Evaluating Cost Structure and Economies of Scale of Beef Cattle Fattening Farms in Mashhad City

P. Alizadeh¹, H. Mohammadi¹*, N. Shahnoushi¹, S. Saghaian², and A. Pooya³

ABSTRACT

In recent years, the high cost of raising livestock and, consequently, the sharp increase in the price of red meat in Iran have reduced its demand, and people consume chicken meat as a substitute for it. This has reduced the production incentives and, with the bankruptcy of some beef cattle farms, the welfare of producers and consumers of this product faces serious danger. To overcome this problem, understanding cost structure and reducing consumer price by reducing production costs seems necessary. Therefore, the aim of this research was to evaluate cost structure and economies of scale of beef cattle farms in Mashhad. For this purpose, the short-run Translog cost function along with input cost share equations were estimated using the iterated seemingly unrelated regression method. The data were collected in 2017 from beef cattle producers by interview using structured questionnaires. The result showed that there were increasing returns to scale for all farms. In addition, the demands for all inputs were perfectly inelastic. On the other hand, there was weak complementary and substitute relationship between inputs. According to the results of this research, the most important factor of beef production in the selected farms was feed, whose demand was inelastic and the possibility of substituting it with other inputs was very weak. Therefore, the adoption of policies by the government, including subsidies for feeding cattle and increasing the import of this input, can reduce the production cost and prevent beef prices from rising.

Keywords: Feeding cattle, Input demand, Iterated seemingly unrelated regression, Substitution elasticity, Translog cost function.

INTRODUCTION

Although food consumption patterns have changed over time, meat is still an important meal component for consumers (Grunert, 2006). Meat is rich in proteins, vitamins, minerals, micronutrients and fat. It is necessary for health and is one of the main components of human eating habits (Iran Ministry of Agriculture Jihad, 2015). The main source of meat production is livestock. About 45 percent of the value added of agriculture sector in Iran is related to animal husbandry and about 3 million people are directly involved in animal husbandry (Fatemi Amin and Mortezai, 2013). The consumption of red meat in Iran, especially in rural areas and in low-income groups, is low compared to developed countries (Rahimi Baigi et al., 2014). According to the global standard, the per capita consumption of red meat is about 30 to 45 kg (FAO, 2015), while the per capita consumption of red meat in Iran is about 12.5 kg (FAO, 2016). In recent years, the sharp increase in the price of red meat in Iran has caused a major part of the vulnerable group of the society to reduce their consumption of this

¹ Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Islamic Republic of Iran.
² Department of Agricultural Economics, University of Kentucky, Kentucky, U. S. A.
³ Department of Management, Faculty of Economics and Administrative Sciences, Ferdowsi University of Mashhad, Islamic Republic of Iran.
*Corresponding author; e-mail: hoseinmohammadi@um.ac.ir
kind of meat and to consume other kinds of meat (including chicken meat) as a substitute for it (Cheraghi and Gholipoor, 2010).

The uncertainty and price fluctuations of red meat and inputs have led to the reduction in domestic production and increase in imports (Alijani and Saboohi, 2009). According to FAO report (2015) and Iran Chamber of Commerce, Industries, Mines and Agriculture (2016), imports has always had a larger share than exports of red meat, and the trade balance of this product has been negative in the last decade. Therefore, Iran has no significant export market share of this product. Based upon the Iran Ministry of Agriculture Jihad (2007), one of the most important factors affecting the price increase of red meat is the livestock feed. An average value of 3 billion dollar livestock input is imported by Iran every year (Iran Feed Industry Association, 2017). The most important imported livestock feeds are corn, soybean meal, and barley. Corn is the first imported product of Iran and is one of the main items of livestock feed that, due to low domestic production, a significant amount of it is imported each year (Ghasemi, 2016). Given the goals of reducing imports and increasing the production of red meat in Iran at 2025 horizon, recognition of production structure and the cost structure of beef cattle farms seems necessary to allocate more investment in this sector.

In 2015, the total annual amount of red meat production in Iran was 806 thousand tons, and Khorasan Razavi Province, with 71 thousand tons, ranked the first (Iran Ministry of Agriculture Jihad, 2015). In the study area of this research, Mashhad, there are 94 beef cattle fattening farms with operation license. They raise more than 53,600 heads of cattle and calves. The total amount of beef produced in this region is about 4,000 tons (Agricultural Jihad Organization of Khorasan Razavi Province, 2017).

