Water Deficit Decreases Gas Exchange Parameters and Marketable Quality of *Rosa hybrida* ‘Club-Nika’ Irrespective of Training Systems

A. Dolatkhahi¹, M. Shoor¹*, M. Bannayan², A. Tehranifar¹, and A. Alizadeh³

ABSTRACT

The present study was carried out to investigate biochemical, morphological, and physiological processes involved in the adaptive processes of cut roses grown in arching and high-rack culture systems under water deficit condition. Rose plants ‘Club-Nika’ were subjected to three water regimes [control (100% of irrigation needs), moderate water stress (75%), and severe water stress (50%)] factorially combined with two training systems defined as arching and high-rack systems. Water deficit significantly reduced morphological and qualitative traits as well as water relations of cut roses. Water deficit significantly reduced Net CO₂ assimilation rate (PN), transpiration rate (E), and stomatal conductance (gs), whereas it did not affect Water Use Efficiency (WUEi) and intercellular CO₂ concentration (Ci). Surprisingly, water deficit did not affect chlorophyll content [chl a, chl b and total chl (a + b)] and proline accumulation of leaves. Considering the lack of change in intercellular CO₂ concentration, it seems likely that both stomatal closure and metabolic impairment limit photosynthetic CO₂ assimilation under water deficit. Regardless of irrigation regimes, rose plants trained with high-rack culture system showed a superiority for most of the qualitative and quantitative attributes compared to those trained with arching system. The high-rack system resulted in 60% higher extra-quality stems (> 60 cm) compared with the plants trained with arching. It can be concluded that cut roses respond to water deficit through adaptive changes in physiological and morphological levels to reduce water loss without any negative impact at biochemical level.

Keywords: Cut roses, Photosynthesis, Relative water content, Shoot Bending, Water use efficiency.

INTRODUCTION

Cut roses are one of the most commercially important flower crops that are highly vulnerable to damage by water deficit stress (Jin et al., 2006; Park and Jeong, 2010). Many studies have highlighted the impacts of global water scarcity on supply of cut flowers (Syros et al., 2004; Bolla et al., 2010). Previous studies on roses have shown that water availability during production limits photosynthetic potential via stomatal regulation (Williams et al., 1999; Bolla et al., 2010). As water deficit progresses and leaf water content declines, stomatal conductance to water vapor and net photosynthesis tends to decrease (Chaves et al., 2009; Snider et al., 2014). On the other hand, in some plant species, water stress decreases net photosynthesis too, but through non-stomatal limitations (Ramalho et al., 2014; Novick et al., 2016). Under such conditions, mesophyll conductance deceases (Flexas et al., 2012) and thus...
carboxylation efficiency, RuBP regeneration, and ATP content decrease (Tezara et al., 1999; Medrano et al., 2002). However, there is an on-going debate about whether water deficit limits CO₂ assimilation rate mainly through stomatal closure and/or metabolic impairment (Galmés et al., 2007).

In addition to stomatal response, water deficits may induce the synthesis of compatible solutes such as glycerol, sugar and proline. Among these solutes, proline accumulation in high concentrations in response to a variety of abiotic stresses such as water stress has been reported (Claussen, 2005; Verbruggen and Hermans, 2008). However, conflicting reports have been presented for the proline accumulation in potted roses, indicating that proline has increased or remained unchanged under water deficit stress (Williams et al., 1999, 2000).

Besides plant response to water stress, it has been reported by Kim et al. (2004) and Matloobi et al. (2008) that removing any plant parts or modifying the plant structure of cut roses, such as shoot bending, changes the plant source–sink ratio, which, in turn, can modify the canopy gas-exchange capacity. In this regard, Cirillo et al. (2014, 2017) reported that the degree of adaptation of a species to a major abiotic stress such as drought could also be affected by the canopy shape. In fact, different training systems lead to changes in light harvesting complexes of rose plants through changing foliage density, the ratio of sun/shade leaves, leaf angles and, finally, the canopy leaf distribution pattern (Matloobi, 2012). There are different methods of shoot bending with significantly different effects on quality and yield of cut flower stems. It is reported that flower stem yield in the high-rack (a modified arching system) was much higher than arching training system (Kajihara et al., 2009). In the arching system (Figure 1-A), new outgrowing and blind shoots are bent down into the canopy as lower bent shoots. In addition to the above function, the high-rack culture system benefits from some mother stems originating from basal shoots that would bend at about 10–50 cm above the crown of the plant as upper bent shoots (Figure 1-B). Under both arching and high-rack training systems, most of the photosynthates produced by leaves on the lower bent shoot primarily will be translocated to crown and roots, whereas most of the photosynthates produced by the leaves on the upper bent shoot under the high-rack system will be translocated to the mother stem and flower stem (Kajihara et al., 2009). Accordingly, it is expected that high-rack system with more bent shoots as

