Use of a PSNM to Increase Precocity and Its Benefits in Greenhouse-Grown Sweet Pepper

J. Lopez-Marin¹, A. Galvez¹, I. Porras², and J. M. Brotons-Martinez³*

ABSTRACT

The types and varieties of peppers grown in Mediterranean areas are a response to the demand of European markets, although in each Autonomous Community local varieties are grown to satisfy the national demand. Nowadays, the range of shapes, colours, tastes and uses is wider than ever as a result of greenhouse cultivation, national and international tendencies and increased demand. In Murcia, the growing cycle runs from December to July or August, depending on the market and the growth of the crop. Sweet pepper is normally grown in greenhouses, using a variety of technologies: from simple shaded greenhouses, to the most-advanced multitunnels (large, in the form of a round arch or Gothic arch and with sophisticated ventilation). Due to the high cost of fuel, it is impossible to use heating during winter after transplanting, so alternative techniques are used to raise the temperature a few degrees and improve crop production. The aim of this work was to increase the precocity and productivity of sweet pepper grown in greenhouses. The effect of a Polypropylene Spunbonded Nonwoven Microtunnel (PSNM) was studied. The results show that, although the increase in production was not great (lower than 5% in both years of the study), precocity increased by 16% in both years. Since the increased cost of using this technology is not excessive, crop profitability increases if precocity is taken into account, as all our indicators show. The study suggests that the use of a PSNM raises the marketable production and brings forward the first harvests.

Keywords: Crop protection, Monte carlo, Profitability, Risk, Value at risk.

INTRODUCTION

Sweet pepper is one of the most important horticultural crops in Mediterranean areas. Southeast Spain is amongst the main production areas of sweet pepper in Europe (López-Marín et al., 2013a); here, 7,000 ha of sweet pepper are grown in greenhouses in the province of Almería (López-Marín et al., 2009) and 1,300 ha in the provinces of Murcia and southern Alicante (López-Marín et al., 2013). Spain is the sixth-greatest producer of peppers in the world (898,000 t in 2011) and the third-greatest exporter after Mexico and Holland. Due to overlapping production calendars, Turkey is Spain’s main competitor (MAGRAMA, 2015).

Some sweet pepper crops in Murcia and southern Alicante are grown from late autumn to late summer (López-Marín et al., 2008). Earliness is very important in this crop in this region because the first and second harvests are concentrated around the middle of April. However, the use of

¹ Department of Horticulture, Murciano Research Institute and Agricultural Development and Food (IMIDA), Sericulture Station, Calle Mayor s/n, 30150, La Alberca, Murcia, Spain.
² Department of Agriculture and Food Quality, Murciano Institute for Agricultural and Food Research and Development (IMIDA), Sericióola Station, Calle Mayor s/n, 30150, La Alberca, Murcia, Spain.
³ Department of Economic and Financial Studies, Miguel Hernández University, Avda. De la Universidad, s/n, 03292, Elche, Alicante, Spain.
* Corresponding author; e-mail: jm.brotons@umh.es
techniques such as heating can advance the first harvest by two to three weeks.

Heating can take two forms: hot air, to avoid momentary drops in temperature and avoid the risk of frost, and hot water, which maintains a stable temperature and enables the productive cycle to be brought forward (García-Martínez et al., 2008). The main problems with heating are the cost, global warming and climate change (Bakker et al., 2008; Attarod et al., 2015). The absolute use of energy differs between specific locations; for example, for Finland the total energy consumption has been estimated at 1,900 MJ m\(^{-2}\) per year (Olofsson et al., 2006), for The Netherlands 15,00 MJ m\(^{-2}\) (Van der Knijff et al., 2004) and for southern France 500-1,600 MJ m\(^{-2}\) (Vesine et al., 2007). The costs of maintaining appropriate conditions inside the greenhouse, in particular the energy used for heating, threaten the greenhouse industry and thus should be reduced.

Appropriate climatic conditions in mild-winter climates are the most important factor determining sustainability in passive greenhouses. In Mediterranean areas with a favourable climate, the available natural resources, together with the sensible use of well-selected technologies to overcome brief unfavourable weather conditions, are the key factors for achieving sustainability (Montero et al., 2011).

In response to the increased cost of the most-frequently-used fuels (diesel, natural gas or propane), current trends, which demand lower unitary costs, are moving toward a greater consideration of alternatives - such as bio-fuels, to guard against low temperatures, moveable thermal screens and double-layered coverings (Buchholz et al., 2005; Castilla, 2005; Boulard and Fatnassi, 2006). Another way of decreasing both the amount spent on energy and the emission levels for different greenhouse industries is the use of microtunnels inside the greenhouses. Such microtunnels are usually covered with plastic [Low Density Polyethylene (LDPE)] (Castilla, 2005); however, the use of Polypropylene Spunbonded Nonwoven Microtunnels (PSNMs) is not widespread. The use of direct covering with polypropylene is expanding as a simple, cheap and effective semi-protecting technique, also known as floating mulch, for horticultural crops. While the influence of direct covering on the productivity of various horticultural crops like tomato (Wolf et al., 1989), melon (Hemphill and Mansour, 1986), watermelon (Soltani et al., 1995) or cucumber (Wolf et al., 1989) has been studied, information about the yields, costs and benefits for sweet pepper crops cultivated under PSNMs in greenhouse conditions is scarce.

