia coli (ATCC 25922), Enterobacter cloacea (ATCC 23355), Salmonella typhimurium (ATCC 14028), Serratia marcescens (ATCC 8100), Klebsiella pneumoniae (ATCC 13883), Proteus vulgaris (ATCC 13315) and Pseudomonas aeruginosa (ATCC 27853)] (Becton Dickinson Laboratories, France) were tested. Test organisms were subcultured at 37°C in Tryptic Soy agar and then pure bacterial colonies were inoculated in 0.9% sterile saline water. The turbidity of each bacteria broth culture was then adjusted to 0.5 McFarland standards with sterile saline water. Adjusted broth cultures were separately inoculated on the entire surface of Mueller Hinton Agar plates. Extracts were dissolved in Dimethyl Sulfoxide (DMSO) for antibacterial test. Sterile 6 mm paper discs (Glass Microfibre filters, Whatman®) were impregnated with 13 µL plant extracts (100 mg mL\(^{-1}\)) or DMSO as negative control. Loaded discs and standard antibiotic discs [ampicillin (10 µg), erythromycin (15 µg) and tetracycline (30 µg)] were placed on the inoculated plates, incubated for one day at 37°C, and then inhibition zone diameter (mm) around the disc was recorded. Three independent experiments were performed.

Antioxidant Assay

Antioxidant potentials of A. gymnolobus methanol extracts were determined using 2,2-DiPhenyl-1-PicrylHydrazil (DPPH Sigma-Aldrich Chemie, Steinheim, Germany) radical photometric assay according to Blois (1958) method. DPPH radical was dissolved in methanol to get approximately 1.4 absorbance unit (0.13 mM DPPH solution) at 517 nm. Different concentrations of extracts and quercetin as an antioxidant standard were prepared in methanol and mixed with DPPH solution to determine antioxidant potential of extracts: 0.1 mL of extract, quercetin or methanol (control) was added into 1.4 ml DPPH solution and samples were incubated in the dark at 25°C. Then, absorbance was measured against blank (methanol) with Hitachi U-1900, UV-VIS Spectrophotometer 200V. The experiment was repeated at least four times. The following equation was used to calculate the capability of A. gymnolobus samples to scavenge the DPPH radical:

\[
\text{DPPH Scavenging effect} = \left(\frac{A_0 - A_1}{A_0}\right) \times 100
\]

Where, \(A_0\) is the absorbance of the control reaction and \(A_1\) is the absorbance of A. gymnolobus extracts.

Estimation of Total Phenolic Content

To determine total phenolic content, Folin-Ciocalteu method was used (Slinkard and Singleton, 1977). Gallic acid stock solution, as a reference phenol, was prepared and diluted with distilled water at different concentrations. Twenty µL of gallic acid solutions of various concentrations and plant extract or distilled water as a blank were mixed well with 1.58 mL water and 100 µL of Folin-Ciocalteu regent (Sigma®). Two min later, 20% Na\(_2\)CO\(_3\) (300 µL) was added to each solution, and was shaken vigorously. Each solution was incubated at 25 °C for 2 h and the absorbance of each solution was measured at 765 nm against the blank using the spectrophotometer. These data were used to determine total phenolic content of the extracts using standard curve of gallic acid and was expressed as mg Gallic Acid Equivalents (GAE) 100 g\(^{-1}\) dried mass. All analyses were made in triplicate.

Estimation of Total Flavonoid Content

To determine total flavonoid content, aluminum colorimetric assay with some modifications was used (Chang et al., 2002). Rutin as a reference flavonoid was used and diluted with methanol at different
concentrations. Briefly, 500 μL of extract, rutin or methanol as a blank was added to vial containing 2 ml distilled water. At zero time, 150 μl NaNO\(_2\) (5%) was added to each vial. After 5 minutes, 150 μL AlCl\(_3\) (10%) was added and 6 min later, 1,000 μL NaOH (1M) was added to each mixture. Immediately, the reaction tube was made up to 5 mL adding distilled water and shaken thoroughly. Each solution was incubated in dark at 25°C for 10 minutes and its absorbance was measured at 510 nm against the blank using the spectrophotometer. The standard rutin curve was prepared by plotting absorbance value versus known concentrations of standard, then, total flavonoid contents were estimated by using the equation obtained from the standard calibration curve.

