Antimicrobial Activity of the Marine Algal Extracts against Selected Pathogens

B. Saleh1*, and A. Al-Mariri1

ABSTRACT

The inhibitory effect of Ulva lactuca (Chlorophyta), Dilophus spiralis (Phaeophyta) and Jania rubens (Rhodophyta) marine algae species has been evaluated against 2 Gram-positive bacterial (Streptococcus pyogenes and Micrococcus luteus); 2 Gram-negative bacterial (Shigella flexneri and Vibrio cholerae) and 2 fungal (Candida albicans and Aspergillus niger) isolates using aqueous and six organic extracts (methanol, ethanol, chloroform, acetone, ethyl acetate and hexane). Data revealed that the M. luteus bacteria was the most sensitive pathogen by showing the highest zone of inhibitions (ZIs) of 17 mm with the lowest Minimum Inhibitory Concentration (MIC) of 26.7 µgmL-1 and the lowest Minimum Bactericidal Concentration (MBC) of 53.3 µg mL-1 with chloroform D. spiralis extract. Whereas, aqueous extracts were not active against all selected pathogens regardless of the examined algae species. Based upon data presented herein, chloroform D. spiralis extract was the most active against examined pathogens. Thereby, future performance research in D. spiralis is requested due to their high effectiveness as a cheap antimicrobial agent.

Keywords: Algae, Antimicrobial activity, Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration (MIC).

INTRODUCTION

The occurrence of approximately 9000 macroalgae species around the oceans worldwide has been demonstrated (Wajahatullah et al., 2009). However, their identification covered only very little of it. Previously, Garson (1989) reported that algae could be divided into three main groups (phyla): Green algae (Chlorophyta); red algae (Rhodophyta) and brown algae (Phaeophyta) (Sambamurty, 2005; Wajahatullah et al., 2009). Algae exhibited great potential due to their importance as a useful bioindicator for heavy metals pollution in ecosystems and its multiusage for many other purposes (medicinal, antimicrobial…e.g.) (Sode et al., 2013; Oumaskour et al., 2013; Abo-State et al., 2015; Kausalya and Rao, 2015).

Many investigations revealed that macroalgae have a broad range and potential use in pharmacology researches as antibacterial (Zbakh et al., 2012; Malingin et al., 2012; Jeyaseelan et al., 2012; Alghazeeer et al., 2013; Oumaskour et al., 2013; Abo-State et al., 2015) or/and antifungal (Karabay-Yavasoglu et al., 2007; Oumaskour et al., 2013; Abo-State et al., 2015; Kausalya and Rao, 2015). Their inhibitory effects is related to the presence of bioactive compounds as secondary metabolites e.g. phenol and carotenoids compounds (Malingin et al., 2012) or due to the presence of saponins, flavonoids, tannins and cardiac glycosides (Jeyaseelan et al., 2012).

1 Department of Molecular Biology and Biotechnology, Atomic Energy Commission, P. O. Box: 6091, Damascus, Syria.
* Corresponding author; e-mail: ascientific3@aec.org.sy
Thereby, the current investigation focused on algae utility as antibacterial and antifungal agents also reported in many investigations (Zbakh et al., 2012; Oumaskour et al., 2013; Abo-State et al., 2015; Kausalya and Rao, 2015; Hamza et al., 2015). So, the most potent algae will be handled in the future research as a cheaper source for antimicrobial treatment.

MATERIALS AND METHODS

Collection and Preparation of Algae Samples

Algal samples for *Ulva lactuca* (Chlorophyta), *Dilophus spiralis* (Phaeophyta) and *Jania rubens* (Rhodophyta) species were collected from Latitude at 4 km North Lattakia - Syria (35°33ʹ790ʹʹ N longitude, 35°43ʹ996ʹʹ E) along the Syrian coast of the Mediterranean Sea. Algae were identified by taxonomical study in the Division of Plant Biotechnology at the Atomic Energy Commission of Syria (AECS) in Damascus - Syria. Algae samples were harvested by hand with disposable gloves; biomass were washed with seawater where the algae were collected. Then two successive washing with double-distilled water (ddH₂O) has been done. Biomass were drained, then transported to Whatman filter paper for eliminating attached water and facilitating their drying. Algal samples were shade dried for two weeks, powdered by special electric mill and stored separately in polyethylene bags until analysis.