Since cultivation in a PSNM allows the first harvest to be brought forward, growers can benefit from the higher prices at the beginning of the season. This will mean an increase in income and profit. However, it must not be forgotten that agricultural prices are very difficult to estimate because they are subject to high doses of uncertainty. Working with average values does not really help as prices are high some years, while in others they are not sufficient to cover variable costs.

Therefore, the objective of this article is to determine the possible economic benefits for growers of advancing production, based on the use of PSNMs and taking into consideration the costs involved. For this, the effect of price variations will be analysed by Monte Carlo methodology, using the value at risk of the different variables analysed to incorporate the variability of prices and discount rates used for assessment.

MATERIALS AND METHODS

The experiments were carried out over a two-year period at the IMIDA experimental farm, located close to the Mediterranean coast of southeast Spain (37º 45’ N, 0º 59’ W).

Sweet pepper plants (cv. Herminio) were transplanted on January 7\(^{th}\) 2010 in the first year and on January 5\(^{th}\) 2011 in the second
Precocity sweet pepper valuation with PSNM

Table 1. Distribution of commercial calibres of pepper fruit.

<table>
<thead>
<tr>
<th>Calibre</th>
<th>mm</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>80-110</td>
<td>170-250</td>
</tr>
<tr>
<td>G</td>
<td>70-90</td>
<td>135-170</td>
</tr>
<tr>
<td>M</td>
<td>60-80</td>
<td>95-135</td>
</tr>
</tbody>
</table>

year, in an unheated, arch-shaped multispan greenhouse covered with thermal polyethylene. The plant density was 2.5 plants m\(^{-2}\) and the growing techniques were the usual ones for greenhouse pepper in Spain. Cropping ended on August 11\(^{th}\) (2010) in the first year and on August 16\(^{th}\) (2011) in the second year.

The greenhouse was covered with a standard film. Immediately after transplanting, 10 microtunnel rows were covered with a PSNM fabric (thickness 20-25 µm, density 17 g m\(^{-2}\)) (Agryl Fiberweb, France) and the rest of the rows were kept uncovered (Standard).

The number of harvests in both years was eight. At each harvest, the fruits were weighed and graded into marketable and non-marketable. Marketable fruits were classified into commercial calibres (Table 1).

For the estimation of production in the PSNM and under standard conditions, we used the Net Present Value (NPV), the Net Yield (NY), the benefits/investment ratio and the Payback. For this, the average production costs and the average market prices for each of the above calibres were taken into account. The information on average costs was obtained from surveys of local farmers, while the average market prices were obtained from information provided by local market exchanges and the official website of the Ministry of Agriculture, Food and Environment (MAGRAMA, 2015).

Net Present Value (NPV)

This is obtained by updating all net cash flows generated by the investment. When choosing among alternatives, the one with the highest net present value is taken. Brealey and Myers (2001) state that this method is the one most suitable for estimating the benefits of a project. The net present value is calculated as follows (Welch, 2009):

\[
NPV = \sum_{r=0}^{R} (C_j - P_j) \cdot (1+i)^{-r}
\]

(0)

Where, \(C_j\) represents the incoming payments received in \(year\ r\), \(P_j\) the outgoing payments for \(year\ r\), \(i\) the applied discount rate and \(R\) the age of the project.

Net Yield (NY)

This is obtained from the NPV. Although the payments received are supposed to be annual and constant, there are many payments that are made over a period of years, such as the assembly of the greenhouse (which occurs at the beginning), the cost of renewing the plastic (every three years) or the drip irrigation (every eight years). The NY is obtained from the NPV as follows (Welch, 2009):

\[
NY = \frac{NPV \cdot i}{1-(1+i)^{-R}}
\]

(0)

Where, \(NPV\) is the net present value, \(i\) the applied discount rate and \(R\) the age of the project.

Net Benefit-Investment Ratio (N/K)

The ratio between benefit and investment indicates the net gain generated from the project for each monetary unit invested (Welch, 2009):

\[
N = \frac{\sum_{r=1}^{R} (C_j - P_j) \cdot (1+i)^{-r}}{\sum_{r=0}^{R} K_r \cdot (1+i)^{-r}}
\]

(1)

Where, \(C_j\) represents the incoming payments for each period, \(P_j\) the annual outgoing payments and \(K_r\) the investment made during year \(r\) (the payments made for the construction of the greenhouse, the plastic, the drip irrigation system, etc.).
Payback

Defined as the time needed for the amortization of the investment made. This is calculated with an iterative system; that is, accumulating the net cash flows until the sum is at least equal to the initial investment (Welch, 2009).

