Effects of Plant Population Density on Yield and Yield Components of Eight Isolines of cv. Clark
(*Glycine max* L.)

N. Majnoun Hosseini*1, R. H. Ellis2 and B. Yazdi-Samadi1

ABSTRACT

A field study was conducted to evaluate the agronomic response of eight isolines of cv. Clark on a clay loam soil (at Karaj-Iran, 35°48’l) to four plant population densities of 11.3, 18.5, 68.5, and 103.4 plants per square metre. Significant yield increase was obtained as a result of higher plant density. Differences among the cv. Clark isolines were significant (p<0.05). Yield components such as numbers of branches, pods, and seeds per plant decreased linearly as population density increased. Adjustments in pods and seeds per plant resulted from altered branches per plant. The isolines which exhibit profuse branching (e.g. E1E2E3, E1e2E3, E1E2e3) were capable of optimising yield when planted at low densities. The second dynamic factor that aided yield compensation by plant population density was greater total dry matter partitioning, which resulted in a significantly greater harvest index at the lower compared with the higher plant density. The results indicated that total biomass and crop growth rate were the major elements explaining the reduced yield compensation factors at higher plant population density. Plotting the fitted seed yield values against the number of dominant alleles showed the effect of the maturity genes on the response of seed yield to plant density.

Keywords: Branching, Dry matter partitioning, Harvest index, Soyabean.

INTRODUCTION

Determination of the optimal plant population density necessary for optimal yield is a major agronomic goal. Sowing at a seed rate that results in optimal plant population density may reduce seed costs, lodging, and ameliorate disease problems (Boquet and Walker, 1980). A Major factor influencing optimal seed rate for any particular environment is the genotype, and there is a little information concerning the study of genotype-density interaction.

Numerous studies have been conducted on the effect of production practices such as row spacing (Parkers *et al.*, 1982), plant population density (Goli and Olsen, 1983), and cultivar (Boerma and Ashley, 1982) on soyabean seed yield. These studies demonstrate that sowing seeds in narrow, rather than wide rows frequently increases soyabean yields in many regions. Regardless of row width, and with increasing population density, plant components (stem length, pod and seed number and seed weight) were reduced by intra-row plant competition, but branch development was not affected (Boquet, 1990). Competition between crop plants can affect not only total yield, but also plant size and maturity (Bleasdale, 1984). Wilcox (1974) showed that height differences were associated with within-row spacing. Previous studies have indicated that the optimal plant population density for soyabean can vary from 30,000 to 500,000 plants.

1 Department of Agronomy, College of Agriculture, The University of Tehran, Islamic Republic of Iran.
2 Department of Agriculture, The University of Reading, Earley Gate, P.O.Box: 236, Reading, RG6 6AT, UK.
* Corresponding Author
ha⁻¹, depending on environmental and genetic factors (Parkers et al., 1982; Wells, 1993).

The major hypotheses tested in this study were: (i) whether the impact of maturity genes on the agronomic response of cv. Clark isolines can be quantified; (ii) to examine the effects of genes on the asymptote yield, besides comparing yield-density relations (using the reciprocal equation); and (iii) to determine the optimum plant population density for soyabean genotypes grown at Karaj (Iran).

MATERIALS AND METHODS

Near-isogenic lines of soyabean cv. Clark differing in the three maturity genes of E_1/e_1, E_2/e_2, and E_3/e_3 (Bernard, 1971) constituted the experimental material used in this investigation. A split-plot design with plant densities as the main plots and eight isolines of cv. Clark as subplots was used in a randomised complete-block design with three replicates. Each experimental plot consisted of either four rows (spaced 50 cm apart) or eight rows (spaced 25 cm apart).

The experiment was conducted at the research farm of the Agricultural College of Tehran University at Karaj, Iran (Lat. 35°48′ N, Long. 50°57′ E; Alt. 1313 m). The soil was clay loam with a neutral reaction. After land levelling and furrow preparation, the plots were irrigated using a furrow irrigation method and subsequent irrigations were applied every seven days during plant development, up to two to three weeks before final harvest.

Recommended practices for insect and weed control were used. The sowing date was 1 May 1996. Seeds were sown by hand on an inter-row spacing of 0.5 and 0.25 m and with an intra-row spacing of 18, 11, 6, and 4 cm (Table 1) and the plot length was 3.0 m long. Plots were seeded in excess and hand-thinned at emergence two or three times, to get the desired plant densities.