Analysis of Methanol Extracts by High Performance Liquid Chromatography

Methanolic extracts were analyzed for some standard phenols using a HPLC-DAD system (VWR-Hitachi LaChrom Elite®). Caffeic acid, coumarin, apigenin, rutin hydrate, myricetin, quercetin and luteolin-7-O-β-D glucoside were used as phenol standards (Sigma®). Various concentrations (10, 20, 40, 60, 80, 100 and 200 mg L\(^{-1}\)) of standards were prepared for obtaining standard curve. The operating conditions were arranged as described previously in our laboratory (Yildirim et al., 2017). HPLC grade (Merck) solvents were used and eluent was composed of 0.1% orthophosphoric Acid (OA) in water (solvent A) and 0.1% OA in methanol (solvent B). A gradient elution was used with 60% of A and 40% of B at 0 minute and adjusted to 50%, 40%, 40%, 60% A at 10, 15, 25 and 25.1\(^{th}\) min, respectively. Twenty μL of each extract was injected into the HPLC and separations were done at 25°C oven and one mL min\(^{-1}\) flow rate. The chromatograms were recorded at 255 nm for luteolin, rutin and quercetin, 277 nm for coumarin, 325 nm for caffeic acid, 340 nm for apigenin and 370 nm for myricetin standard.

RESULTS AND DISCUSSION

In Vitro Propagation of A. gymnolobus

Surface sterilized A. gymnolobus seeds were germinated within 2-3 weeks and additional 3 weeks were required for seedling development. Leaves and petioles dissected from in vitro seedlings were cultured on MS medium containing BA, TDZ or KIN, either alone or in combination with IAA, IBA, NAA or 2,4-D.

Of the tested PGRs, shoot regeneration was observed only in the presence of TDZ, alone or in combination with IAA, in both types of explants (Table 1, Figures 1-A and -B). However, shoot development was not observed using combinations of BA or KIN with different auxins in either type of explants. Besides, the addition of GA\(_3\) into the combination of PGRs was not successful for shoot regeneration in both explants (data not shown).

When TDZ was used alone with leaf explants, the most efficient concentration on shoot formation was 0.5 mg/L TDZ (Table 1; Figure 1-A). However, lower TDZ concentrations were more successful in regard to shoot frequency (Table 1). Moreover, shoot formation was not observed when TDZ was used alone at 0.01 mg L\(^{-1}\) for leaf explants. Generally, TDZ stand-alone treatments (0.05, 0.1 and 0.5 mg L\(^{-1}\)) were more effective in mean number of shoots and the addition of any amount of IAA reduced the shoot numbers. However, there was essentially no statistically significant difference between any of the TDZ+IAA combinations (except for 0.05 mg L\(^{-1}\) TDZ+0.1 or 0.5 mg L\(^{-1}\) IAA) compared to 0.5 mg L\(^{-1}\) TDZ alone. When 0.05 mg L\(^{-1}\) TDZ were combined with 0.1 mg L\(^{-1}\) IAA, a reduction was observed in terms of the mean number of shoots per leaf explant (6.11 shoots), but an increase appeared in terms of shoot frequency (37.50%) compared with 0.05 mg L\(^{-1}\) TDZ alone treatment. Although
Table 1. Shoot regeneration from leaf and petiole explants cultured on MS medium containing different combinations of TDZ with IAA.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Leaf</th>
<th>Petiole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean no. of shoots per shooted explant</td>
<td>% Explants forming shoots</td>
</tr>
<tr>
<td>Control (No PGR)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TDZ (mg L⁻¹)</td>
<td>IAA (mg L⁻¹)</td>
<td>0.1</td>
</tr>
<tr>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.01</td>
<td>0.5</td>
<td>6.11 ±1.32<sup>b</sup></td>
</tr>
<tr>
<td>0.05</td>
<td>0.1</td>
<td>6.50 ±1.43<sup>b</sup></td>
</tr>
<tr>
<td>0.1</td>
<td>-</td>
<td>12.43 ±1.23<sup>b</sup></td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>0.25</td>
<td>10.50 ±2.40<sup>ab</sup></td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>12.80 ±4.82<sup>ab</sup></td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
<td>17.60 ±3.17<sup>a</sup></td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>12.75 ±2.56<sup>ab</sup></td>
</tr>
<tr>
<td>0.5</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>10.00 ±1.00<sup>ab</sup></td>
</tr>
</tbody>
</table>