Discount Rate

The applied discount rate is risk-free interest plus β times the premium discount, which is the difference between the market yield E(Rm) and the rate free of risk (Welch, 2009).

\[i = i_{\text{free}} + \beta (E(Rm) - i_{\text{free}}) \]

Monte Carlo Simulation

The Monte Carlo approach was used to evaluate the sensitivity of the inverse model and to provide a sound estimate of its uncertainty (Kroese et al., 2011). The uncertain parameters were considered as variables that followed a normal distribution when possible, depending on the available data, or as evenly distributed variables if the above data were not available (for example, the risk premium). For this, an Excel worksheet was used and 20,000 iterations were made.

Value at Risk (VaR)

Let \(X \) be a random variable with a cumulative distribution function \(F(X) \), and let \(\text{VaR} \) be a fixed value of \(X \) (Pruzzo et al., 2003 or Saunders et al., 2003).

\[\alpha = \Pr(X \leq \text{VaR}) = F_X(\text{VaR}) \]

Then, using the inverse function of the cumulative distribution function, \(\text{VaR} \) is:

\[\text{VaR} = F_X^{-1}(\alpha) \]

\(\text{VaR} \) can be defined as the lowest value of a variable for a given level of confidence \(\alpha \), that is, a value for which \(\alpha \% \) of the possible values of the said variable are lower and \(1-\alpha \% \) are higher.

If \(X \) is a normal distribution with \(\mu_X \) the average and \(\sigma_X \) the standard deviation, its standardised value is (Pruzzo et al., 2003; Saunders et al., 2003):

\[x = \frac{X - \mu_X}{\sigma_X} \]

(5)

The \(\text{VaR} \) can be obtained parametrically. If \(\text{VaR}_\alpha \) is the value of the standard normal distribution which corresponds to the \(\alpha \)-quantile of the said distribution, \(\text{VaR} \) can be obtained as,

\[\text{VaR} = |\text{VaR}_\alpha| \cdot \sigma_X \]

(6)

The level of confidence for \(\text{NPV} = 0 \), \(\text{NPV}_\alpha \). The level of confidence for \(\text{NPV} = 0 \) can be obtained from the probability that \(\text{NPV} \) is lower than or equal to zero,

\[\text{NPV}_\alpha = \Pr(\text{NPV} \leq 0) \]

(7)

Statistical Analysis

The SPSS 22.0.0.0 statistical package was used to calculate significant differences by ANOVA, and means were compared at probability \(P \leq 0.05 \) according to the Student’s \(t \)-test.

RESULTS

Income

Our references were the prices given by the price observatory of the Ministry of Agriculture, Food and Environment, covering 2004 to 2014, which are shown in Figure 1. Prices were high until week 15 (beginning of April), when they reached €1.20, after which they began to fall,
precocity sweet pepper valuation with PSNM

Figure 1. Weekly average prices and standard error 2004-2014 (MAGRAMA, 2015).

reaching €0.40-€0.50, their standard deviation also decreasing. The objective of
the grower, therefore, would be to bring
production forward in order to benefit from
the higher prices.

For the correct valuation of production, the
price was obtained for the wholesale
markets of the available zones, to ascertain
any statistical relationship between the
prices of the different calibres. In this way, it
was possible to construct a historic price
series of the different calibres.

The weekly productions obtained with and
without a PSNM in 2010 and 2011. The two
treatments gave similar production; the
difference did not exceed 2% in any case.
The commercial production differed
significantly between the treatments.
However, no significant differences existed
between the calibres of the different
treatments, according to the Student's *t*-test
(α= 0.05) (Table 2). Production was higher
with the PSNMs in both years, especially for
calibre GG. However, calibre G varied, its
production being lower in the PSNM
treatment in 2010 and higher in 2011, while
the results for calibre M were the opposite.
The most
important differences were in
precocity, the use of a PSNM bringing
production forward by two weeks in both
years (harvesting being possible from 12/04
and 19/04 in 2010 and from 11/04 and 18/04
in 2011) and providing 20,188 and 23,310
kg, respectively.

Table 2 shows the kg ha⁻¹ harvested on
each date, the obtained income and the
average price. As can be seen, the average
price was superior for the PSNM because it
was harvested earlier, taking advantage of
the best prices.

The accumulated value of the production
in 2010 and 2011, at the average prices of
Figure 1, can be observed in Figure 2. As
can be seen, early harvesting (in the first
weeks of May) increased the total value of
the crop when using a PSNM at the
beginning of the season, the differences
being maintained until nearly the end of the
season.