Preparation of Algal Extracts

The marine algal extracts of *U. lactuca*, *D. spiralis* and *J. rubens* were prepared using aqueous and six solvents (methanol, ethanol, chloroform, acetone, ethyl acetate and hexane). All solvents were purchased from Sigma-Aldrich-Germany. The extraction had been performed as follows: 1 g of shade-dried, pulverized algae was subjected to extraction in 100 mL solvent until complete solubility. Then, extracts were filtered with Whatman filter papers. Extracts were kept at laboratory temperature for 2 hours to evaporate the solvent. All extracts were then kept in tightly fitting stopper bottles and stored in 4°C. The concentration of each extract was considered 10 mg mL⁻¹.

Phytochemical Assay

Phytochemical algal screening (Alkaloids, flavonoids, saponins, terpenoids, tannins, steroids, carbohydrates, proteins and phenols) was performed according to standard procedures described by Lala (1993), El Baky et al. (2008) and Arthanan and Kumar (2013).

Microorganisms and Growth Conditions

Six pure clinical isolates of 2 Gram-positive (*S. pyogenes* and *M. luteus*); 2 Gram-negative (*S. flexneri* and *V. cholerae*) bacterial and 2 fungal (*C. albicans* and *A. niger*) pathogens were collected from the Microbiology and Immunology division, Department of Molecular Biology and Biotechnology of Atomic Energy Commission of Syria (AECS) in Damascus - Syria.

Bacterial culture was done by inoculation trypticase soy broth (TSB, Difco, BD, Spars, MD) at 37°C for 24 hours for all tested bacteria. After growth, samples were centrifuged (1,000 xg 15 min 4°C) and resuspended in sterile Phosphate-Buffered Saline (PBS). The turbidity of each bacterial suspension was adjusted equivalent to a no. 0.5 McFarland standard and then inoculated on Mueller-Hinton agar (Oxoid, UK) at 37°C for about 18-24 hours. The bacterial cultures standardized to approximately 10⁶ CFU mL⁻¹ (Fagbohun et al., 2013). The exact counts were assessed retrospectively by viable counts on trypticase soy agar plates (TSA,
Difco, BD, Spars, MD) at 37°C for 18 hours. Whereas, all tested fungal inoculations were done by incubation on Potato Dextrose Agar (PDA) and incubated at 28±3°C for 2 days.

Antimicrobial Activity Assay

The Disc-Diffusion Assay

The disc-diffusion method was adopted to examine the antimicrobial activity as previously reported (Bauer et al., 1966). Ciprofloxacin (100 mg mL\(^{-1}\)) (Bayer, Istambul, Turkey) and Amphotericin B (40 mg mL\(^{-1}\)) (Sigma-Aldrich, St. Louis, USA) were used as standard for antibacterial and antifungal activity, respectively. The sterilized disc filter papers (Whatman no. 1 of 6 mm diameter) were inoculated with 100 µL of extract dilutions (10 mg mL\(^{-1}\)) and subjected to the culture plates previously cultivated with \(10^6\) CFU mL\(^{-1}\) of bacterial culture, then incubation was done at 37°C for 18 hours. Whereas, paper discs that were inoculated with 20 µL of 10 mg mL\(^{-1}\) Ciprofloxacin and 20 µL of 40 mg mL\(^{-1}\) Amphotericin B, were used as standard for antibacterial and antifungal activity, respectively for comparison. Negative control was done using paper disc that was inoculated with 10 µL methanol only. Antimicrobial activity was determined by measuring the zone of inhibition (mm) around each paper disc. For each extract, duplicate trials were conducted against each organism.

Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

The Microdilution broth susceptibility test was assessed according to Rios-Dueñas et al. (2011). Three replicates of serial dilutions of extract (10 mg mL\(^{-1}\)), Ciprofloxacin as an antibacterial (100 mg mL\(^{-1}\)) and Amphotericin B (40 mg mL\(^{-1}\)) as an antifungal were prepared in LB broth medium in 96-well microtiter plates, using a series concentrations of the 6 tested solvents of the examined algae from 0.166 to 40 µL in a final volume of 100 µL per well. One hundred microlitres of freshly grown bacteria standardized 106 CFU mL\(^{-1}\) in LB broth were added to each well. Positive control was achieved with the same conditions, but without extract. Negative control was also made with the same conditions but without adding the pathogen. The plate was shaken and incubated for 24 hours at 37°C. The lowest concentration that completely inhibited the growth was recorded and interpreted as the MIC and is expressed in µg mL\(^{-1}\) or mg mL\(^{-1}\).

Whereas, MBC was determined by plating 0.010 mL of each well that showed no visible growth on Mueller-Hinton agar plates (Oxoid) and incubating for 18–24 hours. The MBC was defined as the lowest concentration that kills 99.9% of the initial inoculations, so the lowest concentration showing no growth after inoculations is considered the MBC.

Statistical Analysis

All statistical analyses were performed using Statview 4.5 statistical package (Abacus, 1996) at the 5% significance level (P= 0.05). Where, data were subjected to Analysis of Variance (ANOVA) for the determination of differences in means between different tested solvents against selected isolates for each algae species. Differences between means were tested for significance by Fisher’s Least Significant Difference (PLSD) test. Data are expressed as mean±Standard Deviation (SD).

RESULTS

Phytochemical Test

Phytochemical screening of U. lactuca, D. spiralis and J. rubens aqueous, methanol, ethanol, chloroform, acetone, ethyl acetate and hexane extracts has been performed. Phytochemical algal screening showed the absence of proteins from all examined algae species, regardless of tested solvents (Table
1). For *U. lactuca*, flavonoids and phenols were presented with all solvents (Table 1). Whereas, in *D. spiralis*, tannins and phenols were presented with all solvents. While, for *J. rubens*, bioactive compounds were presented in a similar manner with aqueous and ethanol extracts. In this regards, alkaloids, flavonoids, saponins, tannins, steroids, carbohydrates and phenols were presented with aqueous and ethanolic *J. rubens* extracts (Table 1).

Estimated Zone of Inhibitions (ZIs)

Inhibitory activity of algae had been evaluated against 4 bacterial and 2 fungal isolates. Algal crude extracts were active against examined pathogens in different degrees (Table 2). Our data showed that the aqueous algal extracts showed no activity against all examined pathogens regardless studied algae species (data not presented herein).

From the data presented in Table 2, variance analysis showed that solvent, isolate and interaction solvent with isolate effect’s on ZIs values were significantly different (P≤ 0.001).

In this regards, ZIs values ranged between 6-17 mm for Gram-positive, 0-12 mm for Gram-negative bacterial and between 2-14 mm for fungal isolates (Table 2). In this respect, the highest ZIs against Gram-

Table 1. Algal phytochemical analysis using different examined solvents.

<table>
<thead>
<tr>
<th>Chemical components</th>
<th>Aqueous</th>
<th>Methanol</th>
<th>Ethanol</th>
<th>Chloroform</th>
<th>Acetone</th>
<th>Ethyl acetate</th>
<th>Hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. lactuca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-(^a)</td>
<td>+(^b)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++(^c)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>D. spiralis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>J. rubens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

\(^a\) Absent; \(^b\) Present, \(^c\) Higher presence.
Table 2. Algal antimicrobial activity using disc-diffusion method (Zone of inhibition in mm).