Figure 1. Schematic drawing of rose plant. Abbreviations are, F: Flower; Ub: Upper bent shoot; C: Crown; Lb: Lower bent shoot (Kajihara et al., 2009). (A) and (B) represent arching and high-rack culture systems, respectively.
Response of Rose to Irrigation and Training System

source organs and mother stems as stronger sink organ in comparison with arching system may have the potential to increase Water-Use Efficiency (WUEi) and thereby alleviate detrimental effects of water deficit on greenhouse cut roses.

The main objectives of this study were as follows: (1) Gain a better understanding of some events participating in adaptive processes of greenhouse roses that enable them to cope with water deficit, (2) Determine the effect of water deficit on gas exchange properties and functionality of the photosynthetic apparatus in rose, and (3) Assess whether different training systems can affect differently water-use efficiency and possibly help to alleviate detrimental effects of water deficit on greenhouse cut roses.

MATERIALS AND METHODS

Greenhouse and Climate Control

The experiment was conducted in a fully controlled greenhouse, E–W oriented, located at Ferdowsi University of Mashhad, Iran (Latitude 36° 20' N, longitude 59° 35' E, and 1,065 m asl). The glasshouse was of Venlo type, and was equipped with automated roof windows along with shading screens as well as evaporative cooling pads and exhaust fans to produce target day and night temperatures of 22–28 and 15–18°C, respectively. During winter, the greenhouse was heated by hot water pipes system. One plant was sown in each pot, and cultivation rows were N-S oriented.

Plant Materials

Rooted cuttings of *Rosa hybrida* ‘Club-Nika’ raised in Jiffy pots were transferred to polyethylene pots (4 L volume) filled with an artificial substrate (granulated perlite) at density of approximately 8 plants m⁻² on 5 March 2015 and grown in an open hydroponic system. The primary shoots were bent from the stem bases of the plants at the stage of pea-sized flower bud as the lower bent shoot (Figure 1) on 20 April 2015 in both training systems. All flower buds of the bent shoots were removed immediately after bending. Only one shoot was allowed to grow on all plants in both training systems. Finally, on 27 May, new shoots raised from the crown were bent downwards at height of 20 cm from the crown as the upper bent shoots. In arching system, when new shoots developed from the crown, they were bent downwards from stem bases of the plants again and primary bent shoot was removed. The nutrient solution contained (in mmol L⁻¹): NO₃⁻, 13.2; H₂PO₄⁻, 1.5; SO₄²⁻, 1.2; NH₄⁺, 0.9; K⁺, 4.9; Ca²⁺, 4.5; Mg²⁺, 1.1. The target pH value of the nutrient solution was maintained between 5.5 and 6.0, and the electrical conductivity was maintained between 1.5 and 2 dS m⁻¹. Plants were fertigated using a drip irrigation system. The first harvest occurred in 6 July 2015 and lasted until December 22 of the same year.

Irrigation Control

Drip irrigation was controlled by a timer. The plants were irrigated 4–6 times per day depending on seasons with a water supply rate of 4 L h⁻¹ (Figure 2). In this work, the model described by Katsoulas et al. (2006) was used to predict the amount of water applied (E) of rose plants grown under the greenhouse conditions (Equation 1).

\[
E = \frac{T_r}{\tau - D} \tag{1}
\]

Where, D is the Drainage rate and Tᵣ is the crop Transpiration rate in kg m⁻² estimated using the simple relation as Equation (2):

\[
T_r = 1 \cdot R_{Go} \tag{2}
\]

Where, \(R_{Go} \) is accumulative solar Radiation (kJ m⁻²) Outside the Greenhouse (Figure 3) and the coefficient 1 is given by Equation (3):

\[
1 = K_c \tau \alpha / \lambda \tag{3}
\]

Where, \(K_c \) is the crop coefficient, \(\tau \) is the greenhouse cover transmission to solar radiation, \(\alpha \) is the evaporation coefficient,
Figure 2. Water needs (mL plant⁻¹) of a rose crop, calculated using Equation (1).

