New Data of the Genus *Opius* Wesmael (Hymenoptera: Braconidae, Opiinae) from Northern Iran

S. Dolati¹, A. A. Talebi¹*, S. Farahani², and M. Khayrandish³

ABSTRACT

Species of the genus *Opius* Wesmael, 1835 (Hym.: Braconidae, Opiinae) was faunistically studied in northern provinces of Iran. Malaise traps were used to obtain adult specimens from various habitats during 2010–2011. A total of 17 species, belonging to 12 subgenera, were identified, of which six species including *O. (Hypocynodus) larissa* Fischer, 1968; *O. (Alloptopus) saevus* Haliday, 1837; *O. (Merotrachys) schmidti* Fischer, 1960; *O. (Misophithora) pulicariae* Fischer, 1969; *O. (Thoracosoma) repentinus* Papp, 1980; and *O. (Nosopaeopius) ochrogaster* Wesmael, 1835 were recorded for the first time from Iran. A key for identification of the collected species is provided.

Keywords: Iranian fauna, Leaf miner, Parasitic wasps, Parasitoid.

INTRODUCTION

Species of the subfamily Opiinae Blanchard, 1845 (Hym.: Braconidae) comprise one of the largest groups of parasitic wasps, with about 2,063 valid species in 39 genera, worldwide (Yu et al., 2016). *Opius* Wesmael, 1835 is the largest genus of Opiinae with 34 subgenera and more than 1,000 described species (Yu et al., 2016). The subfamily Opiinae is one of the important groups of parasitic wasps for biological control of Diptera. Most species of the genus *Opius* are endoparasitoids of leaf mining Agromyzidae, and to a lesser extent Anthomyiidae and Tephritidae (Shaw and Huddleston, 1991). Some species have great importance for biological control of agromyzid leaf miners (Belokobylskij et al., 2004; Yu et al., 2016).

The Iranian fauna of Braconidae includes 780 species in 141 genera and 26 subfamilies (Farahani et al., 2016). Most of these species have been recorded within the last decade, resulting in a four-fold increase in the species number from 202 (Fallahzadeh and Saghaei, 2010) to 780 within only six years (Rakhshani et al., 2007; Ameri et al., 2013, 2015, Farahani et al., 2014a, b, c; 2015; 2016). By 2010, only seven species of Opiinae, belonging to four genera, were known from Iran (Fallahzadeh and Saghaei, 2010). Recent taxonomic studies have led to discovery of many new records and species in this country (Farrar et al., 2009; Talebi et al., 2009; Lashkari et al., 2011; Khajeh et al., 2014; Ameri et al., 2014; Peris-Felipo et al., 2014; 2015; 2018). An updated checklist of Iranian Opiinae, including 101 species in 11 genera, was recently published by Gadallah et al. (2016), of which 66 species (65%) belonged to the genus *Opius*. This species number is much less than 182 species recorded from the

¹Department of Agricultural Entomology, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Islamic Republic of Iran.
²Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Islamic Republic of Iran.
³Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University, Kerman, Islamic Republic of Iran.
*Corresponding author: email: atalebi@modares.ac.ir.

1871
neighboring country (Turkey) (Beyarslan and Fischer, 2013), indicating that further studies are required to better understand the real fauna of Opinae in Iran. This paper presents a faunistic study on the genus *Opius* in the north of Iran, including six new species records.

MATERIALS AND METHODS

Adult wasps were collected using Malaise traps from various habitats (orchards, rangelands, field crops, and forests) with different altitudes in northern parts of Iran including Mazandaran, Guilan, Qazvin, Tehran and Alborz Provinces (Figure 1) during March-November 2010-2011. The specimens were extracted from the Malaise traps weekly (Figure 2). They were then preserved in 70% ethanol. After drying on a filter paper, the specimens were card-mounted and labeled. Images from specimens were taken using an Olympus™ AX70 microscope and an Olympus™ SZX9 stereomicroscope equipped with a Canon (EOS 550D) digital camera. A series of 4–5 captured images were stacked into a single in-focus image using Combine ZP 1.0 software. The terminology for morphological characters and wing venations follows Sharkey and Wharton (1997) (Figure 3). The term precoxal sulcus is employed instead of sternaulus accordingly to Wharton (2006). The specimens were identified at species level using the keys provided by van Achterberg (1997), Fischer (1972, 1974, 1991, 1995, 1996, 1998, 1999), Fisher and Beyarslan (2005a, b), Papp (1978, 1979, 1982a), and Tobias and Jakimavicius (1986). The specimens were deposited in the insect collection of the Department of Entomology, Tarbiat Modares University, Tehran, Iran (TMUC).