Costs

The costs have been separated into
pluriannual costs (Table 3), which include
the costs of installation of the greenhouse
(useful life 30 years), the drip irrigation
system (useful life 10 years) and the plastic
(useful life 3 years). The costs of
whitewashing were not included, because
the time of whitewashing depends on the
weather. In the same way, the costs of the
PSNM - which include the costs of labour
(€200 annually) plus the cost of the covering
with non-woven polypropylene (€369) -
were included, assuming a useful life of
three years.

In turn, the annual costs (Table 4) have
been separated into variable (€34,896.35)
and fixed (€2,680) costs. The former, in
turn, have been sub-divided into: (i) Raw
materials (€20,051.35), which include the

Table 2. Summary of the mean values of production. Values in the same column followed by different letters differ
significantly.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>GG</th>
<th>G</th>
<th>M</th>
<th>Total marketable</th>
<th>Non-marketable</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNM</td>
<td>135244</td>
<td>35674</td>
<td>56065</td>
<td>28968</td>
<td>120707</td>
<td>14537</td>
</tr>
<tr>
<td>Standard</td>
<td>135335</td>
<td>32400</td>
<td>55407</td>
<td>29259</td>
<td>117065</td>
<td>18269</td>
</tr>
</tbody>
</table>

* Polypropylene Spunbonded Nonwoven Microtunnel.
costs of water, seeds, seedbeds, disinfectant, manure, fertiliser, etc.; (ii) Labour costs, including social security payments on behalf of the workers; and (iii) The variable costs of the machinery itself. The fixed costs refer to the costs of the machinery itself, social security payments made by the grower, the payment of taxes and other administrative costs and the rent payments for the land.

To obtain the discount rate, based on Equation (4), we used the average returns for the past 15 years as the risk free rate (17/9/1999 to 16/9/2014) of 10-year bonds (Bank of Spain, 2014). The average was 4.5% and the standard deviation was 0.82%. The average annual cash flow is obtained as the difference between the income and annual costs. The income is obtained by multiplying the weekly production by the average price (the product of the production of each calibre and its corresponding price). This process was carried out for both years to obtain the average for the PSNM and standard treatments (Table 5). The costs are shown in Tables 3 and 4.

Table 6 shows the annual income obtained with and without a PSNM, calculated from the values shown in Table 5. The PSNM...
Table 4. Costs of the assembly of one hectare of greenhouse (Authors’ calculation).

<table>
<thead>
<tr>
<th>Concept</th>
<th>Cost (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse installation</td>
<td>103895.19</td>
</tr>
<tr>
<td>Structure</td>
<td>76959.40</td>
</tr>
<tr>
<td>Staking</td>
<td>1963.25</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>1413.54</td>
</tr>
<tr>
<td>Assembly</td>
<td>23559.00</td>
</tr>
<tr>
<td>Drip irrigation system</td>
<td>4600.00</td>
</tr>
<tr>
<td>Integrated drip emitter tube</td>
<td></td>
</tr>
<tr>
<td>(Self-compensating)</td>
<td></td>
</tr>
<tr>
<td>Cover film (Thermic 36 months 800 g</td>
<td>7500.00</td>
</tr>
<tr>
<td>2,500 kg x 3 € ha⁻¹</td>
<td></td>
</tr>
<tr>
<td>Whitening</td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>260.00</td>
</tr>
<tr>
<td>Additional, every three years</td>
<td>260.00</td>
</tr>
<tr>
<td>PSNM</td>
<td></td>
</tr>
<tr>
<td>Labour</td>
<td>200.00</td>
</tr>
<tr>
<td>Non-woven polypropylene</td>
<td>369.00</td>
</tr>
</tbody>
</table>

a Polypropylene Spunbonded Nonwoven Microtunnel. b We have considered a useful life of three years for the thermal cover.