Figure 3. Outside solar radiation (KJ m⁻²).

and λ is the latent heat of vaporization of water in kJ kg⁻¹. In the treatment of 100% irrigation needs, drainage rate was considered as about 25% in order to maintain optimal conditions of water supply to the plants.

The greenhouse cover transmission to solar radiation τ was calculated as the mean ratio of incoming to outside solar radiation (0.9). Taking into account that the rose plants were not fully developed, the crop coefficient Kc was considered 0.8, while the evaporation coefficient “a” was taken equal to 0.6, as is usually observed for greenhouse crops (Katsoulas et al., 2006; Baille, 1999).

Data Collection

In this experiment, cut flower production (the number of extra-quality stems and the total number of flower stems) was monitored from 10 July to 24 December 2015. Generally, shoots longer than 60 cm were considered as extra-quality stems (Katsoulas et al., 2006). At the end of the experimental period, about 180
days after the last severe shoot bending, traits including flower diameter, fresh weight of flower stem, leaf area, relative water content, photosynthetic gas exchange (including net CO$_2$ assimilation rate, transpiration rate, stomatal conductance and intercellular CO$_2$ concentration), chlorophyll contents [chl a, chl b and total chl ($a+b$)], and proline content were also measured.

Relative Water Content

RWC was calculated using the following equation (Yamasaki and Dillenburg, 1999, Equation 4).

\[
\% \text{RWC} = \frac{\text{FW} - \text{DW}}{\text{TW} - \text{DW}} \times 100 \quad (4)
\]

Where, FW is the leaf Fresh Weight (g), DW the leaf Dry Weight (g) and TW the leaf Turgid Weight (g). Turgid weight was determined by weighing the leaf after 12 hours of immersion in distilled water at room temperature. Leaf dry weight was obtained after leaves were kept 48 hours at 70°C in an oven.

Proline Content

Proline content was determined based on the method of Bates *et al.* (1973), with modifications using L-proline as standard. Fresh leaves (0.1 g) from the upper five-leaflet leaves were incubated with 5 mL 3% (w/v) sulfosalicylic acid at 100°C for 10 minutes and each 2 mL of extracts was mixed with 0.2% (w/v) ninhydrin reagent containing 70% (v/v) glacial acetic acid and incubated at 100°C for 60 minutes. The reaction was cooled under running tap water, the colored product was extracted with 4 mL toluene, and the absorbance of the toluene phase was measured at 520 nm. The results were expressed as µmol g$^{-1}$ FW.

Chlorophyll Measurements

Chlorophyll content (Chl a, Chl b and Chl $a+b$) was determined by spectrophotometric method according to Şükran *et al.* (1998). Leaf samples (consisting of three disks) were collected in early morning from five-leaflet compound leaves and were extracted with 10 mL 99% methanol (v/v%). Finally, absorption of the extraction was read at 666 and 653 nm. The results were expressed as mg g$^{-1}$ FW.

Gas Exchange Measurements and Water Use Efficiency

Net CO$_2$ assimilation rate (P_N, µmol m$^{-2}$ s$^{-1}$), intracellular CO$_2$ concentration (C_i, mmol mol$^{-1}$), transpiration (E, mmol m$^{-2}$ s$^{-1}$) of the top fully expanded leaves were measured using a portable gas analyzer (LCi, ADC Bio Scientific Ltd, England). Leaf stomatal conductance (gs, mmol m$^{-2}$ s$^{-1}$) was measured with a diffusion porometer (MK, Delta-T Devices, and Cambridge, UK). The measurements were taken between 10:00 AM and 01:00 PM, and for each treatment, 2–3 leaves were sampled from 4 individual plants. All measurements were carried out at 25°C and at saturating photosynthetic photon flux density (1,000 µmol m$^{-2}$ s$^{-1}$) under ambient air CO$_2$ concentration (360 ppm). Gas exchange measurements were performed on five-leaflet compound leaves (the fourth or fifth from the top of the flowering shoot). Instantaneous Water Use Efficiency (WUEi) was calculated by the ratio between P_N and E (P_N/E).

