REVIEW ARTICLES

Managing Plant Diseases and Promoting Sustainability and Productivity with Trichoderma: The Philippine Experience

C. J. R. Cumagun

ABSTRACT

Trichoderma is a genus of asexually reproducing fungi that is present in all types of soils. Trichoderma species have been recognized as antagonists of soil-borne and foliage pathogens and as efficient decomposers of cellulosic waste materials. Moreover, they have the ability to increase plant growth and induce plant resistance. Along with mycoparasitism, antibiotics and competition, induced resistance is one of the most important mechanisms of Trichoderma action against fungal plant pathogens. Strategies to enhance biocontrol ability of Trichoderma include use of composts, UV irradiation and gene expression studies as applied to genetic engineering. Of over 50 research projects on Trichoderma in the Philippines as reported in this review, only less than 10% have been published at full length in scientific journals. Trichoderma have been often used in the control of rice and solanaceous crops and vegetables. Most projects have been conducted both in vitro and in vivo including the laboratory and greenhouse but rarely in the field. Most strains reported were not identified up to the species level especially by molecular techniques, an essential requirement for product commercialization. Of the several strains of Trichoderma that have been isolated and screened for biocontrol of plant diseases in the Philippines, only one strain has reached product commercialization. This, however, has led to a promising technology to improve management of vegetable diseases and increase farmers’ income. The continuity in sustaining these programs is vital in maintaining sustainability and productivity of agricultural crops with Trichoderma.

Keywords: Biological control, Enhancement, Commercialization, Mode of action

INTRODUCTION

Trichoderma is a genus belonging to the filamentous Class Deuteromycetes. The members are generally found in all soils (Chet 1987; Samuels, 1996). The fungus is a valuable source for the commercial production of enzymes and helpful in recycling cellulosic waste materials while producing useful by-products (Samuels, 1996). Trichoderma received the most attention as fungal antagonists not only of soil-borne pathogens (Amin et al., 2010) but also of foliage pathogens such as Botrytis cinerea (Elad, 1994). This is because of the ability of some of its species to produce enzymes which inhibit other fungi (Lima et al., 1997; Mohamed et al., 2010). Trichoderma can function at the same time both as microbial antagonists and plant symbionts (Lorito et al., 2006). For these reasons, close to 20 fungal biocontrol preparations abroad are based on Trichoderma (Table 1).

Looking back at the developments of Trichoderma research in the Philippines, the fungus has been tested as a potential biocontrol agent over the last three decades. How far have we gone through in the advancement of biological control of plant diseases using Trichoderma in the Philippines? Nowadays, we need to appreciate the importance of biological diversity of living organisms in the context of sustainable plant protection systems. Because of environmental pollution brought about by

1 Crop Protection Cluster, College of Agriculture, University of the Philippines, Los Baños, Philippines. e-mail: christian_cumagun@yahoo.com
Table 1. Commercial biocontrol products of *Trichoderma* worldwide.