Table 5. Annual costs for one hectare.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Cost (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Variable Costs</td>
<td></td>
</tr>
<tr>
<td>1.1. Raw materials</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>8200 m³ x 0.21 € m⁻³ = 1722</td>
</tr>
<tr>
<td>Seed (Herminio)</td>
<td>25000 x 0.2 € plant⁻¹ = 5000</td>
</tr>
<tr>
<td>Seedbed</td>
<td>25000 x 0.037 € plant⁻¹ = 925</td>
</tr>
<tr>
<td>Disinfectant (Agrocelhone)</td>
<td>4495</td>
</tr>
<tr>
<td>Pesticides</td>
<td>2640</td>
</tr>
<tr>
<td>Auxiliary insects</td>
<td>2750</td>
</tr>
<tr>
<td>Manure</td>
<td>40000 kg x 0.03 € kg⁻¹ = 1200</td>
</tr>
<tr>
<td>Fertiliser</td>
<td>1319.35</td>
</tr>
<tr>
<td>1.2. Labour</td>
<td></td>
</tr>
<tr>
<td>Watering</td>
<td>540</td>
</tr>
<tr>
<td>Phytosanitary application</td>
<td>246 h x 5 € h⁻¹ = 1230</td>
</tr>
<tr>
<td>Varied labour</td>
<td>1330</td>
</tr>
<tr>
<td>Staking</td>
<td>2120</td>
</tr>
<tr>
<td>Maintenance and repairs</td>
<td>1200</td>
</tr>
<tr>
<td>Plantation</td>
<td>1300 h x 5 € h⁻¹ = 6500</td>
</tr>
<tr>
<td>Social security</td>
<td>1050</td>
</tr>
<tr>
<td>1.3. Variable costs of the machinery itself</td>
<td>1700.00</td>
</tr>
<tr>
<td>2. Fixed costs</td>
<td></td>
</tr>
<tr>
<td>2.1. Machinery</td>
<td></td>
</tr>
<tr>
<td>2.2. Social security (Owner)</td>
<td></td>
</tr>
<tr>
<td>2.3. Payments to public administrations (Land value t, tax on profits, other taxes and administrative costs)</td>
<td>3440.00</td>
</tr>
<tr>
<td>2.4. Land rent</td>
<td>500.00</td>
</tr>
<tr>
<td>Total cost</td>
<td>44,606.35</td>
</tr>
</tbody>
</table>

Table 6. Production, average price and value of the production for the PSNM and standard treatment.

<table>
<thead>
<tr>
<th></th>
<th>PSNM</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average price (€ kg⁻¹)</td>
<td>€ ha⁻¹</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/04/2010</td>
<td>12113</td>
<td>0.56</td>
</tr>
<tr>
<td>19/04/2010</td>
<td>8075</td>
<td>0.93</td>
</tr>
<tr>
<td>28/04/2010</td>
<td>6729</td>
<td>0.89</td>
</tr>
<tr>
<td>18/05/2010</td>
<td>10267</td>
<td>0.53</td>
</tr>
<tr>
<td>07/06/2010</td>
<td>12473</td>
<td>0.57</td>
</tr>
<tr>
<td>06/07/2010</td>
<td>37700</td>
<td>0.42</td>
</tr>
<tr>
<td>29/07/2010</td>
<td>24100</td>
<td>0.38</td>
</tr>
<tr>
<td>11/08/2010</td>
<td>10217</td>
<td>0.33</td>
</tr>
<tr>
<td>2011</td>
<td>119742</td>
<td>0.63</td>
</tr>
<tr>
<td>11/08/2011</td>
<td>13986</td>
<td>1.10</td>
</tr>
<tr>
<td>18/04/2011</td>
<td>9324</td>
<td>0.96</td>
</tr>
<tr>
<td>18/04/2011</td>
<td>9324</td>
<td>0.92</td>
</tr>
<tr>
<td>20/05/2011</td>
<td>16090</td>
<td>0.50</td>
</tr>
<tr>
<td>14/06/2011</td>
<td>30809</td>
<td>0.54</td>
</tr>
<tr>
<td>05/07/2011</td>
<td>11383</td>
<td>0.46</td>
</tr>
<tr>
<td>02/08/2011</td>
<td>19025</td>
<td>0.45</td>
</tr>
<tr>
<td>16/08/2011</td>
<td>9800</td>
<td>0.39</td>
</tr>
<tr>
<td>PSNM average</td>
<td>120707</td>
<td>0.35</td>
</tr>
<tr>
<td>Standard average</td>
<td>117065</td>
<td>0.35</td>
</tr>
</tbody>
</table>
costs are derived by adding the placement costs (€569) to the values obtained for the standard treatment. The annual cost column already includes the annual whitewashing.

The updating of the NCF was made using a discount rate of 7%, obtained according to expression (4). The NPV was €51,180 for the standard treatment and €173,790 for the PSNM.

The Net Cash Flows (NCF) for standard are obtained as: NCFYear 0 = - greenhouse (103,895) - drip irrigation (4,600) - cover film (7,500) NCFYear 1,...,30 = income (71,431) - drip irrigation (4,600, years 10 and 20) - cover film (7,500, years 3, 6, 9, ...) - annual cost plus whitening (45,366) - additional whitening (260, years 2, 5, 8, ...). The NCF for PSNMs are obtained as: NCFYear 0 = - greenhouse (103,895) - drip irrigation (4,600) - cover film (7,500) NCFYear 1,...,30 = income (71,431) - drip irrigation (4,600, years 10 and 20) - cover film (7,500, years 3, 6, 9, ...) - annual cost plus whitening (45,366) - additional whitening (260, years 2, 5, 8, ...). The NCF for PSNM are obtained as: NCF standard = NCF PSNM = NCF standard + additional costs (€569) to the values obtained for the standard treatment.