Beef producers often blame low farm prices and consumers blame high retail prices (Hosseini and Shahbazi, 2010). Due to the shortage and high cost of feeds in recent years, the high cost of livestock fattening has caused some beef cattle farms in Iran to be bankrupt, which eventually led to a reduction in the welfare of producers and consumers. To overcome this problem, understanding cost structure and trying to reduce consumer price through reducing production costs seems necessary. Thus, this research aimed to examine the cost structure of red meat production in Mashhad region through the estimation of input cost share equations. Considering the significant impact of the presence or absence of economy of scale on production costs, investigation of the economy of scale was another goal of this research. In order to achieve these goals, the short-run Translog cost was used.

The study of cost structure, the economy of scale, and the estimation of substitution elasticity were first proposed by Christensen et al. (1973) and Berndt and Wood (1975) and further developed by Griffin and Gregory (1976). Later, several researchers used the cost function approach to analyze the structure of production in different sectors of the economy. In the following, some of the studies that have investigated the cost structure of agricultural production are mentioned.

Grisley and Gitu (1985) investigated the cost structure of Turkey production in the Mid-Atlantic region using Translog variable cost function and found that both the own-price and cross-price elasticities of input demands were inelastic. Glass and Mckillop (1989) studied the structure of Northern Ireland agriculture using a two-product, four-input Translog cost function and showed that the demand for livestock feed, fertilizer, and seeds were inelastic, whereas, the demand for labor was elastic. Guttormsen (2002) examined input substitutability in the salmon aquaculture industry of Norway by estimating a Translog cost function. The results showed that there was no substitution between inputs. Feed cost had also the largest share in total
production costs. Gervais et al. (2006) estimated economy of scale for three Canadian manufacturing agro-food sectors including meat, bakery, and dairy using a Translog cost function. They found that there was evidence of economies of scale in meat and bakery industries; however, there was no economy of scale in the dairy industry. Ansari and Salami (2007) studied the economy of scale in the shrimp farming industry in Iran using a Translog cost function and found that there was an increasing return to scale in this industry. Kumar et al. (2010) estimated the input demand functions of some Indian agricultural products. The results indicated that demand for modern inputs was more elastic. Rahmani and Ghaderzadeh (2010) estimated the cost function of poultry meat in Sanandaj city and found that feed cost had the largest share of total variable costs. Kavoosi Kalashami et al. (2016) evaluated production structure of warm water fish farms in Guilan Province by estimating a Translog cost function and showed that all inputs were substitutes. Tsakiridis et al. (2016) investigated feed substitution and economy of scale in Irish beef production systems. They estimated a short-run Translog cost with panel data by using the 3SLS method. The results indicated that all inputs were substitutes and there were economies of scale in production systems. Ozer and Top (2017) estimated demand for inputs in silkworm production of Turkey and found that the lowest price elasticity of demand was related to the mulberry leaves and the highest price elasticity was related to the transportation costs. Ejimakor et al. (2017) studied the production structure of agricultural sector in the southeastern United States using a Translog cost function and concluded that the demand for labor and other intermediary inputs were inelastic, while, the demand for chemicals was elastic.

Together, these studies provide important insights into the production structure of agricultural products. However, few studies have been conducted on the cost structure of red meat production and most of the research has been carried out on dairy farming. In recent years, given the rising production costs of beef cattle fattening, an unprecedented rise in the price of red meat and, consequently, the decline in consumer demand for this product and the bankruptcy of some of these farms, the future of this industry in Iran is in danger. Therefore, it is necessary to determine the most important factors affecting beef cattle farming total costs. This could help to adopt government policies to reduce production costs of these farms. Therefore, the results of this research could be useful in this regard. Another advantage of this research is that all the variables that affect the total cost of beef cattle farming have been used. The population of this research includes all industrial beef cattle fattening farms in Mashhad. According to available statistics, there are currently 94 industrial beef cattle fattening farms in this city, of which 60 farms have been selected as samples using Cochran formula. Data was collected from the selected beef cattle producers in 2017 by conducting the interview using structured questionnaires.