<table>
<thead>
<tr>
<th>Product</th>
<th>Strain</th>
<th>Company, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>T35</td>
<td>T. harzianum</td>
<td>Makhteshim-Agan Chemicals, Israel</td>
</tr>
<tr>
<td>Harzian 20, Harzian 10</td>
<td>T. harzianum</td>
<td>Natural Plant Protection, Noguerres, France</td>
</tr>
<tr>
<td>F-stop</td>
<td>T. harzianum</td>
<td>Eastman Kodak Co., United States TGT Inc.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New York</td>
</tr>
<tr>
<td>Supraavit</td>
<td>T. harzianum</td>
<td>Bonegaard and Reitzel, Denmark</td>
</tr>
<tr>
<td>Solsain, Hors-solsain, Plantsain</td>
<td>Trichoderma spp.</td>
<td>Prestabiol, Mompeller, France</td>
</tr>
<tr>
<td>ANTI-FUNGUS</td>
<td>Trichoderma spp.</td>
<td>Grondonsmettingen De Ceuster, Belgium</td>
</tr>
<tr>
<td>Ty</td>
<td>Trichoderma spp.</td>
<td>Mycontrol, Israel</td>
</tr>
<tr>
<td>GlioGard and SoilGard</td>
<td>T. virens (Gliocladium virens)</td>
<td>Grace-Sierra Co., Maryland</td>
</tr>
<tr>
<td>Bip T</td>
<td>T. viride</td>
<td>Poland</td>
</tr>
<tr>
<td>Promot PlusWP Promot PlusDD</td>
<td>Trichoderma spp.</td>
<td>Tan Quy, Vietnam</td>
</tr>
<tr>
<td></td>
<td>Trichoderma koningii</td>
<td></td>
</tr>
<tr>
<td>TRICÔ-DHCT</td>
<td>Trichoderma spp.</td>
<td>Can Tho University, Vietnam</td>
</tr>
<tr>
<td>Vi – DK</td>
<td>Trichoderma spp.</td>
<td>Pesticide Corp., Vietnam</td>
</tr>
<tr>
<td>NLU-Tri</td>
<td>Trichoderma virens</td>
<td>Ho Chi Minh University of Agriculture and Forestry, Vietnam</td>
</tr>
<tr>
<td>Biobus 1.00WP</td>
<td>Trichoderma vireide</td>
<td>Nam Bac, Vietnam</td>
</tr>
<tr>
<td>BioSpark Trichoderma</td>
<td>T. parceramosum, T. pseudokoningii, and Ultraviolet irradiated strain of T. harzianum</td>
<td>BioSpark Corporation, Philippines</td>
</tr>
</tbody>
</table>

Pesticides, alternative pest management strategies are being developed. Some fungicides were taken off the market because of toxicity problems and pathogens developed resistance (Bruton, 1994). These and many other factors portend a renewed emphasis on biocontrol. Based on the increasing number of papers presented at the Pest Management Council of the Philippines (PMCP) in the last 20 to 30 years and the number of BS, MS theses and PhD dissertations on the topic of *Trichoderma* (see Table 2), there has been a substantial commitment of resources on this area. It is also imperative to emphasize the importance of correct identification of *Trichoderma* by molecular approaches as a valuable tool for studies of diversity and genetic structure of populations of these fungi, including determining whether a certain species possessed a unique mode of action and in an effort to provide accurate information on the active ingredients of the biocontrol product.

The general objective of this review paper is to introduce the current status and advances in *Trichoderma* as a biocontrol agent of plant diseases in the Philippines and in the world. The specific objectives are as follows: (1) to present data on the modes of action of *Trichoderma* and its asexual genetics; and (2) to describe the strategies for the enhancement of biocontrol ability of *Trichoderma* from formulation to genetic engineering.