RESULTS

In this study, a total of 17 species of the genus *Opius* Wesmael were identified, of which six species, namely: *O. (Allotypus) saevus* Haliday, 1837, *O. (Hypocynodus) larissa* Fischer, 1968, *O. (Merotrachys)*

![Figure 1. Geographical location of four provinces (Alborz, Tehran, Guilan, Mazandaran, and Qazvin) in northern region of Iran.](image-url)
Figure 2. Habitats of northern Iran, where the braconid specimens were collected: (A) Gaznasara (Mazandaran Province), (B and C) Qazihak (Gilan Province), and (D) Zereshk Road (Qazvin Province).

Figure 3. Front wing of *Opius saevus* illustrating longitudinal and cross veins (A), and wing cells (B), parastigma (psi), stigma (stg), basal cell (bas), sub-basal cell (sba), 1st sub-marginal cell (1sm), 2nd sub-marginal cell (2sm), 3rd sub-marginal cell (3sm), marginal cell (mar), 1st discal cell (1di), 1st sub-discal cell (1sd), 2nd discal cell (2di), 2nd sub-discal cell (2sd), anal cell (ana), jugal lobe (jug).
schmidtFischer, 1960, O. (Misophthoraa) pulicariae Fischer, 1969, O. (Thoracosema) repentinus Papp, 1980 and O. (Nosopaeopius) ochrogaster Wesmael, 1835 are reported for the first time from Iran. A key for the identification of the collected species as well as the general distribution of each species, either in the world or within Iran, are provided.

Genus Opius Wesmael, 1835

Subgenus Agnopius Fischer, 1982

O. (Agnopius) basirufus Fischer, 1958 [Figures 12 (A-C) and 14-B]

Materials Examined: Iran, Alborz Province: Sarziarat (35° 55′ 10″ N, 51° 06′ 51″ E, 1,980 masl), 07.VI.2010, 2 ♀; leg. M. Khayrandish; Guilan Province: Orkom (36° 45′ 44″ N 50° 18′ 11″ E, 1,201 masl), 17.V.2010, 1 ♀; leg. M. Khayrandish; Mazandaran Province: Chamestan, Gaznasara road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 05.XI.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Alborz, Guilan, and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

O. (Agnopius) tirolensis Fischer, 1958 [Figures 11 (C-D) and 15-H]

Materials Examined: Iran, Guilan Province: Orkom (36° 45′ 44″ N, 50° 18′ 12″ E, 1,235 masl), 17.V.2010, 1 ♀; leg. M. Khayrandish; Mazandaran Province: Tangehvaz (36° 21′ 55″ N, 52° 06′ 10″ E, 702 masl), 29.IV.2011, 1 ♀; leg. A. Nadimi.

Distribution in Iran: Guilan (Farahani et al., 2016; current study) and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Allophlebus Forster, 1862

O. (Allophlebus) singularis Wesmael, 1835 [Figures 13-I and 14-H]

Materials Examined: Guilan Province: Nour (36° 34′ 52″ N, 52° 02′ 45″ E, 1,201 masl), 22.IV.2010, 1 ♀; leg. A. Forster.

Distribution in Iran: Guilan (Farahani et al., 2016; current study) and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Allotypus Forster, 1862

O. (Allotypus) saevus Haliday, 1837 [Figure 4 (A-I) and 14-G]

Materials Examined: Iran, Mazandaran Province: Sarziarat (36° 34′ 52″ N, 52° 02′ 45″ E, 14 masl 1.), 12.IV.2011, 1 ♀; leg. A. Nadimi.

Distribution in Iran: Mazandaran Province (current study), new record in Iran.

General Distribution: Palaearctic Region (Yu et al., 2016).

O. (Allotypus) repentinus Papp, 1980 [Figures 10 (D-F) and 15-E]

Materials Examined: Mazandaran Province: Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 28.VI.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 07.VI.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 13.VII.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 16.VIII.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Golestan (Sakenin et al., 2012), Lorestan (Farahani et al., 2016) and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

O. (Allotypus) tirolensis Fischer, 1958 [Figures 11 (C-D) and 15-H]

Materials Examined: Iran, Guilan Province: Orkom (36° 45′ 44″ N, 50° 18′ 12″ E, 1,201 masl), 17.V.2010, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Guilan (Farahani et al., 2016, current study) and Hormozgan Provinces (Qeshm Island) (Ameri et al., 2014).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Allophlebus Forster, 1862

O. (Allophlebus) singularis Wesmael, 1835 [Figures 13-I and 14-H]

Materials Examined: Guilan Province: Nour (36° 34′ 52″ N, 52° 02′ 45″ E, 1,201 masl), 22.IV.2010, 1 ♀; leg. A. Forster.