MATERIALS AND METHODS

Duality theory is an appropriate tool for estimating production functions (Diewert, 2018). According to this theory, production structure of an industry can be examined by both the production function and the cost function approaches (Shefard, 1970). Since all information about the production structure could be recovered from the cost function (Kavoi et al., 2010), using the cost function instead of the production function to investigating the cost structure of an industry has several benefits. First, there is no need to impose homogeneity of degree 1 on the production function to derive equations. The cost function is homogeneous of degree 1 in input prices, such that doubling the prices will double the cost without having any effect on the input price ratio (Binswanger, 1974; Antle and
Aitah, 1983). Second, in the cost function approach, instead of input quantities that are not suitable exogenous variables at the farm level, the input prices are used as independent variables, because managers are considering exogenous input prices to make the decision to use inputs. Third, the use of production function to estimate substitution elasticity and the price elasticity of inputs require that the matrix of coefficients of production function be inverted, which leads to an increase in estimation errors. However, in the cost function approach, there is no need to invert the matrix of coefficients (Binswanger, 1974). Fourth, in estimating the production function, there is a high multicollinearity between independent variables, but this problem does not arise in the cost function (Stier, 1985).

The general form of the cost function could be shown as follows:

$$C = c(P_1, P_2, \ldots, P_n, Q)$$ \hspace{1cm} (1)

Where, C shows the total Cost, P_i is the Price of input i (assuming that there are n inputs), and Q is the production Quantity. Using the cost function to estimate the production function parameters requires considering of a particular functional form. Among the flexible functional forms used in agricultural economics studies, the Translog, the generalized quadratic, and the Generalized Leontief could be widely used (Marcin, 1991; Guttmersen, 2002).

The Translog function is the most common form of flexible functions used in production research. One of the features of this function in literature is that it does not impose any prior restrictions on substitution relationships between inputs (Christensen et al., 1973). This function is most often used by the researchers because of its flexibility and variability in elasticities and returns to scale (Sadoulet and Janvry, 1995; MacDonald et al., 2000). The single-output Translog cost function could be considered as Equation (2) (Christensen and Greene, 1976; Boluk and Koc, 2010):

$$\ln C = \alpha_0 + \alpha_q \ln(Q) + \frac{1}{2} \alpha_{qq} \ln(Q)^2 + \sum_i \alpha_i \ln(P_i) + \frac{1}{2} \sum_j \sum_i \alpha_{ij} \ln(P_i) \ln(P_j) + \sum_i \alpha_i \ln(P_i) \ln(Q)$$

\hspace{1cm} (2)

Since the Translog cost function is linear homogeneous relative to the input prices, input cost shares should be homogeneous of degree 1 relative to the input prices. The conditions of linear homogeneity of input prices and symmetry that guarantees a well-behaved cost function is done by applying restrictions (3) and (4) on parameters (Boluk and Koc, 2010):

$$\sum_i \alpha_i = 1 ; \quad \sum_i \alpha_i \alpha_j = 0 ; \quad \sum_i \alpha_i \alpha_{ij} = 0$$

\hspace{1cm} (3)

$$\alpha_{ij} = \alpha_{ji}$$

\hspace{1cm} (4)

In accordance with Shepard’s Lemma, conditional input demand functions could be derived by partially differentiating the cost function with respect to the input prices (Banda and Verdugo, 2007):

$$S_i = \frac{\partial \ln C}{\partial \ln P_i} = \frac{\partial C}{C \partial P_i} = \alpha_i + \sum_{j \neq i} \gamma_{ij} \ln P_j + \alpha_q \ln Q$$

\hspace{1cm} (5)

Where, S_i shows the cost Share of input i and X_i is the demand quantity of input i.

$$\sum_{i=1} X_i = 1 \quad \sum_{i=1} S_i = 1.$$

Given, so $\alpha_i = 1$.

In this research, a short-run Translog cost function for beef cattle fattening farms of Mashhad is considered as Equation (6). Also, the input cost share equations are presented in the form of Equation (7):

$$\ln TC = \beta_0 + \beta_1 \ln P_1 + \beta_2 \ln P_2 + \beta_3 \ln P_3 + \beta_4 \ln P_4 + K + \beta_5 \ln Q + \frac{1}{2} \gamma_{xx} \ln(P_1)^2 + \frac{1}{2} \gamma_{yy} \ln(P_2)^2 +$$

$$+ \frac{1}{2} \gamma_{xx} \ln(P_1)^2 + \frac{1}{2} \gamma_{yy} \ln(P_2)^2 + \frac{1}{2} \gamma_{xx} \ln(K)^2 + \frac{1}{2} \gamma_{yy} \ln(Q)^2 + \gamma_{xx} \ln(P_1) \ln(P_2) + \gamma_{xx} \ln(P_1) \ln(K) + \gamma_{yy} \ln(P_2) \ln(Q) + \gamma_{xx} \ln(P_1) \ln(Q) +$$