^a Means within columns followed by the same letters are not significantly different (P > 0.05).

Figure 1. In vitro micropropagation of A. gymnolobus: Shoot regeneration from leaf explants containing 0.5 mg L⁻¹ TDZ (A, B); shoot elongation on MS+0.5 mg L⁻¹ GA₃ (C); root development on MS medium (D); rooted plants in vermiculite for acclimatization (E), and regenerated plant in plastic pot containing sterile soil under growth room conditions (F).
0.25 mg L\(^{-1}\) IAA in combination with 0.01, 0.05 or 0.5 mg L\(^{-1}\) TDZ was not effective in shoot formation, 0.1 mg L\(^{-1}\) TDZ in combination with 0.25 mg L\(^{-1}\) IAA caused shoot formation (10.50 shoots). Differences in shoot formation efficiency among TDZ and IAA combinations may be the reason for a synergism between TDZ and both endogenous and exogenous auxins (Huetteman and Preece 1993).

Petiole explants gave the best shoot formation with media containing 0.5 mg L\(^{-1}\) TDZ+0.1 mg L\(^{-1}\) IAA (20% of explants formed 5 shoots on average). Generally, petiole explants were not effective for shoot regeneration (Table 1). Leaf lamina having higher amount of vascular tissue and thus higher levels of endogenous hormones and metabolites might be liable for the increase in shoot regeneration capacity.

Callus formation was observed with auxin and cytokinin combinations. Greater amount of callus was obtained with BA (0.5, 1 and 3 mg L\(^{-1}\))+2,4-D (0.1 and 0.5 mg L\(^{-1}\)) and TDZ (0.5 and 1 mg L\(^{-1}\))+2,4-D (0.5 and 1 mg L\(^{-1}\)) combinations than other tested PGR combinations. When TDZ was used alone on the leaf explants, callus formation was not observed. Leaf explants produced greater amount of callus than petiole explants. 2,4-D was the most effective auxin on callus development. If 2,4-D concentration was increased from 0.1 to 0.5 mg L\(^{-1}\), leaf explants produced greater amount of callus. Best callus formation was obtained with MS medium containing 3.0 mg L\(^{-1}\) BA and 0.5 mg L\(^{-1}\) 2,4-D (data not shown).