Distribution in Iran: Guilan (Farahani et al., 2016; current study) and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Allotypus Forster, 1862

O. (Allotypus) saevus Haliday, 1837 [Figure 4 (A-I) and 14-G]

Materials Examined: Iran, Mazandaran Province: Sarziarat (36° 34′ 52″ N, 52° 02′ 45″ E, 14 masl 1.), 12.IV.2011, 1 ♀; leg. A. Nadimi.

Distribution in Iran: Mazandaran Province (current study), new record in Iran.

General Distribution: Palaearctic Region (Yu et al., 2016).

O. (Allotypus) repentinus Papp, 1980 [Figures 10 (D-F) and 15-E]

Materials Examined: Mazandaran Province: Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 28.VI.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 07.VI.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 13.VII.2011, 1 ♀; Chamestan, Gaznasara Road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 16.VIII.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Golestan (Sakenin et al., 2012), Lorestan (Farahani et al., 2016) and Mazandaran Provinces (current study).
New Records of the Genus Opius from Iran

Subgenus Cryptonastes Forster, 1862

O. (Cryptonastes) gracilis Fischer, 1957
[Figures 11 (E-F) and 15-B]

Materials Examined: Alborz Province: Karaj (35° 46′ 20″ N, 50° 56′ 44″ E, 1,278 masl), 13.X.2010, 1 ♀; Guilan Province: Ziaz (36° 52′ 27″ N, 50° 13′ 24″ E, 490 masl), 29.VIII.2010, 1 ♀; Tehran Province: Shahriar (35° 40′ 03″ N, 50° 56′ 52″ E, 1,168 masl), 01.VI.2010, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Kerman (Safahani *et al.*, 2018), Alborz, Guilan and Tehran Provinces (current study).

General Distribution: Palearctic Region (Yu *et al*., 2016).

Subgenus Gastrosema Fischer, 1972

O. (Gastrosema) docilis Haliday, 1837
[Figures 13 (E-F) and 14-C]

Materials Examined: Mazandaran Province: Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 05.XI.2011, 1 ♀; Nour (36° 34′ 54″ N, 52° 02′ 48″ E, -14 masl), 10.X.2011, 1 ♀; Jourband (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 26.V.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 29.VIII.2010, 1 ♀; Tehran Province: Shahriar (35° 40′ 03″ N, 50° 56′ 52″ E, 1,168 masl), 01.VI.2010, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Kerman (Safahani *et al.*, 2018), Alborz, Guilan and Tehran Provinces (current study).

General Distribution: Palearctic Region (Yu *et al*., 2016).

Figure 4. *Opius saevus*: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) Propodeum, (G) Dorsal aspect of abdomen, (H) Hind leg, and (I) Fore wing.

Figure 5. *Opius larissa*: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) Propodeum, (G) Dorsal aspect of abdomen, (H) Hind leg, and (I) Fore wing.
Figure 6. *Opius schmidtii*: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) Propodeum, (G) Dorsal aspect of first metasomal tergite, (H) Hind leg, (I) Fore wing, and (J) Dorsal aspect of abdomen.

Figure 7. *Opius pulicariae*: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) Propodeum, (G) Dorsal aspect of abdomen, (H) Hind leg, and (I) Fore wing.
New Records of the Genus Opius from Iran here

Subgenus Hypocynodus Forster, 1862

O. (Hypocynodus) larissa Fischer, 1968

Materials Examined: Iran, Alborz Province: Sarziarat (35° 55′ 10″ N, 51° 06′ 51″ E, 1,980 masl), 15.VI.2010, 2 ♀; 22.VI.2010, 3 ♀; 28.VII.2010, 1 ♀; Guilan Province: Ziaz (36° 52′ 27″ N, 50° 13′ 24″ E, 490 masl), 21.XI.2010, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Alborz and Guilan Provinces (current study), new record for Iran.

General Distribution: Palaearctic Region (Papp, 1982b).