Modes of Action of Trichoderma

Agar test is the simplest method of determining the mode of action of a biocontrol agent *in vitro*. This method has several fundamental drawbacks. First, agar test can be unreliable if it is used only as a primary screen for determining the mode of action of biocontrol strains of *Trichoderma* (Merriman and Russell, 1990). Although this method is the fastest way to screen for antibiotic production and/or mycoparasitism, it does not select strains which act by competition, avirulence and cross protection (Merriman and Russell, 1990). Second, the plant and soil are not accounted for in the assay. Since results had almost no predictive value for biocontrol efficacy, most laboratories prefer more effective and predictive methods such as plant–pathogen interaction.
<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Pathogen</th>
<th>Host</th>
<th>Condition</th>
<th>Site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. viride</td>
<td>Fusarium solani f.sp. phaseoli</td>
<td>R. solani</td>
<td>rice</td>
<td>in vitro, in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. aureoviride, T. harzianum</td>
<td>Rhizoctonia solani</td>
<td>rice</td>
<td>in vivo</td>
<td>greenhouse</td>
<td>Usmani and Mew (1984)</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Trichoderma spp.</td>
<td>Rhizoctonia solani</td>
<td>rice</td>
<td>in vitro</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. aureoviride, T. harzianum</td>
<td>Rhizoctonia solani</td>
<td>rice</td>
<td>in vitro</td>
<td>greenhouse</td>
<td>Cano and Catedral (1995)</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Pythium and Phytophthora</td>
<td>R. solani</td>
<td>rice</td>
<td>in vivo, in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Sclerotium rolfsii</td>
<td>R. solani</td>
<td>maize</td>
<td>in vivo</td>
<td>laboratory, greenhouse, field</td>
</tr>
<tr>
<td>T. aureoviride, T. harzianum</td>
<td>Botrytis cinerea</td>
<td>R. solani</td>
<td>strawberry</td>
<td>in vivo</td>
<td>large greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Phasmodiophora brassicae</td>
<td>Sclerotium rolfsii</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotium rolfsii</td>
<td>R. solani</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Phasmodiophora brassicae</td>
<td>Sclerotium rolfsii</td>
<td>cabbage</td>
<td>in vivo</td>
<td>field</td>
</tr>
<tr>
<td>T. viride</td>
<td>Phytophthora colossiae</td>
<td>R. solani</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Laccospora theobromae</td>
<td>Sclerotium rolfsii</td>
<td>cabbage</td>
<td>in vivo</td>
<td>field</td>
</tr>
<tr>
<td>T. viride</td>
<td>Colletotrichum, Fusarium</td>
<td>N. crassa</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. harzianum, T. viride, T. harzianum</td>
<td>Rhizopus stolonifer, Fusarium sp.</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse and field</td>
</tr>
<tr>
<td>T. reesei, T. harzianum</td>
<td>Physiothrombus sp.</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Rhizoctonia solani</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Phasmodiophora brassicae</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Fusarium moniliforme</td>
<td>Microsporum polydium</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotium sp.</td>
<td>Microsporum polydium</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Pythium, Fusarium</td>
<td>corn, cowpea</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotium sp.</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Rhizoctonia solani</td>
<td>S. scabrum</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotium rolfsii</td>
<td>tomato</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Sclerotium rolfsii</td>
<td>acemory</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Fusarium sp.</td>
<td>ginger</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotium rolfsii</td>
<td>cotton</td>
<td>cabbage</td>
<td>in vivo</td>
<td>greenhouse</td>
</tr>
</tbody>
</table>

Continued on the next page
<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Pathogen</th>
<th>Host</th>
<th>Condition</th>
<th>Site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. viride</td>
<td>Ralstonia solanacearum</td>
<td>tomato</td>
<td>in vivo</td>
<td>greenhouse</td>
<td>Parungko et al. (2008)</td>
</tr>
<tr>
<td>T. viride</td>
<td>Diplodia natans</td>
<td>mango</td>
<td>in vivo</td>
<td>laboratory</td>
<td>Moreno (1995)</td>
</tr>
<tr>
<td>T. viride</td>
<td>Fusarium oxysporum</td>
<td>abaca</td>
<td>in vitro, in vivo</td>
<td>laboratory</td>
<td>Bastas and Baliod, 2005</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>Phytophthora capsici</td>
<td>black pepper</td>
<td>in vitro, in vivo</td>
<td>laboratory and greenhouse</td>
<td>Noveria and Quimio (2004)</td>
</tr>
<tr>
<td>Trichoderma sp.</td>
<td>Fusarium verticillioides</td>
<td>banana</td>
<td>in vivo</td>
<td>laboratory</td>
<td>Alvindia (2008)</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>Ralstonia solanacearum, Meloidogyne incognita, Helicocnerus multicolorus</td>
<td>banana</td>
<td>in vivo</td>
<td>field</td>
<td>Genera (1998)</td>
</tr>
<tr>
<td>T. viride</td>
<td>Sclerotinia rolfsii, Rhizoctonia solani, Phytophthora infestans, Pseudomonas solanacearum</td>
<td>wheat, rice, tomato, potato</td>
<td>in vivo</td>
<td>laboratory and greenhouse</td>
<td>Molina (1985)</td>
</tr>
<tr>
<td>Trichoderma spp.</td>
<td>Phytophthora</td>
<td>vegetables</td>
<td>in vitro, in vivo</td>
<td>greenhouse and field</td>
<td>Cuevas et al. 2005</td>
</tr>
<tr>
<td>Trichoderma ghanense, T. harzianum</td>
<td>Plasmopora brassicae</td>
<td>cabbage</td>
<td>in vivo</td>
<td>field</td>
<td>Cuevas et al. 2011</td>
</tr>
</tbody>
</table>
assays (Harman et al., 1989). No single mode of action of Trichoderma species against fungal pathogens is known. As a rule, the greater the number and diversity of methods used by the organism to inhibit the pathogen, the more successful biological control is expected (Cook and Baker, 1983). The following are the modes of biocontrol action of Trichoderma:

Mycoparasitism

Mycoparasitism (in vitro) and enzyme-mediated antibiosis (in vivo) were the principal mechanisms of biocontrol of T. harzianum against Rhizoctonia solani causing sheath blight of rice (Cumagun and Ilag, 1997a). Mycoparasitism was evident with the coiling of the hyphae of T. harzianum along the hyphae of R. solani. Parasitism of sclerotia was very evident in an agar plate environment but the phenomenon was questionable in natural soil environment (Cumagun and Ilag, 1997b). Mycoparasitism expressed by species often results in nutrient rich media but in some cases these species are probably not mycoparasitic in nature (Rudakov, 1978). A recent study by Alvindia and Natsuaki (2008) examined the potential of T. harzianum as a biocontrol agent of crown rot pathogens isolated in the Philippines. Their results showed that T. harzianum directly parasitized and killed Thielaviopsis paradoxa, Colletotrichum musae, Fusarium verticillioides, Clonostachys hericola, Curvularia pallescens and Penicillium oxalicum in vivo.

Antibiotic production

Trichoderma known for its mycoparasitic activity against several fungal plant pathogens is aided by the production of different chitinases, β-1,3-glucanases and proteases and cellulase. These extra cellular enzymes such as β-1,3-glucanase, chitinase and cellulase are effective in disrupting the mycelium of plant pathogenic fungi (Elad et al., 1982; Samuels, 1996). Production of volatile compounds was not detected on the four isolates of T. harzianum that were tested in vitro against R. solani (Cumagun et al., 1997b). Coconut smell is typical of T viride isolates (Rifai, 1969; Bissett, 1991), suggesting the presence of volatile compounds that are inhibitory to pathogen growth (Dennis and Webster, 1971).

Competitive saprophytic ability

Competition for substrates is the most important factor for fungi as is competition for light in the case of evolution of plants (Garrett, 1956). Rice and rice-based cropping systems involve growing two or three crops of rice or upland crops in the same field in rotation with rice. Unspecialized pathogens of rice and other crops such as R. solani causing sheath blight in rice-based cropping systems are usually present in stubbles during fallow and pose a threat to the succeeding component crop. The pathogen carry-over capacity of the cropping systems depends upon the survival ability of the pathogen in stubbles after rice in the soil (Mew and Rosales, 1985). Certain studies have shown that microbial degradation of crop residues or stubbles may lead to the control of this type of pathogen.

Trichoderma is capable of degrading straw with mycoparasitic ability against several plant pathogenic fungi (Chet and Henis, 1985; Chet 1987). In rice, Trichoderma is responsible for the reduction of inoculum potential of R. solani by decomposing rice straw and stubbles after rice harvest. Since R. solani also infects crops after rice, i.e., mungbean and corn, Trichoderma could also be efficient in controlling diseases inflicted on these crops. Mew and Rosales (1985) found that Trichoderma colonized rice straw pieces in dry land soil but not those in irrigated soil. Moisture content of the soil plays an important role in the activity and survival of Trichoderma (Kredics et al., 2003). Cumagun et al. (2009) also found that the higher the amount of inoculum of T. harzianum strain no 94-016, the higher percent colonization of rice straw in the soil. Further tests were carried out to compare the decomposition of rice straw on the surface and buried in the soil and the effect of moisture on soil decomposition. The depth of rice straw and moisture content are factors identified as significant in affecting crop residue decomposition. Buried rice straw inoculated with T. harzianum strain no 94-016 with watering on a daily basis provided better decomposition (Cumagun et al. (2009). Knowledge gained from this study could help better understand and design field application of the beneficial microorganisms for disease management.
Induced resistance