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Methanol</th>
<th>Chloroform</th>
<th>Ethanol</th>
<th>Acetone</th>
<th>Ethyl acetate</th>
<th>Hexane</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. lactuca</td>
<td>7.0±0.29<sup>ab</sup></td>
<td>9.0±0.22<sup>bc</sup></td>
<td>6.0±0.18<sup>ab</sup></td>
<td>9.0±0.23<sup>ab</sup></td>
<td>7.0±0.20<sup>ab</sup></td>
<td>22.0±0.44</td>
<td></td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>10.0±0.25<sup>b</sup></td>
<td>9.0±0.28<sup>bc</sup></td>
<td>10.0±0.15<sup>bc</sup></td>
<td>9.0±0.25<sup>bc</sup></td>
<td>23.0±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. luteus</td>
<td>17.0±0.10<sup>ab</sup></td>
<td>17.0±0.10<sup>ab</sup></td>
<td>14.0±0.25<sup>ab</sup></td>
<td>11.0±0.17<sup>ab</sup></td>
<td>23.0±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. flexneri</td>
<td>7.0±0.10<sup>ab</sup></td>
<td>8.0±0.15<sup>ab</sup></td>
<td>8.0±0.15<sup>ab</sup></td>
<td>6.0±0.05<sup>ab</sup></td>
<td>23.0±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. choleræ</td>
<td>9.0±0.10<sup>ab</sup></td>
<td>9.0±0.10<sup>ab</sup></td>
<td>7.0±0.12<sup>ab</sup></td>
<td>8.0±0.07<sup>ab</sup></td>
<td>19.0±0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>12.0±0.25<sup>ab</sup></td>
<td>11.0±0.34<sup>ab</sup></td>
<td>11.0±0.45<sup>ab</sup></td>
<td>9.0±0.17<sup>ab</sup></td>
<td>17.0±0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. niger</td>
<td>5.0±0.07<sup>ab</sup></td>
<td>4.0±0.10<sup>ab</sup></td>
<td>6.0±0.05<sup>ab</sup></td>
<td>4.0±0.03<sup>ab</sup></td>
<td>17.0±0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. spiralis</td>
<td>15.0±0.15<sup>ab</sup></td>
<td>13.0±0.15<sup>ab</sup></td>
<td>16.0±0.15<sup>ab</sup></td>
<td>11.0±0.27<sup>ab</sup></td>
<td>15.0±0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. rubens</td>
<td>11.0±0.15<sup>ab</sup></td>
<td>12.0±0.12<sup>ab</sup></td>
<td>12.0±0.12<sup>ab</sup></td>
<td>11.0±0.17<sup>ab</sup></td>
<td>15.0±0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures sharing same lowercase letter (column) and capital letter (row) are not significantly different at P= 0.05 probability by Fisher’s PLSD test. LSD_{0.05} Solvent and isolate: 0.664, 0.664 and 0.655 for U. lactuca, D. spiralis and J. rubens respectively.

Positive bacteria (17 mm) was recorded for methanol D. spiralis extract; followed by chloroform D. spiralis (16 mm). Whereas, for fungi the highest Zis value was found to be 14 mm with methanol J. rubens extract.

Estimated Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

In the current investigation, MIC values as useful parameters have been estimated in order to screen algal inhibitory effects (Table 3). As mentioned in Table 3, analysis of variance revealed that the effect of different solvents on MIC was significantly different (P ≤ 0.001) for the three algae species. In this respect, the lowest MIC values were recorded in the case of D. spiralis (Table 3). In this regards, MIC varied between 26.7 µg mL⁻¹ (methanol against S. pyogenes and with chloroform against M. luteus) and > 10 mg mL⁻¹ (hexane against M. luteus, S. flexneri and V. choleræ). Whereas, for fungi this value varied between 106 µg mL⁻¹ (methanol against the both fungal strains and with acetone and hexane against C. albicans) with U. lactuca extract and 10 mg mL⁻¹ against the both fungal strains with hexane J. rubens extract.