The observations and plant samples were taken at random from each plot on a per unit area basis. Seed yield and other plant measurements were recorded as follows:

- Vegetative duration (R1)-days from sowing to the first open flower on the main stem.
- Reproductive duration (R1-R7)-days from first flowering to physiological maturity.
- Total crop duration (R8)-durations from sowing to harvest maturity.
- Plant height (cm)-from ground level to the tip of main stem at harvest maturity (R8), recorded on 10 plants randomly selected from the two middle rows.
- Pod number-total number of pods per plant at R8.
- Branch number-number of primary branches on main stem per plant harvested at maturity (R8).
- Seeds per plant -total number of seeds per plant at R8.
- Total above-ground biomass (g/m²)-total biomass was determined from an air-dried sample (since the bulk of samples was huge they could not be dried in an oven) taken at harvest (all plants in 1 m²) from the two middle rows (in treatments with 50 cm row spacing) and the four middle rows (in treatments with 25 cm row spacing). These samples were then weighed before threshing and separating seed samples to obtain the plant dry matter. To these values, the weights of abscised leaves were added in order to estimate the total biomass.

<table>
<thead>
<tr>
<th>Inter-row spacing (cm)</th>
<th>Intra-row spacing (cm)</th>
<th>Actual Plant population density (plants/hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>18</td>
<td>113000</td>
</tr>
<tr>
<td>50</td>
<td>11</td>
<td>185000</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>685000</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>1034000</td>
</tr>
</tbody>
</table>

*a Target population density was 450000-850000 plant/ha.
Seed yield (gr/m²) - seed yields were determined from oven-dried samples. The pods from the plant samples described above were taken, oven-dried at 70°C for 48 hours until a constant moisture content of 10-15% was achieved, then threshed, cleaned with a wind blower, and weighed.

Harvest index-harvest index at R8 obtained by calculating the seed/total above ground biomass ratio.

RESULTS AND DISCUSSION

Seed yields per unit area were maximised at the highest plant density treatment and, although significant differences for seed yield (g/m²) were detected, for comparisons with the highest population density (103.4 plants/m²) the trend was constant across all densities (Table 2). These results are in agreement with the findings of Cooper (1977) who stated that sowing seeds in narrow rows frequently increased soyabean yield. The increase in seed yield as well as in total dry matter per unit area (Table 2) with an increasing population density suggest that a greater utilization of resources might have been achieved in these treatments at higher densities, in agreement with the reports of Willey (1982). No interactions between plant population density and isoline for seed yield or dry matter were detected (p> 0.10).

The crop growth rate (CGR) pattern differed so little for lower plant population densities (i.e. for 11.3 and 18.5 plants/m²) because of similar total dry matter in these two treatments (Table 2). This study showed that greater CGR and total biomass could be achieved through more plants with increasing plant population density. However, the harvest index declined progressively with an increase in plant population density (Table 2). This result is in agreement with the report of Wilcox (1974) who observed a general decrease in harvest index with soyabean cultivars under equidistant spacing as the plant population increased from 2.5 to 58.2 plants/m². Buttery (1969) also observed a decrease in harvest index with increasing population using cv. Harosoy-63 at 4, 8, 16, and 32 plants/m².

Table 2. Effects of plant population density on seed yield and related parameters (mean of eight isolines of cv. Clark) in 1996.

<table>
<thead>
<tr>
<th>Population density plants/m²</th>
<th>Plant height cm</th>
<th>Branch Numbers per plant</th>
<th>Pod Numbers per plant</th>
<th>Seed Seed yield g/m²</th>
<th>Total dry matter g/m²</th>
<th>Harvest index ratio</th>
<th>Crop growth rate g/m²/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>80.6 a</td>
<td>5.8 a</td>
<td>73.7 a</td>
<td>161.0 a</td>
<td>304.3 b</td>
<td>1196.5 c</td>
<td>0.258 a</td>
</tr>
<tr>
<td>18.5</td>
<td>87.4 b</td>
<td>4.1 b</td>
<td>48.2 b</td>
<td>106.0 b</td>
<td>314.8 b</td>
<td>1301.6 c</td>
<td>0.245 ab</td>
</tr>
<tr>
<td>68.5</td>
<td>90.5 ab</td>
<td>1.1 c</td>
<td>15.2 c</td>
<td>30.8 c</td>
<td>336.4 b</td>
<td>1472.2 b</td>
<td>0.228 b</td>
</tr>
<tr>
<td>103.4</td>
<td>95.4 a</td>
<td>0.6 d</td>
<td>10.9 c</td>
<td>21.8 e</td>
<td>400.6 a</td>
<td>1753.0 a</td>
<td>0.226 b</td>
</tr>
</tbody>
</table>

Means within column that have the same letter are not significantly different (DMR test).

a Total above-ground plant dry weight at R8 including fallen leaves.