Diagnosis: Body 1.5-1.9 mm; clypeus narrow, falcate (Figure 5-A); antennae barely longer than body, 23-25 segmented; oral cavity developed (Figure 5-A); mandibles basally distinctly broadened (Figure 5-A), thorax 1.3-1.4 times as long as high (Figure 5-D); postero-median area of mesoscutum without midpit (Figure 5-E);

References:

Ziaz (36° 52′ 27″ N, 50° 13′ 24″ E, 490 masl), 21.XI.2010, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Alborz and Guilan Provinces (current study), new record for Iran.

General Distribution: Palaearctic Region (Papp, 1982b).

Diagnosis: Body 1.5-1.9 mm; clypeus narrow, falcate (Figure 5-A); antennae barely longer than body, 23-25 segmented; oral cavity developed (Figure 5-A); mandibles basally distinctly broadened (Figure 5-A), thorax 1.3-1.4 times as long as high (Figure 5-D); postero-median area of mesoscutum without midpit (Figure 5-E);

References:

Figure 8. Opius ochrogaster: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) propodeum, (G) Dorsal aspect of first metasomal tergite, (H) Hind leg, (I) Fore wing, and (J) Dorsal aspect of abdomen.

Figure 9. Opius repentinus: (A) Frontal aspect of head, (B) Lateral aspect of head and compound eye, (C) Dorsal aspect of head, (D) Lateral aspect of mesosoma, (E) Dorsal aspect of mesosoma, (F) Propodeum, (G) Dorsal aspect of first metasomal tergite, (H) Hind leg, (I) Fore wing, and (J) Dorsal aspect of abdomen.
Figure 10. (A-C) *Opius wachsmanni*: (A) Frontal aspect of head, (B) Fore wing, (C) Dorsal aspect of first metasomal tergite; (D-F) *Opius periclymenii*: (D) Dorsal aspect of mesosoma, (E) Dorsal aspect of first metasomal tergite, (F) Lateral aspect of mesosoma.

Figure 11. (A-B) *Opius basalis*: (A) Front wing, (B) Dorsal aspect of mesosoma; (C-D) *Opius tirolensis*: (C) Front wing, (D) hind leg; (E-F) *Opius gracilis*: (E) Frontal aspect of head, (F) dorsal aspect of first metasomal tergite.

Figure 12. (A-C) *Opius basirufus*: (A) Frontal aspect of head, (B) Dorsal aspect of abdomen, (C) Dorsal aspect of first metasomal tergite; (D-F) *Opius maculipes*: (D) Dorsal aspect of mesosoma, (E) Dorsal aspect of head, (F) Lateral aspect of mesosoma.
Figure 13. (A-D) Opius ambiguous: (A) Dorsal aspect of mesosoma, (B) Dorsal aspect of abdomen, (C) Fore wing, (D) Frontal aspect of head; (E-F) Opius docilis: (E) Propodeum, (F) Fore wing; (G-H) Opius propodealis: (G) Propodeum, (H) Frontal aspect of head; (I) Opius singularis: (I) Fore wing.

Figure 14. Dorsal habitus of female: (A) Opius ambiguous, (B) Opius basirufus, (C) Opius docilis, (D) Opius larissa, (E) Opius propodealis, (F) Opius repentinus, (G) Opius saevus, (H) Opius singularis, and (I) Opius wachsmanni.
precoxal sulcus smooth or not developed (Figure 5-D); marginal cell on forewing terminating apical wing; r vein originating from basal third of stigma, 3RSa 1.5 times as long as 2RS vein, 3RSb curved, 3 times as long as 3RSa (Figure 5-I); legs light yellow, hind femur 3-3.5 times as long as wide (Figure 5-H); propodeum smooth (Figure 5-F); metasoma red (Figure 5-G); metasomal posterior to 1st tergite smooth; first metasomal tergite as long as its width at apex (Figure 5-G); ovipositor slightly exerted.

Subgenus Merotrachys Fischer, 1972

O. (Merotrachys) schmidti Fischer, 1960 [Figures 6 (A-J) and 15-G]

Materials Examined: Iran, Guilan Province: Orkom (36° 45′ 44″ N, 50° 18′ 11″ E, 1,201 masl), 07.VI.2010, 1 ♀; leg. A. Nadimi.

Distribution in Iran: Guilan Province (current study), new record for Iran.

General Distribution: Hungary and Turkey (Yu et al., 2016).

Remark: *Opis schmidti* has very narrow distribution range in the Palaearctic Region, so far known from Hungary and Turkey, and Iran is added in the current study.