Statistical Analysis

In this experiment, the effects of three irrigation regimes (50, 75, and 100% of water requirement) combined with two training systems (arching and high-rack) were investigated in factorial arrangement based on a randomized complete block design with four replicates. All the studied traits were subjected to analysis of variance. Statistical analysis of data was carried out by SPSS software (Version 16.0, SPSS Inc.)
Table 1. Analysis of variance and means comparison for flower, leaf, and stem attributes of *Rosa hybrida* ‘Club-Nika’ plants irrigated with three irrigation regimes and trained with two systems.

<table>
<thead>
<tr>
<th></th>
<th>Flowering stem (g DW plant⁻¹)</th>
<th>Flowering stem (g FW plant⁻¹)</th>
<th>Leaf area (cm² plant⁻¹)</th>
<th>Flower diameter (mm)</th>
<th>Extra quality stem (> 60 cm) (n plant⁻¹)</th>
<th>Total flower stem (n plant⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation regimes (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>23.23 a</td>
<td>88.1 a</td>
<td>1310.5 a</td>
<td>28.79 a</td>
<td>3.12 a</td>
<td>6.37</td>
</tr>
<tr>
<td>75</td>
<td>18.78 b</td>
<td>71.5 b</td>
<td>972.2 ab</td>
<td>27.10 b</td>
<td>2.75 a</td>
<td>6.25</td>
</tr>
<tr>
<td>50</td>
<td>14.32 c</td>
<td>56.6 c</td>
<td>813.53 b</td>
<td>25.72 c</td>
<td>1.00 b</td>
<td>6.00</td>
</tr>
<tr>
<td>Training systems (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arching</td>
<td>17.28 b</td>
<td>65.1 b</td>
<td>924.07 b</td>
<td>26.55 b</td>
<td>1.75 b</td>
<td>5.83 b</td>
</tr>
<tr>
<td>High-rack</td>
<td>20.27 a</td>
<td>79.1 a</td>
<td>1140.11 b</td>
<td>27.89 a</td>
<td>2.83 a</td>
<td>6.58 a</td>
</tr>
<tr>
<td>I × T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Different letters within each column indicate significant differences according to Tukey test (P ≤ 0.05). *, **, ***: Significant at P ≤ 0.05, 0.01, and 0.001, respectively; NS: Non-Significant.
Water Relations

RWC declined significantly with increasing water stress (Table 2). Even well-irrigated plants showed a RWC below 100%. There were no significant differences between training systems with respect to RWC (Table 2).

Leaf Gas Exchange

Leaf photosynthetic parameters [Net CO₂ assimilation rate (Pₙ), stomatal conductance (gₛ) and transpiration (E)] were significantly influenced by water stress (Table 2), whereas Water Use Efficiency (WUEi) and intercellular CO₂ concentration (Cᵢ) were unaffected (Table 2). In general, plants subjected to severe water stress exhibited about 27% lower net photosynthesis rate than the plants irrigated with 100% of water need. None of the photosynthetic parameters were affected by the training systems and water stress×training system interaction (Table 2).

Photosynthetic Pigments and Proline Accumulation

In the three water treatments, no significant differences were noticed regarding Chl content (Chl a, Chl b, Chl a+b) (Table 3). Furthermore, proline concentration remained almost unchanged under water deficit (Table 3). As can be seen from Tables 3, photosynthetic pigments and proline concentration were not affected by training systems and water stress×training system interaction as well (Table 3).