Figure 1. Richards diagram (Richards, 1941) showing harvest index variation among eight isolines of cv. Clark grown at four plant population densities in 1996.
The vegetative (plant height and number of branches per plant) and reproductive yield (number of pods and seeds per plant) components were affected by plant population density (Table 2) and isoline significantly (p< 0.05) (see Table 4). The shortest plants (80.6 cm) with the most branches (5.8), seeds (161) and pods (73.7) per plant (Table 2) were produced at the lowest densities (11.3 plants/m²). Although plant height increased with an increase in plant population density, the number of branches per plant decreased markedly (p<0.05) and was greatest at the lowest plant density (Table 2). The number of pods and seeds per plant was greatly reduced by increasing the plant density (Table 2). These results are in agreement with the study by Boquet (1990) who noted that an increase in plant population density increased stem length and decreased all other soyabean plant yield components.

Yield differences among genotypes with different maturity genes or different growing durations could have occurred owing to differences in canopy photosynthesis (CGR), partitioning or the duration of seed filling (Egli, 1988). In this experiment, the greater CGR and total biomass among the cv. Clark isolines revealed that the genotypes with longer vegetative and reproductive durations (see Table 3) efficiently balanced the time available for growth between producing vegetative structure and the maximum partitioning of assimilates to yield.

The cv. Clark isoline e₁E₂E₃ provided the highest seed yield (Table 3), although this was not significantly greater than the yields of E₁e₂E₃, e₁E₂E₃, and e₁E₂e₃. The isoline...
$E_1E_2E_3$ with the greatest dry matter (g/m²) produced one of the lowest seed yields per unit area, and not surprisingly, therefore, the lowest harvest index (Table 3). Mean dry matter accumulation among the isoline tended to increase with later maturity. Earlier maturity (e.g. $e_1e_2e_3$) with the shortest vegetative and reproductive durations produced consistently less biomass than other genotypes (Table 3). The relationship between seed yield and dry matter production among genotypes was both strong and linear ($r = 0.73$, $p < 0.0001$), implying that dry matter production was the basis of genotypic differences in seed yield.

Similarly, harvest index tended on average to be greater in the earlier-maturing genotypes, and lower in the later-maturing genotypes (Richards diagram, Fig.1). Those isolines with the maturity gene E_1 (e.g. isoline $e_1e_2e_3$), E_2 (e.g. isoline $e_1E_2e_3$), E_3 (e.g. isoline $e_1e_2E_3$), the isolines with E_2 and E_3 combined (e.g. isoline $e_1E_2E_3$), and the isoline with all three recessive maturity
genes (i.e. e1e2e3) provided together the higher harvest indices (Fig. 1, Table 3). Schapaugh and Wilcox (1980) reported that the harvest index was lower in late-maturing genotypes, which is in accordance with the results seen here (see Fig. 1, isolate E1E2E3). Therefore, selection of genotypes that would maintain a high harvest index at high plant population densities should help to maximise yields with these soyabean Clark isolines.

The isolate E1E2E3 had more branches (4.2) per plant and the tallest plants (124 cm), whereas the isolate e1E2e3 provided the highest numbers of pods (41.3) and seeds (92.2) per plant (Table 4). Branching capacities varied among the isolines (p <0.05). Genotypes with longer vegetative duration (Table 3) (such as. E1E2E3, E1E2e3, E1e2E3, and E1e2e3) had greater branching ability (Table 4).

To determine the relationship between seed yield and plant population density, the reciprocal equation \(\frac{1}{w} = a + bp \) proposed by Wiley and Heath (1969) was used, where \(w \) = the yield per plant, \(P \) = the number of plants per unit area and \(a \) and \(b \) are constants. These reciprocal relationships were linear (Fig. 2). Estimates of the intercept \((a) \) from zero did not vary significantly among isolines (p> 0.10) whereas estimates of the slope \((b) \) varied significantly (p<0.01) among the isolines (Fig. 3).