Diagnosis: Body length 1.5 mm; antennae 1.5 times as long as body, 24 segmented; oral cavity developed (Figure 6-A); temples shorter than eyes (Figure 6-C); postero-

Figure 15. Lateral habitus of female: (A) *Opis basalis*, (B) *Opis gracilis*, (C) *Opis maculipes*, (D) *Opis ochrogaster*, (E) *Opis pericymenii*, (F) *Opis pulicariae*, (G) *Opis schmidti*, and (H) *Opis tirolensis.*

1880
median area of mesoscutum without midpit (Figure 6-E); precoxal sulcus smooth (Figure 6-D); m-cu vein on forewing interstitial, 3RSa vein longer than 2RS vein (Figure 5-I); 1cu-a slightly postfurcal (Figure 6-I); hind femur 5 times as long as wide (Figure 6-H); propodeum sculptured (Figure 6-F); spiracles on propodeum and first metastomal tergite distinctly raised on tubercles (Figure 6-G); metasoma posterior to 1st tergite sculptured (Figure 6-J); body black (Figure 6).

Subgenus Misophthora Forster, 1862

O. (Misophthora) basalis Fischer, 1958

[Figures 11 (A-B) and 15-A]

Materials Examined: Iran, Alborz Province: Karaj (35° 46' 08″ N, 50° 56' 55″ E, 1,277 masl), 24.IX.2010, 1 ♀; Mazandaran Province: (36° 26' 18″ N, 52° 07° 12″ E, 275 masl), 10.X.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Mazandaran (Khajeh et al., 2014) and Alborz Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

O. (Misophthora) pulicariae Fischer, 1969

[Figures 7 (A-I) and 15-F]

Materials Examined: Iran, Guilan Province: Ziaz (36° 52′ 27″ N, 50° 13′ 24″ E, 490 masl), 07.VI.2010, 1 ♀; Qazvin Province: Zereshk (36° 25′ 42″ N, 50° 06′ 36″ E, 2,035 masl), 04.IV.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Guilan Province (current study), new record for Iran.

General Distribution: Palaearctic Region (Yu et al., 2016).

Diagnosis: Body 1.9–2.2 mm; head more than 2.0 times as wide as long (Figure 7-C); oral cavity not developed (Figure 7-A); mandibles basally steplike broadened (Figure 7-A); antennae 1.4–1.5 times as long as body, 24–27 segmented; mesosoma lacking red coloration, 1.3 times as long as high (Figure 7-D); notaulus distinct only in middle (Figure 7-E); precoxal sulcus absolutely smooth or not developed (Figure 7-D); postero-median area of mesoscutum with elongated midpit (Figure 7-E); stigma cuneate (Figure 7-I); hind wing lacking stigma thickening; 3RSa vein longer than 2RS vein (Figure 7-I); 3RSb of radial vein terminating or almost terminating at wing apex (Figure 7-I); propodeum at least in anterior part smooth or only with ridges (Figure 7-F); first metastomal tergite rugose, 1.3 times as long as its width at apex (Figure 7-G); ovipositor barely exerted from abdominal apex (Figure 7-G).

O. (Misophthora) wachsmanni Szepligeti, 1898

[Figures 10 (A-C) and 14-I]

Materials Examined: Alborz Province: Aran ge (35° 55′ 07″ N, 51° 05′ 09″ E, 1,891 masl), 31.VIII.2010, 1 ♀; Guilan Province: Orkom (36° 45′ 44″ N, 50° 18′ 11″ E, 1,201 masl), 07.VI.2010, 1 ♀; 17.V.2010, 1 ♀; Qazvin Province: Zereshk (36° 25′ 42″ N, 50° 06′ 36″ E, 2,035 masl), 04.IV.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Lorestan (Farahani et al., 2016), Alborz, Guilan, and Qazvin Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Nosopoea Forster, 1862

O. (Nosopoea) ambiguus Wesmael, 1835

[Figures 13 (A-D) and 14-A]

Materials Examined: Mazandaran Province: Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 07.VI.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Isfahan (Farahani et al., 2016) and Mazandaran Provinces (current study).

General distribution: Palaearctic region (Yu et al., 2016).

O. (Nosopoea) maculipes Wesmael, 1835

[Figures 12 (D-F) and 15-C]

Materials Examined: Guilan Province: Orkom (36° 45′ 44″ N, 50° 18′ 11″ E, 1,201 masl), 07.VI.2010, 1 ♀; Ziaz (36° 52′ 27″ N, 50° 18′ 11″ E, 1,201 masl), 17.V.2010, 1 ♀; Mazandaran Province: (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 26.IX.2010, 1 ♀; leg. A. Nadimi.
Distribution in Iran: East Azarbaijan, Guilan, and Tehran (Gadallah et al., 2016), and Mazandaran Provinces (current study).

General distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Nosopaeopius Fischer, 1972

O. (Nosopaeopius) ochrogaster Wesmael, 1835 [Figures 8 (A-J) and 15-D]

Materials Examined: Alborz Province: Aran (35° 55′ 07″ N, 51° 05′ 09″ E, 1,891 masl), 16.VIII.2010, 1 ♀; 17.IX.2010, 1 ♀; Mazandaran Province: Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 10.V.2010, 1 ♀; Guilan and Mazandaran Provinces (current study), new record for Iran.

Distribution in Iran: Alborz, Guilan and Mazandaran Provinces (current study), new record for Iran.

General Distribution: Palaearctic Region (Yu et al., 2016).

Diagnosis: Body 1.8-2.3 mm; oral cavity not developed (Figure 8-A); antennae 1.5 times as long as body, 24-29 segments; mesonotum with midpit (Figure 8-E); scutellum smooth or pubescent or posteriorly finely rugose (Figure 8-E); midpit somewhat elongate (Figure 8-E); propodeum sculptured, rugose or granulate (Figure 8-F); precoxal sulcus absolutely smooth or not developed (Figure 8-D); 3RSa vein up to 1.5 times as long as 2RS vein, 3RSb straight or sometimes arcuate, terminating preapically (Figure 8-I); m-cu vein postfurcal (Figure 8-I); first metasomal tergite longitudinally rugose and black (Figure 8-G), other tergites yellow or dark brown (Figure 8-J), apical tergites often with black transverse stripes (Figure 8-J), in males sometimes entirely black.

Subgenus Opiognathus Fischer, 1972

O. (Opiognathus) propodealis Fischer, 1958 [Figures 13 (G-H) and 14-E]

Materials Examined: Guilan Province: Ziajan (36° 52′ 27″ N, 50° 13′ 24″ E, 490 masl), 10.V.2010, 1 ♀; Mazandaran Province: Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 05.IX.2011, 1 ♀; (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 05.XI.2011, 1 ♀; (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 26.IX.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 05.IX.2011, 1 ♀; (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 26.IX.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 26.IX.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 26′ 18″ N, 52° 07′ 12″ E, 275 masl), 16.VIII.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Kermanshah (Farahani et al., 2016), Guilan and Mazandaran Provinces (current study).

General Distribution: Palaearctic Region (Yu et al., 2016).

Subgenus Thoracosema Fischer, 1972

O. (Thoracosema) repentinus Papp, 1980 [Figures 9 (A-J) and 14-F]

Materials Examined: Mazandaran Province: Tangehvaz (36° 21′ 54″ N 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; Chamestan-Gaznasara road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 12.VII.2011, 1 ♀; Chamestan-Gaznasara road (36° 18′ 54″ N, 52° 07′ 48″ E, 1,291 masl), 16.VIII.2011, 1 ♀; Tangehvaz (36° 21′ 54″ N, 52° 06′ 12″ E, 687 masl), 16.VIII.2011, 1 ♀; leg. M. Khayrandish.

Distribution in Iran: Mazandaran Province (current study), new record for Iran.

General Distribution: Palaearctic Region (Yu et al., 2016).

Diagnosis: Body 1.2-1.5 mm, very dark brown (Figure 9); head dorsally smooth, 2 times as wide as long (Figure 9-C); clypeus 3 times as wide as high (Figure 9-A); antennae longer than body, 15-16 segmented; oral cavity developed (Figure 9-A); mandibles.
New Records of the Genus Opius from Iran here

basally steplike broadened (Figure 9-A); thorax slightly longer than high; postero-median area of mesoscutum without midpit (Figure 9-E); notaules distinct only anteriorly (Figure 9-E); precocoxal sulcus sculptured (Figure 9-D); stigma cuneate (Figure 9-I); rvein short, 3RSa 1.7-1.8 times as long as 2RS vein (Figure 9-I); hind femur 4-5 times as long as wide (Figure 9-H); propodeum lacking transverse ridge, smooth or only on posterior margin slightly sculptured, finely rugose in posterior margin (Figure 9-F); first metasomal tergite slightly longer than its width at apex, smooth or with slightly wrinkles in apical part, with slightly developed light colored patterns (Figure 9-G); ovipositor slightly exerted.