Shoot elongation of regenerated shoots occurred in MS medium supplemented with 0.5 mg L\(^{-1}\) GA\(_3\) for 2 weeks (Figure 1-C). In order to promote root induction in A. gymnolobus, single shoots were obtained by cutting, to remove callus from regenerated shoots, and placed on rooting medium. Regenerated shoots rooted only in basal MS medium (control) with 3.5 root number per shoot and 77.8% rooting ratio (Figure 1-D). Roots were observed after at least 3 months. Media supplemented with different auxin types and concentrations in combination with full and half-strength MS and SC, GA\(_3\), PVP, activated charcoal or ascorbic acid was not effective for rooting. Vermiculite was used for acclimatization for 3 weeks (Figure 1-E) and then all rooted shoots were finally transferred to plastic pots containing sterile soil and kept in growth room conditions at 22°C under a 16-hour photoperiod (Figure 1-F). The rooted plants had 50% survival rate through the hardening off process. So far, there has been no regeneration study with A. gymnolobus, but some Astragalus species were reported for their regeneration capacities. Dilaver et al. (2017) studied in vitro regeneration of A. vulnerariae for its response to KIN-NAA and BAP-NAA media using 5 different explant types (hypocotyl, epicotyl, cotyledon, shoot node, and leaf explant). Their results indicated that combinations of KIN-NAA induced shoot regeneration in all types of explants, whereas BA-NAA medium was less effective for shoot regeneration. The highest regeneration was noted from hypocotyl explants with KIN-NAA (4.47 shoots per explants). With combinations of BAP-NAA, the highest regeneration rate (3 shoots per explant) was reported for epicotyl explants (Dilaver et al., 2017). Erisen et al. (2010) reported that high concentrations of BA with NAA were the most effective for shoot formation of A. nezaketae. Similarly, Luo and Jia (1998) noted that MS medium containing BA and NAA strongly stimulated shoot formation from hypocotyl explants of A. adsurgens. Using different BA-NAA combinations to study shoot regeneration in A. cicer, Uranbey et al. (2003) tested petiole, hypocotyl, stem and cotyledon explants and showed that hypocotyl explants had better regeneration capability than other used explants. High regeneration capacity from A. cicer hypocotyl explants was also observed in another study using MS media that contained TDZ, in which hypocotyls produced more shoots than cotyledon explants (Basalma et al., 2008). In a different Astragalus species, Erisen et al. (2011) evaluated the effect of TDZ alone or
in combination with NAA for shoot development from leaf and petiole explants. According to their results, leaf explant of A. cariensis was the best for shoot development and the combination of TDZ with low NAA concentration was more inductive than the use of TDZ alone. Esmaeili et al. (2016) investigated hypocotyl, cotyledon and apical meristem of A. adscendens for in vitro regeneration, using BA, KIN and Zeatin, alone or in combinations with NAA. They reported that neither hypocotyl nor cotyledon explants were induced to shoot formation, whereas apical meristem gave shoot regenerants at high concentration of BA. Similarly, in A. schizopterus axillary meristems, best shoot proliferation had been reported with the usage of BA alone (Yorgancilar and Erisen, 2011). Micropropagation of A. maximus from axillary buds using trans-Zeatin Riboside (ZR) was reported (Turgut-Kara and Arı, 2006). In A. chrysochlorus, shoot formation was also achieved using ZR (Hasancebi et al., 2011). In our study, leaf and petiole explants gave shoot regeneration only with TDZ alone or in combination with IAA. On the other hand, KIN-NAA, BAP-NAA or TDZ-NAA media were not effective for shoot regeneration in A. gymnolobus leaf and petiole explants (Table 1).

Root formation in A. gymnolobus was not observed with tested auxins. There was a darkening at the bottom of regenerated shoots. Tested auxins were tried again in combination with GA₃, ½ MS, ½ SC, activated charcoal, PVP and ascorbic acid and these combinations were also inefficient for root formation. Later, all basal parts of regenerated shoots were cut off 0.5-1 cm from the bottom and single shoots were transferred to rooting medium including IAA, IBA, 2,4-D or NAA at different concentrations. Rooting was observed only in MS medium (control) after 3 months, and there was no browning of the shoots. Callus forming at the bottom of the shoots may have prevented the root formation. TDZ alone did not produce callus before shoot formation, but regenerated shoots obtained from TDZ alone treatments did not form roots. Similar to our results, root induction was only obtained on plant growth regulator-free medium in A. adsurgens (Luo and Jia, 1998), A. maximus (Turgut-Kara and Arı, 2006) and A. chrysochlorus (Hasancebi et al., 2011). On the other hand, regenerated shoots of A. schizopterus were successfully rooted in the presence of NAA or IBA (Yorgancilar and Erisen, 2011). Basalma et al. (2008) also reported that best rooting in A. cicer was achieved on 1/2 MS medium containing NAA. In A. adscendens, highest root induction was also obtained from MS medium with NAA (Esmaeili et al., 2016). However, rooting was achieved by IBA treatment in A. vulnerariae (Dilaver et al., 2017), A. nezaketae (Erisen et al., 2010) and A. cariensis (Erisen et al., 2011).