$$+ \gamma_{xy} \ln(P_2) \ln(K) + \gamma_{yx} \ln(P_1) \ln(Q) + \gamma_{xx} \ln(P_1) \ln(P_2) + \gamma_{yy} \ln(P_2) \ln(Q) + \gamma_{xx} \ln(K) \ln(P_1) +$$

$$+ \gamma_{yy} \ln(K) \ln(Q) + \gamma_{xy} \ln(K) \ln(Q) + \gamma_{xx} \ln(K) \ln(P_1) +$$

\hspace{1cm} (6)
Selected variables of this research include production quantity, total cost, labor price, veterinary and pharmaceutical service price, feed price, energy price, and capital as a quasi-fixed input. The description of these variables is presented in Table 1.

Parameters Estimation Method

In Translog cost function literature, the most popular estimation method is Iterated Seemingly Unrelated Regression (ISUR) of Zellner (1963). By using this method, cost function and cost share equations could be estimated simultaneously and more efficiently than Ordinary Least Squares (OLS) method. Application of this method requires the estimation of the covariance matrix for each equation that increases the variability of the estimator sampling and provides estimates that are numerically closer to the maximum likelihood estimator (Berndt, 1991; Greer, 2012). Since the sum of the cost shares is equal to 1, there will be only N-1 linearly independent cost share equations (Banda and Verdugo, 2007). On the other hand, in each equation, the sum of the components of disturbances must be equal to 0, which means that the covariance matrix of disturbances is singular. Accordingly, one cost share equation should be deleted and its parameters through homogeneity condition need to be determined. The problem that arises is the estimated value of parameters, which may change with respect to the equation that was deleted. For this reason, iterated seemingly unrelated regression method is used, so that the estimates are not sensitive to the equation that was deleted. Also, to retain the

\[
S_L = \beta_L + \gamma_{LL} \ln P_L + \gamma_{LF} \ln P_F + \gamma_{LE} \ln P_E + \gamma_{LK} \ln K + \gamma_{LQ} \ln Q \\
S_F = \beta_F + \gamma_{FL} \ln P_L + \gamma_{FF} \ln P_F + \gamma_{FE} \ln P_E + \gamma_{FK} \ln K + \gamma_{FQ} \ln Q \\
S_E = \beta_E + \gamma_{EL} \ln P_L + \gamma_{EF} \ln P_F + \gamma_{EE} \ln P_E + \gamma_{EK} \ln K + \gamma_{EQ} \ln Q \\
S_T = \beta_T + \gamma_{TL} \ln P_L + \gamma_{TF} \ln P_F + \gamma_{TE} \ln P_E + \gamma_{TK} \ln K + \gamma_{TQ} \ln Q
\]

(7)
The statistical descriptions of selected variables are presented in Table 1. This table shows that the monthly average beef production of fattening farms is about 1,719 kg. Also, feed with 84.5% of total costs has the largest cost share among the production inputs. This finding supports the previous research conducted by Guttormsen (2002) and Rahmani and Ghaderzadeh (2010). This result indicates the high importance of this input in beef production. The lowest cost share (0.35%) is related to the energy. It should be noted that the price of feed (PF) is derived from the weighted average price of corn, straw, alfalfa, and concentrate inputs. Also, the Price of Energy (PE) is derived from the weighted average price of fuel and electricity inputs.

The Translog cost function along with input cost share equations was estimated by imposing the constraints of symmetry and homogeneity using Stata 14 software (For more information about estimating cost function in Stata, see Kumbhakar et al. (2015)). For this purpose, cost function and cost share equations were normalized by the condition of linear homogeneity, cost function and cost share equations should be normalized by dividing input prices into the input prices whose equation was deleted from the system (Barten, 1969; Bauer et al., 1987; Greer, 2012).

RESULTS AND DISCUSSION

As noted by Hanoch (1975), the economy of scale should be measured along the expansion path, in which each point relates to a minimum total cost and input prices are constant. The economy of scale is defined as: the equivalent increase in total cost due to the equivalent increase in output, holding input prices fixed (Filippini, 2001). The economy of scale can be calculated from the Equation (8):

\[
SCE = 1 - \frac{\partial \ln C}{\partial \ln Q} \tag{8}
\]

Where, \(SCE\) shows the economy of scale and \(\frac{\partial \ln C}{\partial \ln Q}\) is the cost elasticity. The positive value of \(SCE\) indicates that there is an increasing return to scale and negative value of it indicates that there is a decreasing return to scale (Grisley and Gitu, 1985).