For one hectare, with no microtunnel, 95% of the time, the annual value (including the annual costs, labour and part of the initial costs) will be higher than €2,328 (Table 9); if no thermal blanket is used for the four years 2, 5, 8,...)

The installation of the PSNM improved the outcomes derived with the different methodologies. With the PSNM, the values of NPV and Net Yield were triple those derived with the different methodologies. With the PSNM, the values of NPV and Net Yield were triple those obtained for the standard case of the PSNM and standard treatments, respectively, being mostly positive in the case of the PSNMs but with some negative values in their absence.

Table 7 summarizes the results obtained. The installation of the PSNM improved the outcomes derived with the different methodologies. With the PSNM, the values of NPV and Net Yield are triple those achieved with the standard treatment, while the Payback was reduced by almost half.

Figure 3 shows the results obtained with the previous information and using the Monte Carlo simulation. Without the use of PSNMs but with some negative values in their absence.

<table>
<thead>
<tr>
<th>Year</th>
<th>NCF standard</th>
<th>NCF PSNM</th>
<th>NCF standard accumulated</th>
<th>NCF PSNM accumulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-116255</td>
<td>-116255</td>
<td>-116255</td>
<td>-116255</td>
</tr>
<tr>
<td>1</td>
<td>16171</td>
<td>25995</td>
<td>-100084</td>
<td>-90260</td>
</tr>
<tr>
<td>2</td>
<td>15911</td>
<td>25735</td>
<td>-84173</td>
<td>-64525</td>
</tr>
<tr>
<td>3</td>
<td>8671</td>
<td>18495</td>
<td>-75503</td>
<td>-46303</td>
</tr>
<tr>
<td>4</td>
<td>16171</td>
<td>25995</td>
<td>-59332</td>
<td>-20034</td>
</tr>
<tr>
<td>5</td>
<td>15911</td>
<td>25735</td>
<td>-43421</td>
<td>5701</td>
</tr>
<tr>
<td>6</td>
<td>8671</td>
<td>18495</td>
<td>-34750</td>
<td>24196</td>
</tr>
<tr>
<td>7</td>
<td>16171</td>
<td>25995</td>
<td>-18579</td>
<td>50191</td>
</tr>
<tr>
<td>8</td>
<td>15911</td>
<td>25735</td>
<td>-2668</td>
<td>75926</td>
</tr>
<tr>
<td>9</td>
<td>8671</td>
<td>18495</td>
<td>6003</td>
<td>94421</td>
</tr>
<tr>
<td>10</td>
<td>11571</td>
<td>21395</td>
<td>17574</td>
<td>115817</td>
</tr>
</tbody>
</table>

Table 8. Summary of results for the Standard and PSNM treatments.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>PSNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>51845</td>
<td>173756</td>
</tr>
<tr>
<td>Net yield</td>
<td>4178</td>
<td>14002</td>
</tr>
<tr>
<td>Net benefit ratio</td>
<td>0.352</td>
<td>1.178</td>
</tr>
<tr>
<td>Pay back</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 9. VaR5% for the different variables studied.

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>PSNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual yield</td>
<td>-2328</td>
<td>7589</td>
</tr>
<tr>
<td>NPV/investment</td>
<td>-0.19</td>
<td>0.62</td>
</tr>
<tr>
<td>Pay back</td>
<td>15.19</td>
<td>7.25</td>
</tr>
<tr>
<td>NPV</td>
<td>-27719</td>
<td>89417</td>
</tr>
</tbody>
</table>

The NPM values are 53,586 and 177,233 for the PSNM and standard treatments, respectively, with several negative values in the first case and mostly positive values in the second.

Regarding the ratio NPV/investment, it can be seen that the PSNMs provide a higher value in most situations. The average values are 0.36 and 1.20 with a PSNM and without, respectively, being mostly positive in the case of the PSNMs but with some negative values in their absence.

Lastly, the use of PSNMs gave a shorter Payback time, the average being 5.65 years, which increased to 9.85 years without the microtunnel.

To determine the maximum assumable risk, the VaR5% was calculated for the four variables (Table 8).

This value indicates, for annualised values, the maximum annual loss which the producer assumes in 95% of cases; put another way, on 95% of occasions, the loss will not exceed these values (or the benefit will be higher).

For one hectare, with no microtunnel, 95% of the time, the annual value (including the annual costs, labour and part of the initial costs distributed over the useful life of the investment) of the loss is not greater than €2,328 (Table 9); if no thermal blanket is
used, the benefit is positive in most cases and, in 95% of cases, it is higher than €7,589.

It can be stated that, in 95% of cases, the NPV/investment ratio is not lower than -0.19 without the use of a microtunnel and not lower than 0.62 with them.