Antibacterial Activity

Methanol extracts of field-grown (24.03% yield) and in vitro-grown (26.75% yield) leaves were evaluated for the antibacterial potential of A. gymnolobus against 10 bacteria. Only field-grown leaves exhibited antibacterial potential and only Gram positive bacteria (S. pyogenes, S. aureus, and S. epidermidis) were sensitive to this extract (Table 2). The highest inhibitory activity was obtained against S. pyogenes. Antibacterial activity of the extract against S. aureus, S. epidermidis and S. pyogenes may explain why Astragalus species have been used in folk medicine to treat nephritis, immunologic diseases (caused by S. pyogenes), sepsis, and urinary tract infections (caused by S. aureus and S. epidermidis). Similar to our results, Turnurb and Koyluoglu (2012) reported that methanol and ethanol extracts of aerial parts of A. gymnolobus including flowers showed little inhibition against only S. pyogenes. Furthermore, Turnurb and Yildirim (2013) demonstrated that ethanol, methanol and aqueous extracts of aerial parts of A. brachypterus including flowers exhibited
Table 2. Antibacterial activities of methanol extracts of field-grown and in vitro-grown A. gymnolobus leaves.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>S. aureus (mm±SE)</th>
<th>S. epidermidis (mm±SE)</th>
<th>S. pyogenes (mm±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-grown leaves</td>
<td>9.8±0.4</td>
<td>10.2±0.4</td>
<td>11.0±0.3</td>
</tr>
<tr>
<td>In vitro-grown leaves</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>35.6±1.1</td>
<td>35.0±1.4</td>
<td>45.0±0.3</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>30.6±0.3</td>
<td>45.0±0.3</td>
<td>38.9±0.3</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>35.5±0.3</td>
<td>-</td>
<td>35.8±0.3</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a Data are presented as a mean diameter of inhibition zones±Standard Error (SE). Means within columns followed by the same letter are not significantly different at P> 0.05.

Table 3. IC_{50} values, total phenol and flavonoid content of field- and in vitro-grown A. gymnolobus leaf methanol extracts.*

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Antioxidant activity IC_{50} (µg mL^{-1})</th>
<th>Total Phenolics mg GAE g^{-1} dry extract</th>
<th>Total Flavonoids mg RE g^{-1} dry extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-grown leaves</td>
<td>960.1±6.9</td>
<td>96.7±0.0</td>
<td>184.5±0.0</td>
</tr>
<tr>
<td>In vitro-grown leaves</td>
<td>> 5000</td>
<td>23.7±0.0</td>
<td>79.6±0.0</td>
</tr>
</tbody>
</table>

a Data are presented as a mean number±standard error (SE). IC_{50}: The half maximal inhibitory concentration. GAE: Gallic acid equivalent, RE: Rutin equivalent.

Biological Activity of A. gymnolobus

Table 2. Antibacterial activities of methanol extracts of field-grown and in vitro-grown A. gymnolobus leaves.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Mean diameter of inhibition zones (mm±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-grown leaves</td>
<td></td>
</tr>
<tr>
<td>In vitro-grown leaves</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td></td>
</tr>
</tbody>
</table>

Some Astragalus species were investigated for their antibacterial activity against Gram positive and Gram negative bacteria (Bisignano et al., 1994; Pistelli et al., 2002). Teyeb et al. (2012) reported the antibacterial activity of four extracts (methanol, dichloromethane, petroleum ether and alkaloid extract) from aerial parts of A. gombiformis and the methanol extract was the most active against S. typhimurium and P. aeruginosa. Jaradat et al. (2017) examined the antibacterial activity of four Astragalus species against S. aureus, E. coli and P. aeruginosa. Their results indicated that A. boeticus exhibited higher bioactivity against the growth of the studied bacteria compared to that of other Astragalus species. Adigüzel et al. (2009) studied antibacterial activity of some Astragalus species against 24 different microorganisms; however, they could not get any activity against the tested bacteria. Similarly, Albayrak and Kaya (2017) demonstrated that studied Astragalus species had no strong antibacterial inhibition against only S. pyogenes.