The response of the Clark isolines e1e2e3, E1e2e3, e1E2e3, e1E2E3, and E1e2E3 had greater branching ability (Table 4).

ii) weight per seed was 0.146 gram.

Based on these two assumptions, the seed weight was translated into plant per square metre using the equation that, 2.6 g of seed requires to establish 1 plant m\(^{-2}\). Finally, to acquire the optimum plant population density the gradient of seed yield (g/m\(^2\)) was plotted against plant population density (Fig. 4).

Those isolines with 120-140 days total crop durations, namely E1E2e3, e1E2e3, e1E2E3, and e1e2e3, provided the higher fitted seed yields compared with the isolines with very longer durations (Fig. 4).

Figure 3. Relationship (fitted) between plant population density and seed yield among eight isolines of cv. Clark in 1996.
the highest fitted seed yields (g/m²).

The optimum population density for achieving the best seed yield can be anywhere from 45 to 85 plants per metre square (Fig. 5). This approximates closely to the actual optimal plant population density in the Karaj region followed for soybean production (i.e. 40 to 60 plants/m²). Overall, the optimal plant population density was higher for those isolines with a single dominant allele. For example, the optimal density for $E_1E_2e_3c$ is 85 plants/m² (Fig. 5) owing to their comparatively limited branching (see Table 4). On the other hand, the isolines with longer-growing periods such as $E_1E_2e_3$, $E_1E_2e_3c$, and $E_1e_2E_3c$ (Table 3); more branches per plant (see Table 4), and a bigger crop canopy need fewer plants per unit area to achieve maximum seed yield. $E_1E_2e_3c$, for example, requires 45 plants/m² to achieve optimal seed yield (Fig. 5).

In conclusion, the results presented here indicate that adjustments in yield per unit area by changing plant population density were partially controlled by changes in yield compensation factors, such as the number of branches, pods and seeds per plant (see Table 2). This partially accounted for harvest index ratio (HI) and crop growth rate (CGR) among the cv. Clark isolines (e.g. the highest seed yield, HI and CGR were recorded for $E_1e_2e_3c$ and $e_1E_2E_3c$, see Table 3).

The partitioning of assimilates between the vegetative and reproductive plant parts of cv. Clark isolines during flowering and pod set could be related to the number of pods and seeds per plant, as well as seed yield. The isolines $E_1e_2e_3c$ and $e_1E_2E_3c$, for example, showed the highest number of pods and seeds per plant (see Table 4). The negative relationship between vegetative duration and CGR ($r = -0.54$, $p > 0.10$) and, on the contrary, the positive relationship between reproductive period and CGR ($r = 0.24$, $p < 0.01$) indicate that the Clark isolines balanced the durations between the vegetative phase for producing vegetative dry matter and the reproductive phase for the partitioning of assimilates into seed yield components. There was a significant inverse linear
relationship between the numbers of branches, pods, and seeds per plant and CGR for each genotype (see Table 4), which agrees with Egli’s study.

REFERENCES

Glycine max L.

* dakr creek towak* ٣/١١، ٥/٨١، ٥/٨٦

* **٧/٥٠٠٠ P<**.

* بکیم دارویی، و افزایش معنی داشتن عملکرد دانه ی سویا در نتیجه ترکیب میان دارویی یا گریز. تفاوت بین ایزولاین‌های سویا (رقم کلارک) پی قندی دار بود (P<٠/٠). اجزاء عملکرد مثل تعداد شاخه، غلاف و
تعداد بذر در بوته با افزایش تراکم بوته کاهش خطی نشان داد. تعیین تعداد غلاف و بذر در بوته ناشی از تغییرات تعداد شاخه در بوته بود. ایزولاین‌هایی که شاخه بوته بودند (مثل E1, E1E2E3, E1E2 غیر از E1E2E3) باعث افزایش تعداد تراکم‌های مختلف شدند. دو و سه عامل منجر به تغییرات در نتایج شاخه بوته نشدند. بنابراین نتایج نشان داد که تعداد شاخه کل و نرخ رشد ارقام مورد بررسی سویا عناصر عمده‌ای بودند که عوامل کاهش دهنده اجزاء عملکرد را در تراکم زیاد بوته توجیه می‌کرد. ترسیم خات مرز بین عملکرد دانه در مقابل تعداد آللهای غالب ایزولاین‌های مختلف بیانگر اثرات زندهای رسیدگی در واکنش به اثرات تراکم بوته بر عملکرد دانه سویا را نشان داد.