The VaR5% of the Payback time is 7.25 years in the case of the PSNM treatment and 15.19 years without the use of a PSNM. This means that, on 95% of occasions, the Payback time will be shorter than these values.

Lastly, when not using a microtunnel, the NPV is higher than -€27,719 in 95% of cases. This means that, for the range of prices considered, the actual value of the loss will not exceed that value. Meanwhile, with the use of a PSNM, the profit will exceed €89,417 in 95% of cases.

Lastly, determination of the confidence level of NPV (Figure 4) - that is, the probability that the NPV will be negative - gave a value of 0.14 when not using a microtunnel and 0.00 with a PSNM. Thus, it can be deduced that the performance will always be positive if using a PSNM, but the same cannot be said when not using a PSNM.

DISCUSSION

The profit obtained by an agricultural company depends, amongst other things, on...
the means of production used. However, it must not be forgotten that prices fluctuate, not only from year to year but also during the same year. Several studies have dealt with this question: for example, Ott (2014) analysed the cause of these variations in cereals, while Hwang and Ahn (2012) analysed them in fresh fruits, concluding that agricultural policies that stabilise the price of such products are needed. Meanwhile, Kang (2008) studied the relationship between the volatility of the offer and the volatility of corresponding wholesale prices using a GARCH-GJR model. According to the author, there are two kinds of source for the increase in volatility of daily supply: one is adverse weather and the other is the suppliers' controllability of daily carry-in, which makes the price less volatile.

As can be seen, these processes have been well studied, and it can only be concluded that the agricultural business must not only live with them, but must also try to benefit from them. Pisanu et al. (2012) studied the effect of the density of artichoke clones on precocity and economic yield. Higher density had a negative effect on earliness and the uniformity of artichoke heads. For their part, Dong et al. (2010) analysed the effects of an Unequal Salt Distribution (USD) in the root zone and concluded that yield and earliness increased 20.8% and 5.1%, respectively, as a result of furrow seeding rather than flat seeding. Csuvár et al. (2009) analysed the convenience of using CO₂ in greenhouses to improve different aspects of cultivation such as earliness.

In line with these studies and bearing in mind the record of pepper prices (Figure 1) and that the normal harvesting of peppers in a greenhouse starts in week 19 (the beginning of May), it is evident that bringing forward production will allow growers to benefit from higher prices. This is why cultivation methods such as the use of microtunnels, which allow harvesting to commence a few weeks earlier, should allow growers to enjoy higher prices.

The distribution of costs is similar to that which arises normally, as shown by Orús (2009). Fernández-Zamudio et al. (2006) provided very similar values for the variable costs of the California variety Quito: €3,482 ha⁻¹ with underground heating, while the fixed costs rose to €1,298 ha⁻¹ with opportunity costs of €0.303 ha⁻¹. Salas et al. (2003) found lower variable costs, of between 20,300 and 22,500€ ha⁻¹, depending on the treatment applied.

For the correct evaluation of investment and costs, a suitable discount rate must be used. We used Equation (4) and, as the risk-free rate, the average of the last 15 years (17/9/1999 to 16/9/2014) of 10-year bonds (Bank of Spain, 2014). The average was 4.5% and the standard deviation was 0.82%.

To obtain the discount rate, we must add a risk premium to this value. The literature regarding this is abundant, and we only need to mention Fernández et al. (2011), who interviewed directors, analysts and university teachers, obtaining a wide range of replies. The mean for university teachers and directors was 5.5%, while for analysts it was 5.0%. On the other hand, authors such as Dimson et al. (2007), Ibbotson Associates (2006), Shiller (2000), Wilson and Jones (2002), Damodaran (2002), Brotons and Terceño (2010), Siegel (2005) and Fernández (2009) estimated the risk premium at between 4.2 and 8.5%. Because of this dispersion, we used a range between 4.2 and 8.5%. Of its part, the β of the food and beverages sector of the Madrid Stock Exchange (2013) was 0.3951. In this way and according to expression (4), the Monte Carlo simulation allowed different values of the discount rate to be used.

To study sensitivity, we used the Monte Carlo simulation model, a tool which allows the distribution functions of the variables to be studied. This methodology has been used in other work: for example, in Quiroga et al. (2011) to evaluate the hydrological risk and water policy implications for food production. The use of the Monte Carlo simulation allows us to obtain not only one value but a distribution of performance...
probabilities. Hence, this article shows not only the evaluation of the agricultural holding, but of a range of values and distributions of probability.

The use of the Monte Carlo simulation model led to the following conclusions,

- The average annualised yield, according to Monte Carlo simulation, is 4,221 when not using a microtunnel and is negative for some values. If we do use a PSNM, the average is 14,057, and it is positive in most cases.