Price Elasticity and Substitution Elasticity

Based on Brown and Christensen (1980), own-price and cross-price elasticities of input demands are calculated from Equations (9) and (10):

\[
e_{ii} = \frac{\partial \ln X_i}{\partial \ln P_i} = \frac{\beta_i + S_i^2 - S_i}{S_i} = S_i \sigma_{ii} ;
\]

\[
\sigma_{ii} = \frac{\beta_i + S_i^2 - S_i}{S_i^2} \quad \text{for } i = 1, \ldots, n
\]

\[
e_{ij} = \frac{\partial \ln X_j}{\partial \ln P_i} = \frac{\beta_i + S_i S_j}{S_j} = S_j \sigma_{ij} ;
\]

\[
\sigma_{ij} = \frac{\beta_i + S_i S_j}{S_i S_j} \quad \text{for } i, j = 1, \ldots, n \quad \text{but } i \neq j
\]

Where, \(e_{ii}\) and \(e_{ij}\) indicate own-price and cross-price elasticities and \(\beta_i\) and \(\beta_{ij}\) are parameters. \(S_i\) and \(S_j\) are the cost Share of inputs \(i\) and \(j\), which are computed as the means of the independent variables. \(\sigma_{ij}\) and \(\sigma_{ii}\) are also the Allen-Uzawa partial elasticities of substitution (Grisley and Gitu, 1985). Allen-Uzawa elasticities evaluate the change in demand quantity of each input relative to a change in other input prices, which is weighted by the cost share of the input whose price has changed (Magnani and Prentice, 2006), such that whatever the cost share of the input for which price has changed is higher, other inputs are a better substitute or complement to it.
dividing the input prices into the energy price that has the lowest cost share and cost share equation of this input was deleted from the system. After estimating the model, the coefficients of the energy input were calculated through homogeneity condition. The results are presented in Table 2. These results show that the coefficient of determination \(R^2 \) of the cost function is 0.91, which means 91 percent of the variation in production cost of beef cattle fattening farms could be explained by the variation in variables of labor price, feed price, energy price, veterinary and pharmaceutical service price, and capital. The coefficient of determination for labor cost share, feed cost share, and veterinary and pharmaceutical service cost share equations are 0.65, 0.40, and 0.61, respectively. Glass and Mckillop (1989) have also argued that the Translog models yield relatively poor fits for the cost share equations. The coefficients of the cost function do not have an important economic interpretation, but they are used in estimating the price elasticity of input demands and elasticities of input substitution. Before estimating the elasticities, the results of some goodness-of-fit tests are discussed in the followings.

In order to test the linear homogeneity, once input cost shares were estimated using ordinary least square regression, without imposing any constraints on parameters and, again, these equations were estimated by imposing homogeneity constraint on