DISCUSSION

Water deficit significantly reduced the morphological parameters such as fresh and dry weights of flowering stem, flower diameter, and leaf area (Table 1). Similar to this study, Katsoulas et al. (2006) reported that irrigation frequency influenced fresh and dry weights of cut roses because the total fresh and dry weights of cut flower shoots were about 33% higher under high irrigation frequency as compared to low

Table 2. Analysis of variance and means comparison Relative Water Content (RWC), Net Photosynthetic rate (Pₙ), stomatal conductance (gₛ) transpiration rate (E), intercellular CO₂ concentration (Cᵢ) and Water Use Efficiency (WUEi) of Rosa hybrida ‘Club-Nika’ plants irrigated with three irrigation regimes and trained with two systems.

<table>
<thead>
<tr>
<th></th>
<th>RWC (%)</th>
<th>Pₙ (µmol m⁻² s⁻¹)</th>
<th>gₛ (mmol m⁻² s⁻¹)</th>
<th>E (mmol m⁻² s⁻¹)</th>
<th>Cᵢ (mmol mol⁻¹)</th>
<th>WUEi (µmol CO₂ mmol⁻¹ H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation regimes (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>91.32 a</td>
<td>23.79 a</td>
<td>25.22 a</td>
<td>7.78 a</td>
<td>263.9</td>
<td>3.14</td>
</tr>
<tr>
<td>75</td>
<td>90.02 ab</td>
<td>20.94 ab</td>
<td>23.72 ab</td>
<td>6.22 a</td>
<td>236.5</td>
<td>3.34</td>
</tr>
<tr>
<td>50</td>
<td>87.99 b</td>
<td>18 b</td>
<td>21.88 b</td>
<td>5.25 b</td>
<td>243.7</td>
<td>3.46</td>
</tr>
<tr>
<td>Training systems (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arching</td>
<td>89.41</td>
<td>21</td>
<td>23.97</td>
<td>6.45</td>
<td>240.9</td>
<td>3.25</td>
</tr>
<tr>
<td>High-rack</td>
<td>90.14</td>
<td>20.8</td>
<td>23.24</td>
<td>6.39</td>
<td>255.1</td>
<td>3.38</td>
</tr>
<tr>
<td>T</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>I x T</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

a, b Different letters within each column indicate significant differences according to Tukey test (P ≤ 0.05). *; **, ***: Significant at P ≤ 0.05, 0.01, and 0.001, respectively; NS: Non-Significant.
Table 3. Analysis of variance and means comparison of chlorophyll content and proline concentration of *Rosa hybrida* ‘Club-Nika’ plants.

<table>
<thead>
<tr>
<th></th>
<th>Ch a</th>
<th>Ch b</th>
<th>Total Ch</th>
<th>Proline concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation regimes (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>14.50 a</td>
<td>14.63 a</td>
<td>29.14 a</td>
<td>0.040 a</td>
</tr>
<tr>
<td>75</td>
<td>14.27 a</td>
<td>14.37 a</td>
<td>28.61 a</td>
<td>0.043 a</td>
</tr>
<tr>
<td>50</td>
<td>14.14 a</td>
<td>14.09 a</td>
<td>28.23 a</td>
<td>0.046 a</td>
</tr>
<tr>
<td>Training systems (T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arching</td>
<td>13.93 a</td>
<td>14.29 a</td>
<td>28.23 a</td>
<td>0.042 a</td>
</tr>
<tr>
<td>High-rack</td>
<td>14.66 a</td>
<td>14.43 a</td>
<td>29.09 a</td>
<td>0.043 a</td>
</tr>
<tr>
<td>I</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>T</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>I×T</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

 Different letters within each column indicate significant differences according to Tukey test (P≤ 0.05).

*; **, ***: Significant at P≤ 0.05, 0.01, and 0.001, respectively; NS: Non-Significant.

irrigation frequency. Morphological parameters like fresh and dry weights were reported to be significantly reduced under water stress in several higher plants (Shao et al., 2008). Alvarez et al. (2013) noticed a decrease in growth and biomass traits in potted geranium when exposed to regulated deficit irrigation regimes. The reduction in fresh weight under water deficit may be due to the considerable decrease in plant growth, net photosynthetic rate as well as suppression of cell expansion and cell growth due to the low turgor pressure (Idrees et al., 2010; Shao et al., 2008; Taiz and Zeiger, 2006). Cell expansion can only occur when turgor pressure is greater than the cell wall yield threshold (Shao et al., 2008).