Key to the Species of the Genus Opius Collected from Northern Iran

1- Postero-median area of mesoscutum with rounded or elongated midpit (Figures 4-E, 7-E, 8-E) 2

2- Postero-median area of mesoscutum without midpit (Figures 5-E, 6-E, 9-E) 12

2 (1)- Oral cavity not developed, absent (Figure 8-A); mandibles basally steplike broadened (Figure 8A); 3RSa vein up to 1.5 times as long as 2RS vein, 3RSb straight or sometimes arcuate (Figure 8-I)

...... Opius (Nosophaeopius) ochrogaster

- Oral cavity fully developed (Figures 4-A and 7-A) ... 3

3 (2)- Propodeum at least in anterior part smooth or only with ridges (Figure 7-F); midpit is rounded (Figure 4E, 8E); mesosoma usually 1.3 times as long as high (Figures 4-D and 7D); stigma cuneate (Figures 4-I and 7-I) .. 4

- Propodeum rugose or with granulose sculpture (Figure 4-F) 10

4 (3)- Hind wings of males with pterostigma thickening between costal and radial veins; mandibles basally uniformly broadened (Figure 10-A); antennae with 24-26 segments; marginal cell on forewing almost reaching its apex (Figure 10B); first metasomal tergite somewhat longer than its width at apex (Figure 10-C)] .. 1883

...... Opius (Misophthora) wachsmanni

- Hind wings of male without pterostigma thickening between costal and radial veins .. 5

5 (4)- Mesosoma with reddish dark brown patterns (Figure 10-F); hind wings lacking pterostigma thickening; ovipositor sheath not longer than 1st metasomal tergite; antennae 1.5 times as long as body, with 24 segments; first metasomal tergite as long as its width at apex (Figure 10-E); mesosoma dark brown (Figure 10-D), pronotum light colored] Opius (Agnopius) periclymenii

- Mesosoma without red coloration or only prothorax sometimes reddish (Figure 7-E) ... 6

6 (5)- First metasomal tergite coarsely sculptured, 1.3 times as long as its width at apex (Figure 7-G); [antennae 24-27 segmented] .. 7

7 (6)- Radial vein in forewing not reaching its apex (Figure 11-A); [3RSa vein 1.7 times as long as 2RS vein, 3RSb 2.4 times as long as 3RSa (Figure 11-A); midpit punctiform (Figure 11-B)] Opius (Misophthora) basalis

- Radial vein terminating at wing apex or closer to it. ... 8

8 (7)- 3RSa vein distinctly less than 2 times as long as 2RS vein (Figure 11-C); hind femur 3.5 times as long as wide (Figure 11-D); [ovipositor as long as 1st metasomal tergite; antennae 23-28 segmented] .. Opius (Agnopius) tirolensis

- 3RSa vein 2 times or more as long as 2RS vein; hind femur 5 times as long as wide 9

9 (8) Mandibles basally steplike (Figure 11-E); first metasomal tergite as long as its width at apex, yellow or yellowish dark brown (Figure 11-F); [elypeus 2.5 times as wide as high (Figure 11-E); Ovipositor as long as 1st metasomal tergite or longer] Opius (Cryptonastes) gracilis