Table 2. Translog cost function and cost share equations (ISUR method).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>t-Statistic</th>
<th>Parameter</th>
<th>Coefficient</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0)</td>
<td>21.545</td>
<td>1.59</td>
<td>(\gamma_{LT})</td>
<td>-0.00035</td>
<td>-0.10</td>
</tr>
<tr>
<td>(\beta_L)</td>
<td>0.306</td>
<td>2.48</td>
<td>(\gamma_{LE})</td>
<td>***-0.0022</td>
<td>-2.93</td>
</tr>
<tr>
<td>(\beta_F)</td>
<td>0.901</td>
<td>3.41</td>
<td>(\gamma_{LK})</td>
<td>-0.019</td>
<td>-2.35</td>
</tr>
<tr>
<td>(\beta_T)</td>
<td>-0.223</td>
<td>-1.22</td>
<td>(\gamma_{LQ})</td>
<td>***-0.032</td>
<td>-4.16</td>
</tr>
<tr>
<td>(\beta_E)</td>
<td>0.015</td>
<td>2.23</td>
<td>(\gamma_{FT})</td>
<td>***-0.068</td>
<td>-8.51</td>
</tr>
<tr>
<td>(\beta_K)</td>
<td>-0.492</td>
<td>-0.25</td>
<td>(\gamma_{FE})</td>
<td>-0.0006</td>
<td>-0.78</td>
</tr>
<tr>
<td>(\beta_Q)</td>
<td>***-3.926</td>
<td>-3.04</td>
<td>(\gamma_{FK})</td>
<td>0.012</td>
<td>0.56</td>
</tr>
<tr>
<td>(\gamma_{LL})</td>
<td>0.046</td>
<td>3.82</td>
<td>(\gamma_{FQ})</td>
<td>'0.033</td>
<td>1.70</td>
</tr>
<tr>
<td>(\gamma_{FF})</td>
<td>0.112</td>
<td>7.18</td>
<td>(\gamma_{TE})</td>
<td>0.0002</td>
<td>0.87</td>
</tr>
<tr>
<td>(\gamma_{TT})</td>
<td>0.068</td>
<td>9.63</td>
<td>(\gamma_{TK})</td>
<td>0.007</td>
<td>0.47</td>
</tr>
<tr>
<td>(\gamma_{EE})</td>
<td>0.0026</td>
<td>5.95</td>
<td>(\gamma_{TQ})</td>
<td>-0.00095</td>
<td>-0.07</td>
</tr>
<tr>
<td>(\gamma_{KK})</td>
<td>-0.083</td>
<td>-0.55</td>
<td>(\gamma_{EQ})</td>
<td>0.00037</td>
<td>0.8</td>
</tr>
<tr>
<td>(\gamma_{QQ})</td>
<td>-0.177</td>
<td>-1.41</td>
<td>(\gamma_{EQ})</td>
<td>-0.0004</td>
<td>-1.04</td>
</tr>
<tr>
<td>(\gamma_{LF})</td>
<td>***-0.043</td>
<td>-3.50</td>
<td>(\gamma_{KQ})</td>
<td>***0.347</td>
<td>2.92</td>
</tr>
</tbody>
</table>

* * and ***: Show that the coefficients are statistically significant at 10, 5 and 1 percent levels.
parameters. Then, these restrictions were tested by the Wald test. The null hypothesis of this test is the homogeneity of the cost function relative to the input prices. Table 3 shows that the null hypotheses of homogeneity are confirmed in all equations at 5% significance level.

To test autocorrelation in cost function and input cost shares, we used Durbin-Watson, Harvey LM, and overall system autocorrelation tests (For more information about these tests, see Griffiths et al. (1985)). The null hypothesis of these tests is that there is no autocorrelation. As can be seen from the Table 4, based upon Harvey LM and Durbin-Watson tests, there is no autocorrelation in cost function and cost share equations. Also, based upon Harvey overall system LM and Guilkey overall system LM tests, there is no overall autocorrelation in the system.

In order to test heteroscedasticity in equations used, Engle's ARCH LM and Hall-Pagan LM tests and Jarque-Bera test were applied to test normality [for more information about these tests, see Shehata (2011)]. The results of Table 5 indicate that the null hypothesis of homoscedasticity is confirmed for all equations at a 5% significance level. Also, the results of the Jarque-Bera test shows that the null hypothesis of normality of disturbances is confirmed for all equations at 5% significance level.

After estimating the cost function and carrying out the goodness-of-fit tests, the cost elasticity and economy of scale were calculated. The results are reported in Table 6. The average value of the cost elasticity is 0.465, which indicates that with the increase of a unit of production quantity, the total cost will increase only by 0.465. The economies of scale for all observations have been positive and the average of these values is equal to 0.535, which is significantly different from zero. It means that there are economies of scale for all selected beef cattle fattening farms. In other words, all of these farms benefit an increasing return to scale, and as production quantity increases, costs will decrease. This finding is consistent with that of Grisley and Gitu (1985), Ansari and Salami (2007), and Tsakiridis et al. (2016). The results of the estimating own-price and cross-price elasticities of demands are reported in Table 7. The table illustrates that the value of all elasticities is less than 1, which indicates that the demand for all inputs is inelastic. Therefore, a change in input price has a relatively small effect on the quantity of the input demand. These results match those observed in Grisley and Gitu (1985), Rahmani and Ghaderzadeh (2010),