Water availability during growth has been shown to affect biomass allocation as well as leaf area. Several studies have been devoted to plants grown and developed under water deficit, where, in general, a decreased total leaf area has been observed (Liu and Stützel, 2004; Shamshiri et al., 2011; Farooq et al., 2009), as compared to plants grown with adequate water supply. The higher leaf area of well-irrigated plants increases the transpiration rate during growth, facilitating nutrient uptake (Cramer et al., 2009), long-distance signaling (Jia and Zhang, 2008), as well as phloem assimilate import (Lacointe and Minchin, 2008).

Our results are in agreement with the findings of Fascella et al. (2015) on cut rose ‘Red France’, who did not observe significant differences in the total number of flower stems between three studied irrigation levels. In contrast to our results, Bolla et al. (2010) did not find differences in the number of extra-quality flower stems in cut rose ‘Eurored’ irrigated with 67% of irrigation need as compared to the control. Increase in stem length depends on cell elongation, which is usually considered the most sensitive growth component to water deficits (Taiz and Zeiger, 2006). Under water deficiency, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells (Nonami, 1998). Thus, maintaining a high water content is an objective for rose growers.

The decreased RWC under water deficit stress observed in this study is consistent with the previous studies on *Pittosporum and Viburnum* (Toscano et al., 2014), roses (Niu et al., 2008; Bolla et al., 2010), and *Bougainvillea* (Cirillo et al., 2014). Decreasing stomatal conductance may result in a response to either a decrease in leaf water potential or RWC. It has also been reported that decreased RWC under water stress is a direct consequence of water unavailability in root systems or in substrate around the roots (Shalhevet, 1993).
It is well established that under severe water stress, plants reduce photosynthesis, mainly because of stomata closure (Chaves et al., 2009), such that plants exposed to severe stress (50% of water need) showed 15% stomatal conductance lower than plants developed at non-stressed conditions (Table 2). There are several reports underlining the stomatal limitation of photosynthesis under drought stress as a primal event (Bolla et al., 2010; Buckley, 2005; Saeidi and Abdoli, 2015). Under stress conditions, a reduction in stomatal conductance can have protective effects because it allows the plant to save water and to improve the water use efficiency (Chaves et al., 2009). An increasing number of studies confirmed reducing stomatal conductance under water stress (Galmés et al., 2007; Chaves et al., 2009; Snider et al., 2014). Considering no change in intercellular CO₂ concentration, it seems that both stomatal and non-stomatal limitations are involved in adaptive processes of cut roses under water deficit. Many studies have shown that the decrease in the photosynthetic activity under drought stress can be attributed to both stomatal and non-stomatal limitations (Zhou et al., 2014; Novick et al., 2016; Campos et al., 2014).

It is known that plants under increasing water stress respond by an increase in WUEi. This is probably part of an adaptive mechanism to reduce transpiration (Craufurd et al., 1999). However, no significant difference was observed in WUEi in plants exposed to water stress. Our results are in contrast with those of Bolla et al. (2010), who reported that WUEi increased in water-stressed rose plants. Moreover, Cirillo et al. (2014) indicated that WUE of potted Bougainvillea appeared to be strongly affected by water supply, genotype, and canopy shapes. The different results of water deficit regarding WUEi across experiments may be partially due to the different experimental conditions, genotype, or differences in water stress intensity and timing (Cameron et al., 2006).

In this study, photosynthetic pigments and proline concentration were not modified under water stress conditions. A decrease in the chlorophyll concentration would be a typical symptom of oxidative stress and has been observed in water-stressed plants (Hazrati et al., 2016), but this was not the case here. In agreement with our findings, Syros et al. (2004) in Gerbera jamesonii subjected to water limitation did not show differences in Chl concentration. It seems that the loss of metabolic and biochemical activities occurred only at severe stress conditions (Shao et al., 2008). This may be attributed to the ability of plants to use both enzymatic and non-enzymatic mechanisms when suffering several levels of oxidative stress (Egert and Tevini, 2002). By contrast, some studies (Claussen, 2005; Bahadoran and Salehi, 2015) indicated a positive correlation between proline accumulation and adaptation to water stress, which is not consistent with the findings of this research. Moreover, proline accumulation under osmotic stress is accompanied by increasing concentration of soluble sugars (Balibrea et al., 1997). In this regard, we did not observe any significant effect on total carbohydrate in stressed plants [data not shown]. Therefore, our findings are in agreement with the report of Ghaderi and Siosemardeh, (2011) on strawberry, who mentioned that moderate drought stress affected gas exchange while severe drought stress (25% of field capacity) affected chlorophyll, proline and soluble carbohydrates levels.