The antioxidant activity of methanol extracts of A. gymnolobus leaves was determined by free radical scavenging activity (DPPH), total phenol, and flavonoid content (Table 3). IC_{50} values (concentration of extracts that inhibits the DPPH radical to 50%) of A. gymnolobus extracts were assessed and field-grown A. gymnolobus leaves exhibited better radical scavenging activity than in vitro-grown leaves having IC_{50} value of 960.1 µg mL^{-1} (Table 3). Both extracts demonstrated a concentration-dependent free radical scavenging activity (%) by scavenging DPPH radical.

Total phenolic content of field- and in vitro-grown A. gymnolobus methanolic extracts was estimated by using Folin Ciocalteu reagent and

Table 3. IC_{50} values, total phenol and flavonoid content of field-grown and in vitro-grown A. gymnolobus leaf methanol extracts.*
calculated from the calibration curve ($R^2 = 0.9996$). Methanol extract from field-grown $A. gymnolobus$ contained about four-fold higher amount of phenol than that of in vitro-grown plants (Table 3). The flavonoid content of $A. gymnolobus$ methanol extracts from field-grown plants was about 2-fold higher than that from in vitro-grown plants (Table 3).

Adigüzêl et al. (2009) reported the antioxidant activity of the methanol extracts obtained from the aerial part of several $Astragalus$ species and showed mild free radical scavenging activity with 50% inhibition between 68.8 and 400.4 μg mL$^{-1}$ concentrations. Haşimi et al. (2017) reported moderate antioxidant activity with 50% inhibition ranging between 54.61 and higher than 200 μg mL$^{-1}$ from three endemic $Astragalus$ species. Similarly, Albayrak and Kaya (2017) reported that four different $Astragalus$ species exerted slight antioxidant activity in DPPH assay. In the investigation of Bourezâne et al. (2018), n-butanol extract of $A. monspessulanus$ possessed a moderate radical scavenging effect (IC$_{50}$ = 63.60 μg mL$^{-1}$). On the contrary, Langari and Salehi (2015) studied methanol and dichloromethane extracts of $A. glaucacanthus$ and found significant antioxidant activity with 0.196 μg mL$^{-1}$ IC$_{50}$ for methanol and 0.536 μg mL$^{-1}$ IC$_{50}$ for dichloromethane extracts.

HPLC Analysis of Phenolic Compounds

Methanol extracts from field- and in vitro-grown $A. gymnolobus$ leaves were investigated for the presence of coumarin, apigenin, caffeic acid, rutin hydrate, quercetin, luteolin-7-O-β-D glucoside and myricetin (Table 4). Chromatogram of these phenol standards is presented in Figure 2. Rutin hydrate was detected in much higher amounts in field-grown compared to in vitro-
Biologic Activity of A. gymnolobus

grown leaves (50.48 and 2.59 µg mg⁻¹ dry extract, respectively). Coumarin and apigenin were not present in A. gymnolobus methanol extracts. The rest of the phenols were found in both methanolic extracts, ranging from 0.06 to 0.99 mg g⁻¹ dry extract for field-grown plants and from 0.01 to 0.27 mg g⁻¹ dry extract for in vitro-grown plants (Table 4).

Haşimi et al. (2017) used LC-MS/MS to detect twenty-four phenolic compounds and three non-phenolic organic acids in three Astragalus species. Their results showed that rutin (1.03-13.35 µg mg⁻¹ extract), hesperidin (1.60-9.70 µg mg⁻¹ extract) and hyperoside (0.23-1.99 µg mg⁻¹ extract) were the most abundant flavonoids in Astragalus species. Similarly, rutin was found to be present in the highest amounts in our analyzed extracts. Some flavonoids from aerial parts of A. verrucosus Moris were isolated and identified as rutin, quercetin 3-O-robinobioside and apigenin (Pistelli et al., 2003). In another study, Bourrezzane et al. (2018) isolated rutin and quercetin 3-O-(2,6-α-L-dirhamnopyranosyl-β-D-glucopyranoside) as flavonoids, two saponins, two sterols, and one triterpenoid from A. monspessulanus n-butanol extract.