Moreover, algal extracts efficiency in killing the pathogens has been screened by MBC estimation (Table 4). As presented in Table 4, the effect of solvents was significantly different (P ≤ 0.001) for D. spiralis algae species on MBC values. In this regards, the highest antimicrobial activity was recorded against M. luteus isolate (53.3 µg mL⁻¹) with chloroform D. spiralis extract. Whereas, U. lactuca extracts showed no activity against all tested pathogens regardless of the examined solvents. While, J. rubens extracts were less potent in killing the examined pathogens compared to D. spiralis extract (Table 4). As for fungi, algal extracts exhibited different
mortality degrees (Table 4). In this respect, MBC values recorded for *D. spiralis* ranged between 266 µg mL⁻¹ (Chloroform against both fungal strains) – 320 µg mL⁻¹ (for the five other solvents against the both fungal strains). Whereas, for *J. rubens* this value ranged between 4.2 mg mL⁻¹ (methanol against *A. niger*) - 10 mg mL⁻¹ (hexane against the both fungal strains) (Table 4).

DISCUSSION

In the current investigation, algal qualitative phytochemical assay indicated a variance in presenting chemical components, according to algae species and tested solvents. In this regards, alkaloids, flavonoids, tannins, carbohydrates and phenols were presented with absence of steroids in methanol *U. lactuca* extract; carbohydrates, steroids, proteins, terpenoids and phytosterols with saponins and flavonoids absence in chloroform *U. lactuca* extract. Whereas, flavonoids, glycosides, steroids, terpenoids and phytosterols were presented in ethanolic *U. lactuca* extract. While, in acetonic *U. lactuca* extract, flavonoids, glycosides, quinones, coumarins and phytosterols with saponins and flavonoids were presented. However, Chandrasekaran *et al.* (2014a) reported that the ethyl acetate extract among different algal (green, red and brown) extracts, had the strongest bioactive compounds, including terpenoids, tannins and phenolic components compared to the other examined solvents.

Table 3. Algal Minimum Inhibitory Concentration (MIC) values using different examined solvents.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Ethanol</th>
<th>Ethanol Chloroform</th>
<th>Acetone</th>
<th>Ethyl acetate</th>
<th>Hexane</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. lactuca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>213.3</td>
<td>320.0</td>
<td>266.7</td>
<td>320.0</td>
<td>266.7</td>
<td>160.0</td>
</tr>
<tr>
<td>M. luteus</td>
<td>106.7</td>
<td>213.3</td>
<td>133.3</td>
<td>186.7</td>
<td>213.3</td>
<td>133.3</td>
</tr>
<tr>
<td>S. flexneri</td>
<td>80.0</td>
<td>186.7</td>
<td>106.7</td>
<td>133.3</td>
<td>213.3</td>
<td>106.7</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>106.7</td>
<td>213.3</td>
<td>268.0</td>
<td>213.3</td>
<td>213.3</td>
<td>133.3</td>
</tr>
<tr>
<td>C. albicans</td>
<td>106.7</td>
<td>266.7</td>
<td>133.3</td>
<td>106.7</td>
<td>266.7</td>
<td>106.7</td>
</tr>
<tr>
<td>A. niger</td>
<td>106.7</td>
<td>266.7</td>
<td>213.3</td>
<td>213.3</td>
<td>266.7</td>
<td>133.3</td>
</tr>
</tbody>
</table>

D. spiralis							
S. pyogenes	26.7	33.3	40.0	60.0	160.0	40.0	5.0
M. luteus	33.3	46.7	26.7	33.3	66.7	33.3	4.0
S. flexneri	133.3	133.3	133.3	133.3	213.3	133.3	0.4
V. cholerae	80.0	160.0	133.3	133.3	266.7	160.0	0.8
C. albicans	266.7	266.7	213.3	266.7	320.0	266.7	2.0
A. niger	213.3	213.3	213.3	213.3	320.0	266.7	2.0

J. rubens							
S. pyogenes	2.1	2.5	3.3	2.9	2.1	7.5	5.0
M. luteus	4.2	5.0	5.8	10.0	3.3	>10.0	4.0
S. flexneri	4.2	5.8	5.8	8.3	3.3	>10.0	0.4
V. cholerae	6.7	8.3	6.7	10.0	4.2	>10.0	0.8
C. albicans	3.3	5.0	5.0	4.2	3.3	10.0	2.0
A. niger	3.3	4.2	4.2	5.8	5.4	10.0	2.0