Table 3. Results of the Wald test for homogeneity.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Statistic Wald</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_L</td>
<td>0.769</td>
<td>0.46</td>
</tr>
<tr>
<td>S_F</td>
<td>1.39</td>
<td>0.24</td>
</tr>
<tr>
<td>S_E</td>
<td>0.522</td>
<td>0.47</td>
</tr>
<tr>
<td>S_T</td>
<td>2.60</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 4. Results of the Autocorrelation Tests.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Durbin-Watson statistic</th>
<th>Harvey LM statistic</th>
<th>Harvey LM Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost function</td>
<td>2.06</td>
<td>0.126</td>
<td>0.72</td>
</tr>
<tr>
<td>S_L</td>
<td>1.88</td>
<td>0.195</td>
<td>0.65</td>
</tr>
<tr>
<td>S_F</td>
<td>2.06</td>
<td>0.099</td>
<td>0.75</td>
</tr>
<tr>
<td>S_E</td>
<td>1.94</td>
<td>0.024</td>
<td>0.87</td>
</tr>
<tr>
<td>S_T</td>
<td>2.09</td>
<td>0.195</td>
<td>0.65</td>
</tr>
<tr>
<td>Harvey overall system LM statistic</td>
<td>0.446 (0.97)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guilkey overall system LM statistic</td>
<td>12.40 (0.71)a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1760
Table 5. Results of the Heteroscedasticity and Normality tests.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Heteroscedasticity tests</th>
<th>Normality test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engle’s ARCH LM statistic</td>
<td>Probability</td>
</tr>
<tr>
<td>Cost function</td>
<td>0.193</td>
<td>0.65</td>
</tr>
<tr>
<td>S_L</td>
<td>0.0017</td>
<td>0.96</td>
</tr>
<tr>
<td>S_F</td>
<td>0.110</td>
<td>0.73</td>
</tr>
<tr>
<td>S_E</td>
<td>0.0009</td>
<td>0.97</td>
</tr>
<tr>
<td>S_T</td>
<td>0.156</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 6. Estimation of cost elasticity and economy of scale.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost elasticity</td>
<td>0.465</td>
<td>0.189</td>
</tr>
<tr>
<td>Economy of scale</td>
<td>0.535</td>
<td>0.189</td>
</tr>
</tbody>
</table>

Table 7. Estimation of Own and cross price elasticities of input demands.

<table>
<thead>
<tr>
<th>Input</th>
<th>Labor</th>
<th>Feed</th>
<th>Energy</th>
<th>Veterinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>-0.304</td>
<td>0.263</td>
<td>-0.026</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(0.162)</td>
<td>(0.009)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Feed</td>
<td>0.023</td>
<td>-0.022</td>
<td>0.0023</td>
<td>-0.0034</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.0008)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Energy</td>
<td>-0.0554</td>
<td>0.676</td>
<td>-0.025</td>
<td>0.134**</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.114)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Veterinary</td>
<td>0.07</td>
<td>-0.037</td>
<td>0.006*</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.103)</td>
<td>(0.0025)</td>
<td>(0.09)</td>
</tr>
</tbody>
</table>

* The numbers in the parenthesis represent the standard error.

Tsakiridis et al. (2016), and Zhang and Alston (2018).

Price elasticity of demand for all inputs has the correct and expected negative sign, which suggests that with the increase in the prices, the demand for them will decrease. Own-price elasticity of feed demand is significant at 5% level and own-price elasticity of labor demand is significant at 10% level, while the price elasticities of energy and veterinary and pharmaceutical service is not significant. Also, the results show that the demand for feed is perfectly inelastic, indicating a small variation in the quantity of demand relative to a variation in the price of this input. Therefore, feed is the most important input of beef production. The results of cross-price elasticities imply that labor and energy inputs are complementary inputs, suggesting that an increase in labor price will decrease the use of energy and vice versa. It is due to the fact that labor and machinery are used together and machinery consumes fuel and electricity. This result supports the earlier research by Nozari et al. (2013), Kanaani and Ghaderzadeh (2016), and Zhang and Alston (2018). On the other hand, labor and veterinary and pharmaceutical service are substitute inputs, which means that an increase in veterinary and pharmaceutical service price will increase the labor demand in order to clean livestock environment to protect them from illnesses. Also, there is a substitution relationship between feed and labor; since the use of more labor reduces the loss of feed. These results corroborate the findings of Ahmad et al. (1993) and Shahbazi (2016). In addition, feed and energy are substitutes. Moreover, energy and veterinary and pharmaceutical service are substitute inputs. Therefore, with the rising
veterinary and pharmaceutical service price, the producer uses more machinery to keep clean the livestock environment. This finding is in line with the results of the study of Nozari et al. (2013). It should be noted that there is weak substitute or complementary relationship between inputs because all of the cross-price elasticities are less than 1. Hence, it can be concluded that a change in the price of an input would not remarkably change the demand for substitute or complement of it.