Exposure of plants to different stress circumstances in the field environment causes the raising of phenolic constituents for adaptation (Türker and Yıldırım, 2018; Turk et al., 2018). It is obvious that in vitro-grown plants encounter no stress conditions and no need of much phenol production for survival, in our study.

Table 4. Contents of phenolic compounds in field-grown and in vitro-grown A. gymnolobus methanol extracts.

<table>
<thead>
<tr>
<th>Standard compounds</th>
<th>Peak number</th>
<th>RT (Min)</th>
<th>Field-grown leaves (mg g⁻¹ dry extract)</th>
<th>In vitro-grown leaves (mg g⁻¹ dry extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeic acid</td>
<td>1</td>
<td>6.27</td>
<td>0.21 ± 0.00</td>
<td>0.17 ± 0.00</td>
</tr>
<tr>
<td>Luteolin</td>
<td>2</td>
<td>11.17</td>
<td>0.99 ± 0.00</td>
<td>0.27 ± 0.00</td>
</tr>
<tr>
<td>Coumarin</td>
<td>3</td>
<td>11.87</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rutin</td>
<td>4</td>
<td>12.89</td>
<td>50.48 ± 0.00</td>
<td>2.59 ± 0.00</td>
</tr>
<tr>
<td>Myricetin</td>
<td>5</td>
<td>16.85</td>
<td>0.43 ± 0.00</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>Quercetin</td>
<td>6</td>
<td>19.49</td>
<td>0.06 ± 0.00</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Apigenin</td>
<td>7</td>
<td>25.91</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data are presented as means±standard error (SE).

CONCLUSIONS

In this study, in vitro culture protocol for endemic A. gymnolobus plant was developed for the first time. A comparison was performed between field-grown and in vitro-grown leaves, by determining antibacterial and antioxidant activities, total phenolic and flavonoid content, and also analyzing phenolic composition in A. gymnolobus by HPLC. Our data clearly showed that field-grown A. gymnolobus had higher bioactivity and phenolic content than in vitro-grown plants. It was also found that A. gymnolobus has moderate antioxidant and antibacterial activities. Besides, it contains remarkable amount of rutin. Future studies should focus on increasing the quantity of phenolics like rutin in in vitro-grown leaves by implementing different types of stress.

ACKNOWLEDGEMENTS

This research was financially supported by Scientific and Technological Research Council of Turkey (TUBITAK/Project no: 114Z098).

REFERENCES

کشت درون شیشه ای گیاه بومی A. gymnolobus و مقایسه مشخصات آنتی باکتریایی، آنتی اکسیدانی، و فنولیک آن با گیاه کشت شده در مزرعه

1. ب. ایلدریم، ا. اویار، و ا. ی. توکر

چکیده
گیاه A. gymnolobus (از خانواده Leguminosae) است. در این پژوهش، نخست سامانه ای برای کشت این گیاه در شیشه با استفاده از روش Murashige and Skoog (MS) برگ و دمبرگ روی بستر تکمیلی شامل مواد (thidiazuron (TDZ), kinetin (KIN), auxins [indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid (2,4-D)], NAA, benzyladenine (BA)) و اکسیه تشکیل شاخسار با ریس و در این زمان ریش درون شیشه A. gymnolobus به سطح میلی (regenerated roots) در فاصله 1-5 سانتیمتر از پایه برده شد (callus). هدف این پژوهش ای بود که خواص آنتی باکتریایی، آنتی اکسیدانی و ترکیبات فنولیک کشت درون شیشه یا کشت مزرعه A. gymnolobus تغییر و مقایسه شود. نتایج آشفتگی ساخت کرک‌های کشت مزرعه ای به طور کلی دارای فعالیت زاستی بستر و مقایسه بیشترترکیبات فنولی بودند. افزون بر این، برگ‌های Rutin همراه با هدف حفاظت متابی زنیکی ارزشمند است و می تواند در مطالعات کار بردن شیشه ای برای افزایش سطح تولید مواد فنولیک در کشت درون شیشه ای مورد استفاده قرار گیرد.