*Figures sharing same lowercase letter (column) and capital letter (row) are not significantly different at P= 0.05 probability by Fisher’s PLSD test. LSDₐ₀₅ Solvent and isolate: 48.257, 38.683 and 1.553 for *U. lactuca*, *D. spiralis* and *J. rubens* respectively.*
Table 4. Algal Minimum Bactericidal Concentration (MBC) values using different examined solvents. a

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Methanol (µg mL⁻¹)</th>
<th>Ethanol (µg mL⁻¹)</th>
<th>Chloroform (µg mL⁻¹)</th>
<th>Acetone (µg mL⁻¹)</th>
<th>Ethyl acetate (µg mL⁻¹)</th>
<th>Hexane (µg mL⁻¹)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. lactuca</td>
<td></td>
<td></td>
<td>11.3 B</td>
<td></td>
<td>11.3 B</td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>3.8 B</td>
<td>4.2 B</td>
<td>4.2 B</td>
<td>4.2 B</td>
<td>10.0 A</td>
<td>10.0 A</td>
<td>10.0</td>
</tr>
<tr>
<td>M. luteus</td>
<td>5.0 B</td>
<td>6.7 B</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>8.0</td>
</tr>
<tr>
<td>S. flexneri</td>
<td>5.0 B</td>
<td>6.7 B</td>
<td>8.3 B</td>
<td>10.0 A</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>8.0</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>8.3 B</td>
<td>10.0 A</td>
<td>8.3 B</td>
<td>10.0 A</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>8.0</td>
</tr>
<tr>
<td>C. albicans</td>
<td>5.0 B</td>
<td>6.7 B</td>
<td>6.7 B</td>
<td>6.7 B</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>4.0</td>
</tr>
<tr>
<td>A. niger</td>
<td>4.2 C</td>
<td>6.7 B</td>
<td>6.7 B</td>
<td>8.3 B</td>
<td>6.7 B</td>
<td>10.0 A</td>
<td>4.0</td>
</tr>
</tbody>
</table>

a Figures sharing same lowercase letter (column) and capital letter (row) are not significantly different at P= 0.05 probability by Fisher’s LSD test. LSD₀.₀₅ solvent and isolate 40.762 for D. spiralis; 1.667 and 1.760 for solvent and isolate the case of J. rubens, respectively. b No Activity

disc ¹) were the most active extracts compared to the other tested extracts. In this respect, ZIs values ranged between 11-21 mm for Gram-positive and between 8-13 mm for Gram-negative bacteria with methanolic extract. Whereas, no inhibitory effect was observed against the C. albicans fungal isolate regardless of concentration or tested extracts.

Whereas, Zbakh et al. (2012) investigated the antibacterial activity of methanolic extracts of 20 species of marine benthic algae collected from the Mediterranean Moroccan coasts, against 3 bacterial isolates. The previous study showed that Rhodophyceae out to examine algae had remarkable inhibitory effects with ZIs value ranging between 20-24 mm. Moreover, U. rigida green algae showed activity against Enterococcus faecalis with ZIs of 15 mm. Alghazeer et al. (2013) reported the methanolic and aqueous extracts of 19 marine algal species collected along the western coast of Libya against 4 Gram-positive and 4 Gram-negative bacteria. Cystoseira crinita (Phaeophyceae) of the 19 examined algae, was the most potent against tested isolates. The previous study revealed that the observed ZIs values with methanolic extract of U. lactuca ranged between 11 mm (S. aureus and Bacillus subtilis) and 14 mm (P. aeruginosa and Klebsiella spp). Whereas, in J. rubens extracts these values ranged between 11 mm (S. aureus, B. subtilis and P. aeruginosa) and 13 mm (S. typhi). The previous study showed that the Cauler paracemosa (Chlorophyceae) methanol extract had the highest ZIs (16 mm) against both the Klebsiella spp., and S. typhi. Whereas, Oumaskour et al. (2013) investigated the antimicrobial activity of 23 red marine algae collected from the Atlantic