- The results for NPV are similar, with mean values of 53,876 and 177,006 with and without a PSNM, respectively, several values being negative in the first case and almost none in the second case.

- Regarding the NPV/investment ratio, use of a PSNM gave a higher value in most situations. The mean values reached are 0.36 and 1.19 with and without a PSNM, respectively, being mostly positive with a PSNM and occasionally negative without.

- Lastly, the Payback time is shorter when using a PSNM: an average of 5.66 years with and 9.88 years without.

In this sense, Popescu et al. (1995) made a study of the growth of sweet pepper plants in a soilless system that was supposed to solve some of the problems associated with traditional cultivation. The results highlight the superiority of substrate over soil cultivation since total yield doubled, harvesting was two weeks earlier and there was a drastic diminution of the number of phytosanitary treatments.

As an additional measure, to analyse the risk of the studied variables, we used the Value at Risk (VaR), a parameter frequently used in agricultural studies. Moreira et al. (2014) used VaR to evaluate three strategies for the management of risks in corn trading: simultaneous buying and selling, storage and short selling. In this sense, Dos Santos et al. (2013) determined the maximum loss acceptable on investments for a producer of 100/120-kg-calibre grey shrimps. Likewise, in our study, the maximum loss at 95% is 2,289 when not using a PSNM and is zero when one is used (as VaR is equal to €7,489).

CONCLUSIONS

The use of a PSNM raises the marketable production and brings forward the first harvests, so that the growers can benefit from the higher prices at the start of the season and boost their income significantly. The mean income was increased from 61.037 to 71.431 €/ha by the use of a PSNM. The values of all the indicators used (NPV, net yield, net benefit ratio and payback) were improved by the use of a PSNM. In particular, the net present value rose from 51,845 to 173,756 € ha\(^{-1}\) with the use of a PSNM. By contrast, the use of a PSNM cut the Payback from nine to five years, thus shortening significantly the time required for the grower to recover his investment. Analysis of the VaR shows that, in 95% of cases, the annual loss due to the application of the standard method of cultivation does not exceed €2,238, whereas with a PSNM it is always positive (the NPV and NPV/investment ratio give the identical interpretation). With the use of a PSNM, the payback, in 95% of cases, is less than 7.25 years.

ACKNOWLEDGEMENTS

This study was supported by the European Regional Development Fund (ERDF) 80% - Región de Murcia (FEDER 1420-08).

REFERENCES

استفاده از PSNM برای افزایش زودرسی و فواید آن در فلفل دلمه ای گلخانه ای

چ. لوپز-مارین، ا. گالوز، ی. پراس، ی. ج. م. بیتونز-مارتینز

چکیده

انواع و ارقام مختلفی از فلفل دلمه ای ها در حوضه مدیریت در پاسخ به تقاضای بازارهای اروپایی کشت یافته‌اند. اگرچه در هر جامعه محلی، ارقام محلی برای پراوردن تقاضای محلی استفاده می‌شود، امروزه، طیف وسیعی از اشکال و رنگ‌ها در گلخانه‌ها، به دلیل سلایق مختلف، نمایان می‌شود. این اشکال و رنگ‌ها ممکن است به‌وجود آمده باشند. در مورد نسل‌های بزرگ‌تر، رشد از دسامبر تا ماه مه، تا به اینجا، با توجه به بازار و رشد محصول، این‌گونه مشاهده می‌گردد. افرادی که از توجه به تقاضای بازار برای انواع مختلف از فلفل دلمه ای استفاده می‌کنند، به توجه به این‌که سیستم‌های افزایش زودرسی و تأمین انواع مختلف از فلفل دلمه ای ها در غرب اروپا کمتر استفاده می‌شود، با استفاده از وسایل جدیدی از محصولات ساختاری که می‌توانند با استفاده از تولید پیت‌ویک (برزگ، در قالب یک قوس گرد یا قوس گوشیک و با تهیه یک‌پیچه) تولید شوند. استفاده از حرارت در زمستان با توجه به هزینه‌های بالایی که در فصل‌های سرد نسبتاً بالا نیاز به حرارت و بهبود تولید محصول استفاده می‌شود. هدف از این کار افزایش زودرسی و بهره‌وری فلفل دلمه ای polypropylene spunbonded nonwoven microtunnel (PSNM) رشد کرده در گلخانه‌های اروپایی مورد مطالعه قرار گرفت. نتایج نشان می‌داد که افزایش زودرسی چندانی در محصول مشاهده نشد. درصدی از هر دو سال بالا رفته، از آن جا که استفاده از این تکنیک‌های نوین جدید نمی‌تواند در نظر گرفته شود. افزایش یافته این مطالعه نشان می‌داد که استفاده از PSNM تولید برای بازار را افزایش و برداشت زودتر را به ارتفاع می‌آورد.