The results of estimating Allen-Uzawa substitution elasticities are reported in Table 8. These results are consistent with the estimated price elasticities of input demands. Table 8 shows that there is a significant complementary relationship between labor and energy. This result is consistent with Nozari et al. (2013) finding. In addition, there is a significant substitute relationship between feed and energy and between energy and veterinary and pharmaceutical service. These results are similar to those reported by Ollinger et al. (2000). Other Allen-Uzawa elasticities were not statistically significant.

CONCLUSIONS

Understanding the input demand and cost structure in beef cattle industry is essential for evaluating the impacts of change in government policies such as support programs. The price elasticity of demand for inputs is an important parameter in quantifying the effects of these programs.

Table 8. Estimation of Allen-Uzawa substitution elasticities of inputs.\(^a\)

<table>
<thead>
<tr>
<th>Input</th>
<th>Labor</th>
<th>Feed</th>
<th>Energy</th>
<th>Veterinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>-4.1*</td>
<td>0.311</td>
<td>-7.42***</td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>(2.2)</td>
<td>(0.191)</td>
<td>(2.7)</td>
<td>(0.579)</td>
</tr>
<tr>
<td>Feed symmetry</td>
<td>-0.026</td>
<td>(0.021)</td>
<td>0.8***</td>
<td>-0.043</td>
</tr>
<tr>
<td>Energy symmetry</td>
<td></td>
<td>(0.23)</td>
<td>(0.122)</td>
<td></td>
</tr>
<tr>
<td>Veterinary symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>symmetry</td>
<td>-0.662</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.18)</td>
</tr>
</tbody>
</table>

\(^a\) The numbers in the parenthesis represent the standard error.
effective in reducing production costs.

REFERENCES

Affairs, Production Research and Policies Office.
ارزیابی ساختار هزینه و صرفه‌های مقیاس واحدهای پرواربندی گوساله گوشتی در شهر مشهد
پ. علیزاده، ح. محمدی، ن. شاهنوشی، س. سقائیان، و ع. پویا

چکیده
در سال‌های اخیر هزینه‌های بالای پرورش دام و به تبع آن، افزایش شدید قیمت گوشت قرمز در ایران موجب کاهش تقاضای این محصول گردیده است و مصرف کنندگان به مصرف گوشت مرغ به عنوان جایگزینی برای آن رفتند. این امر موجب کاهش انگیزه تولید شده و با تعطیلی برخی واحدهای پرواربندی دام، رفاه تولید کنندگان و صرفه‌های کنندگان این محصول با خطر جدی مواجه شد. برای برطرف کردن مشکل، شناخت ساختار هزینه و صرفه‌های کشت گوشت فرمز در ایران ضروری به نظر می‌رسد. از این رو هدف مطالعه حاضر، ارزیابی ساختار هزینه و صرفه‌های مقیاس واحدهای پرواربندی گوساله گوشتی در شهر مشهد می‌باشد. برای این منظور تاکید کنندگان به هدف هزینه تولید با استفاده از روش‌های رگرسیونی برای تجزیه و تحلیل داده‌های مورد استفاده در این مطالعه به صورت پیمایشی و از
طریق مصاحبه حضوری با مدیران واحدهای پرورشگاه گوساله گوشتی شهر مشهد با استفاده از پرسشنامه ساختار یافته در سال 1396 گردآوری شده است. نتایج نشان دهنده وجود بارزی صعودی نسبت به مقیاس برای تمامی واحدها بوده است. همچنین نقش تغییرات نهاده‌ها نسبت به تغییرات قیمت آنها کاملاً به کنترل مدیران است. از سوی دیگر، روابط مکملی و جانشینی بسیار ضعیفی بین نهاده‌های تولید گوشت و به‌طور معمول دوباره بروز نهاده‌های دیگر دارد. بر اساس نتایج این مطالعه، مهم‌ترین عامل تعیین کننده تولید گوشت در واحدهای مورد بررسی نهاده خوراک دام بوده است. به‌طور کلی، تقاضای نهاده‌های منابع دام پرداخته می‌شود و افزایش واردات واردات این نهاده می‌تواند باعث کاهش هزینه‌های پرورش دام شده و افزایش قیمت گوشت گلوگیری کند.