1073
coast of Morocco, against 10 Gram-positive and 2 Gram-negative bacterial and 3 fungal isolates using 6 solvents and water extracts. The previous study showed that the highest ZIs value was recorded with methanol and methanol–dichloromethane (50:50) extracts. Indeed, the same study revealed that S. aureus ssp. aureus was the most sensitive isolate.

Recently, Abo-State et al. (2015) studied the antimicrobial effects of hexane, chloroform, ethyl acetate, ethanol (70%) and water extracts of seven cyanobacteria species collected from Egypt against 8 bacterial, 2 fungal and 3 yeast pathogens. The previous study showed that ZIs ranged between 11-30 mm. In this respect, the highest observed antibacterial activity was recorded with chloroformic extract of Anabaena flosaquae against K. pneumonia isolate. Indeed, hexane and water extracts showed no inhibitory effects. Whereas, for fungi, these values recorded to be 11 mm against Aspergillus terreus. There was no effect observed against Tirschoderma viride. As for yeast, these values ranged between 11-13.5 mm. Whereas, Kausalya and Rao (2015) investigated the antimicrobial activity of Sargassum polycystum and S. tenerrimum species against 12 bacterial and 6 fungal isolates. The previous study revealed that the highest ZIs was recorded to be 19 mm for methanolic extract of S. polycystum against both A. niger and Rhizopus stolonifer and also with ethanol extract against R. stolonifer. As for S. tenerrimum this value was recorded to be 10 mm with ethanol extract against A. niger, Mucor racemosus and R. stolonifer pathogens.

In our case study, all over, the estimated ZIs for tested algae against bacterial isolates varied between 6-11 mm for U. lactuca (green); between 4-17 mm for D. spiralis (brown) and between 6-15 mm for J. rubens (red); with no inhibitory effect against V. cholera isolate. This observation stated that the lowest inhibition was recorded for U. lactuca (Chlorophyta) compared with the two other tested algae members (Phaeophyta and Rhodophyta) with all tested solvents. This observation could be related to the abundance of phenols components in Phaeophyta extracts making them more potent against tested isolates compared to the Chlorophyta. On the other hand, this phenomenon could be related to the occurrence of other bioactive components which were not analyzed in the current investigation. However, Elnabris et al. (2013) reported the antibacterial activity of methanolic extracts of 4 algae (U. lactuca and Enteromorpha compressa) (Chlorophyta), Padina pavonica (Phaeophyta) and J. rubens (Rhodophyta) against 4 gram-negative and 2 gram positive isolates. The previous study showed that U. lactuca extract exhibited the most inhibitory effect with ZIs of 9.8, 9.3, 5.8, 4.8 and 3.3 mm for K. pneumonia, S. aureus, P. vulgaris, B. subtilis and P. aeruginosa, respectively; followed by E. compressa. Nonetheless, methanol U. lactuca was inactive against E. coli. Whereas, P. pavonica and J. rubens extracts showed the lowest antibacterial activity. Moreover, the same investigation revealed that the highest activity of P. pavonica extract was found against K. pneumoniae, while that of J. rubens was against S. aureus, with ZIs of 6.6 and 2.3 mm, respectively. These observed differences in algal biological activity in the current work compared to other investigations could be related to a potential activity of the given algae related to their bioactive compounds that act as a secondary metabolites.