Furthermore, training systems had significant effect on morphological attributes, such that plants trained with high-rack system showed higher fresh weight of flowering stem, flower diameter, and leaf area than the arching system (Table 1). In agreement with our results, Kajihara et al. (2009) reported that the high-rack culture system resulted in higher quality stems compared with the arching system. As the high-rack culture system had both lower bent shoots and upper bent shoots, which were connected to the mother stem, it contained more bent shoots as source organs and also mother stems as stronger sink organ in comparison with arching culture systems.
thus stimulating the flower stem growth (Kajihara et al., 2009). However, photosynthetic parameters and biochemical characteristics of greenhouse roses were not affected by training systems. The results presented here are in agreement with the results of Matloobi et al. (2009), who reported that chlorophyll content did not differ significantly among different training systems. In this study, RWC was not affected by training systems. In this regard, Kim et al. (2004) reported that shoot bending changed the water balance of the bent shoot about 1 day after shoot bending; however, these changes decreased over time and disappeared within 3 weeks after bending.

In this research, it was hypothesized that high-rack culture system may ameliorate the negative effects of water stress, due to having more bent shoots and stronger sink organs. However, data obtained in this study did not confirm our hypothesis for any possible indication of interaction between irrigation regime × culture systems. Similarly, Cirillo et al. (2014) reported that irrespective of canopy shapes, the water deficit decreased the plant growth parameters of three Bougainvillea genotypes.

From the above mentioned results, although it has been concluded that osmoregulation mechanisms might not be used by cut roses ‘Club-Nika’ to retain turgor during water stress, our results show that both stomatal and non-stomatal components of photosynthesis are involved in adaptive responses to water deficit. Regardless of irrigation regimes, rose plants trained with high-rack culture system showed a superiority in most of the qualitative and quantitative attributes compared with arching training system. Further experiments are needed to better elucidate the specific changes occurring in activity of the enzymes involved in water-deficit under greenhouse conditions.

REFERENCES

Response of Rose to Irrigation and Training System

Rosa hybrida ‘Club-Nika’ (Nika) تحت تنش آی صرف نظر از سیستم های تربیتی

کاهش پاراهترهای تبادل گازی و کیفیت بازارپسند گل رز (Rosa hybrida ‘Club-Nika’) تحت تنش آی صرف نظر از سیستم های تربیتی

'کمکی و یابه بلند' در شرایط گلخانه انجام شد. نتایج نشان داد که تنش آی به طور معنی داری صفات کیفی، مورفولوژیکی و هم چنین روابط آی رژهای شاخه بریده را کاهش داد. سرعت تنشی نسبی بالاست.

کاهش چربی رژهای شاخه بریده در این رژهای روندی به طور معنی داری در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.

کاهش میزان آسید کورنیکس و کاهش تغییر در سطح گیاهی، ترکیب هنری، مصرف هنری و قابلیت ترشح روغن در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.

کاهش میزان آسید کورنیکس و کاهش تغییر در سطح گیاهی، ترکیب هنری، مصرف هنری و قابلیت ترشح روغن در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.

کاهش میزان آسید کورنیکس و کاهش تغییر در سطح گیاهی، ترکیب هنری، مصرف هنری و قابلیت ترشح روغن در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.

کاهش میزان آسید کورنیکس و کاهش تغییر در سطح گیاهی، ترکیب هنری، مصرف هنری و قابلیت ترشح روغن در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.

کاهش میزان آسید کورنیکس و کاهش تغییر در سطح گیاهی، ترکیب هنری، مصرف هنری و قابلیت ترشح روغن در واکنش به تنش آی کاهش داده و باعث افزایش میزان تغییر و هم چنین در افزایش میزان رژهای روندی در واکنش به تنش آی کاهش داده.