- Mandibles basally uniformly broadened (Figure 12-A); [metasoma dark brownish red (Figure 12-B); antennae almost 2 times as long as body, with 24-27 segments; first metasomal tergite 1.5 times as long as its width at apex (Figure 12-C); ovipositor as long as 1st
abdominal tergite]Opius (Agnopius) basirufus 10 (3)- m-cu vein interstitial; 3-1A vein directed obliquely outward (Figure 4-I); [first metasomal tergite without distinct specular tubercles (Figure 4-G); ovipositor 1/3 as long as of abdomen; antennae 28-31 segmented] ..Opius (Allotypus) saevus - m-cu vein postfurcal, if sometimes interstitial, then ovipositor as long as abdomen .. 11 11 (10)- Mesonotum fairly densely pilose (Figure 12-D); [antennae slightly longer than body, with 25-35 segments; head behind eyes slightly narrowed (Figure 12-E); mesosoma 1.3 as long as high (Figure 12-F); ovipositor slightly extends beyond the apex of mesotema or concealed] ……Opius (Nosopoea) maculipes - Mesonotum absolutely glabrous or with hairs mostly on anterior sloping part (Figure 13-A); [metasoma black (Figure 13-B); 3RSa vein usually 2 times as long as 2RS vein, 3RSb 1.7-1.8 times as long as 3RSa (Figure 13-C); antennae longer than body, with 26-31 segments; face smooth (Figure 13-D)] …… Opius (Nosopoea) ambiguus…………………12 (1)- Precoxal sulcus sculptured (Figure 9-D) ... 13 - Precoxal sulcus smooth or not developed (Figures 5-D and 6-D)………………15 13 (12)- Propodeum smooth, sometimes only on posterior margin slightly sculptured or almost smooth (Figure 9-F).………………14 - Propodeum sculptured (Figure 13E); stigma large, triangular (Figure 13-F) ……. …………………Opius (Gastrosema) docilis 14 (13)- Propodeum with transverse ridge (Figure 13-G); [face with reddish pattern (Figure 13H)] …………………………………Opius (Opiognathus) propodealis - Propodeum without transverse ridge; smooth or only on posterior margin slightly sculptured (Figure 9-F); [head 2.0 times as wide as long (Figure 9-C); body dark brown; legs yellow (Figure 9-H)] …………………………………Opius (Thoracosema) repentinus 15 (12)- Metasoma posterior to 1st tergite sculptured (Figure 6-G); [propodeum sculptured (Figure 6-F); temples shorter than eye (Figure 6-C); fore wing with m-cu vein interstitial (Figure 6-I); antennae 1.5 times as long as body, with 24 segments; body black.] …… Opius (Merotrachys) schmidtii - Metasoma posterior to 1st tergite smooth (Figure 5-G) ……………………………… 16 16 (15)- 3RSa vein in fore wing 2 times as long as 2RS vein (Figure 13-I); Ovipositor barely exserted; antennae 27-32 segmented ………………….. Opius (Allophlebus) singularis - 3RSa vein in fore wing 1.5 times as long as 2RS vein, 3RSb curved, 2 times as long as 3RSa (Figure 5-I); [legs light yellow (Figure 5-H); r vein originating from basal third of stigma (Figure 5-I); metasoma red (Figure 5-G); mandibles basally distinctly broadened (Figure 5-A); ovipositor slightly exserted]…….Opius (Hyponycnodus) larissa

DISCUSSION

According to the previous studies and current research, a total of 107 species of Opiinae are known from Iran, of which 72 species belong to the cosmopolitan genus *Opius*. Our investigations in northern parts of Iran resulted in the collection of 17 species of the genus *Opius*, of which six species are new records for the fauna of Iran: *O. (Allotypus) saevus* Haliday, 1837, *O. (Hyponycnodus) larissa* Fischer, 1968, *O. (Merotrachys) schmidtii* Fischer, 1960, *O. (Misophthora) pulicariae* Fischer, 1969, *O. (Thoracosema) repentinus* Papp, 1980, and *O. (Nosopaeopius) ochroagaster* Wesmael, 1835. Apart from this, five species (i.e., *O. (Cryptonastes) gracilis*, *O. (Agnopius) periclymeni*, *O. (Gastrosema) docilis*, *O. (Nosopoea) ambiguo*, and *O. (Opiognathus) propodealis*) are reported from the studied area for the first time. The geographical distribution of all species is limited to the Palearctic region, especially the West Palearctic and the Middle East (Tobias, 1995). According to the literature (Shaw and Huddleston, 1991; Tobias, 1995), most species of the genus, including those reported in this study, are associated with phytophagous cyclorrhaphan Diptera, especially leaf miner flies in the family Agromyzidae. At least, some species within the identified genera of host flies, such
as *Amauromyza*, *Nemorimyza*, *Ophiomyza*, *Liriomyza*, *Agromyza*, *Cerodontha*, and *Phytomyza*, are known to associate with agricultural and forest plants, giving *Opius* a relatively high status in terms of pest biological control (Shaw and Huddleston, 1991). Further studies may evaluate the potential of these parasitic wasps for applied biological control of leaf miner flies on agricultural and greenhouse products. Additionally, further faunistic investigations are needed to improve our understanding of biodiversity and geographical distribution of Opiine parasitic wasps in Iran.

ACKNOWLEDGEMENTS

Thanks are due to the Department of Entomology, Tarbiat Modares University, for providing financial support for this study. The authors would like to appreciate Dr. Nadimi for his great help with sampling.

REFERENCES

New Records of the Genus Opius from Iran here

Opius Wesmael (Hemenoptera: Braconidae, Opiinae)

اطلاعات جدید از گونه‌های جنس Opius Wesmael در شمال ایران

چکیده

کلید شناسایی برای گونه‌های جمع آوری شده در این مطالعه نهایی شده است.

1887