Overall, chloroform extract of the three examined algae showed the highest antibacterial activity compared to the other examined solvents. Other investigations, however, reported that the methanol extract was the most potent against all tested pathogens (Lavanya and Veerappan, 2011; Elnabris et al., 2013). Recently, Hamza et al. (2015) reported the antibacterial activity of methanol/methylene chloride U. lactuca, Codiumto mentosum and Hypnea musciformis collected from the Suez Canal, Egypt. The latest study showed that U. lactuca showed inhibitory activity only
against *S. typhimurium*, *K. pneumonia*, *E. coli*, *Shigella boydii* and *S. aureus* with ZIs ranging between 6-9 mm. Evaluation of algal antimicrobial effect has also been performed based on MIC and MBC values estimation. In this regards, estimated MIC values ranged between 26.7 µg mL\(^{-1}\) - >10 mg mL\(^{-1}\) for bacteria. Whereas, it varied between 106 µg mL\(^{-1}\) –10 mg mL\(^{-1}\) for fungal isolates. As for MBC values, they varied between 53.3 µg mL\(^{-1}\) –> 10 mg mL\(^{-1}\) for bacterial and between 266.7 µg mL\(^{-1}\) –10 mg mL\(^{-1}\) for fungal isolates.

Alghazeer et al. (2013) reported that MIC of the methanol and aqueous extracts for *Bacillus* spp., were 50 and 200 mg mL\(^{-1}\) (*C. racemosa*), 50 and 25 mg mL\(^{-1}\) (*C. crinita*), and 100 and 25 mg mL\(^{-1}\) (*G. latifolium*), respectively.

Whereas, Chandrasekaran et al. (2014a) reported the inhibitory effect of *U. lactuca* (125, 250 and 500 µg disc\(^{-1}\)) against *E. faecalis* bacteria using methanol, ethanol, hexane, chloroform and ethyl acetate solvents. The previous investigation showed that MIC values ranged between 250 µg mL\(^{-1}\) with ethyl acetate and 500 µg mL\(^{-1}\) for the other tested extracts. While, MBC were varied between 500 µg mL\(^{-1}\) with ethyl acetate and 1,000 µg mL\(^{-1}\) for the other tested extracts. Moreover, Chandrasekaran et al. (2014b) studied *S. wightii* antibacterial activity against 10 bacterial isolates. The latest study revealed that MIC ranged between 250 µg mL\(^{-1}\) (chloroform and ethyl acetate) and 500 µg mL\(^{-1}\) (hexane, methanol and acetone) against *S. pyogenes* is isolates. While, MBC were varied between 500 µg mL\(^{-1}\) (ethyl acetate) and 1,000 µg mL\(^{-1}\) (chloroform, hexane, methanol and acetone).

Based upon data presented in the current study, *D. spiralis* (Phaeophyta) brown algae was the most active against examined pathogens. Other investigations revealed that the *Cystoseira crinita* a brown algae displayed the strongest inhibitory effects against all tested pathogens (Alghazeer et al., 2013).

We could suppose that the chloroform *D. spiralis* extract slightly stimulates free radicals induction (hydroxyl radicals, superoxide anion radicals and lipid peroxy radicals) compared to the other tested solvents. These free radicals play an important role in cytoplasmic membrane, proteins and DNA pathogen destruction. However, their solubility in water makes it more potent not only against pathogens, but also against cancer cells (Jeeva et al., 2012). These phenomena could explain by the fact that in water extract, antioxidants appeared with no free radicals (Cushnie and Lamb, 2005; De Sousa et al., 2007).

CONCLUSIONS

Overall, the antimicrobial algal effectiveness could be classified in the following order: *D. spiralis > J. rubens > U. lactuca*. Of algal extracts, aqueous extracts showed no inhibitory effect against all examined pathogens regardless of the studied algae. Otherwise, *D. spiralis* was the most potent by showing the highest ZIs and lowest MIC and MBC values compared to the other two tested algae. Future researches in *D. spiralis* are needed to determine their fractions and investigate their biological activity separately.

ACKNOWLEDGEMENTS

We thank I. Othman (General Director of AECS) and N. Mir Ali (Head of Molecular Biology and Biotechnology Department in AECS) for their support.

REFERENCES

Inhibitory Activity of Marine Algae

Downloaded from jast.modares.ac.ir at 8:46 IRST on Friday October 23rd 2020