Induced systemic resistance is believed to be one of the most important mechanisms of biocontrol effects of *Trichoderma* (Harman *et al.*, 2006). The mechanism for increased plant growth could be due to inhibition of minor pathogens (Salt, 1978) and the production of a growth stimulating factor (Windham *et al.*, 1986). Some *Trichoderma* can induce a systemic response in plants through the JA/ethylene signaling pathway, potentiating the expression of several plant disease related genes and enabling the treated plant to be more resistant to pathogen infection (Viterbo *et al.*, 2002). Some strains of *Trichoderma* induce resistance on plants against pathogens. Cucumber roots treated with *T. harzianum* showed higher activities of chitinase, β-1,3-glucanases and peroxidase (Yedidia *et al.*, 2000). *Trichoderma* in commercial form (BINABTF-WP and BINABT vector) induced systemic acquired resistance in strawberry against *B. cinerea* (Ricard and Jorgensen, 2000). According to Harman *et al.* (2004), there are three recognized pathways of induced resistance in plants using *Trichoderma*. Two of these pathways involve the direct production of pathogenesis-related (PR) proteins. The first pathway which involves the production of PR proteins is the result of the attack by pathogenic microorganisms. In the second pathway, PR proteins are produced as a result of wounding or necrosis-inducing plant pathogens. The third pathway is considered as being induced by non-pathogenic, root-associated bacteria (Harman *et al.*, 2004).

In the Philippines, a few studies on growth promoting effects of *Trichoderma* were conducted. Cuevas (2006) showed that the presence of the fungus in the soil in sufficient population resulted in the uptake of more mineral nutrients especially P and Zn available for plant use that increased crop growth and yield in the screenhouse and farmers’ field. The same author and a co-worker also found out that the application of *Trichoderma* as a soil inoculant significantly increased rice yield by 20% (Cuevas and Bacalango, 2005).

In the 1980’s, *Trichoderma* has not been found as endophytes of living plants (Petrini, 1986). Typically, *Trichoderma* species are thought of as being soil fungi, but Evans *et al.* (2003) discovered many *Trichoderma* species and other soil fungi such as *Clonostachys*, *Fusarium*, and *Cylindrocarpon* as well as unidentified basidiomycetes existing as endophytes in healthy tree bolls and pods of the cacao relative *Theobroma gileri*.

Enhancement of Biocontrol Ability of Trichoderma

There are constraints in using *Trichoderma* as biocontrol agents. *Trichoderma* colonizes in the spermosphere effectively but they do not survive well in the rhizosphere (Deacon, 1994). The same author observed that *Trichoderma* spp. are active only in some types of soil and season thus achieving only transitory localized dominance of the rhizosphere. For this reason, another constraint is the quiescent and inactive nature of *Trichoderma* spores in the soil and because of this, *Trichoderma* cannot be added as spores (Vidhyasekaran, 2004). Furthermore, numerous mechanisms were discovered in *vitro*, but the key current problem is whether these actually function in biocontrol systems.

Identification and asexual genetics of Trichoderma

The taxonomy of *Trichoderma* is problematic because of a lack of reliable morphological characters. Rifai’s classical keys for the identification of the taxon (Rifai, 1969) recognized nine species which were considered to be aggregates of morphologically very similar but genetically heterogenous species (Bissett, 1991). Even with the revised morphological approach, difficulties in recognizing differences between species remain (Samuels, 1996). A population of *Trichoderma* (N= 42) isolated by molecular markers from rice fields in different provinces of Luzon was identified and characterized. By rDNA-ITS1 and Universally Primed-PCR (UP-PCR), the population that was identified...
morphologically into seven species had been differentiated only into two species: *T. harzianum* and *T. viride* with 40 isolates identified as *T. harzianum* (Cumagun et al., 2000). This concurs with the report of Nagamani and Mew (1987) that *T. harzianum* is a dominant species in upland rice and a common species in rainfed and irrigated lowland rice.

Most strains are not encountered in association with sexual stages and are considered to be strictly mitotic, clonal fungi. This apparent lack of sexuality is a hindrance to understanding interrelationships within and among *Trichoderma* species (Samuels, 1996). To improve biocontrol ability, asexual hybridization via protoplast fusion is the method of choice. The trait of biocontrol ability which is polygenically inherited will be more difficult to improve than the trait of pesticide resistance which is usually monogenically inherited. Sexual reproduction is known in *Trichoderma* and the only known teleomorphs are species of *Hypocrea* Fr. and closely related genera under Order Hypocreales.

Currently, the number of recognized *Trichoderma* species has tripled; reaching 100 during the past decade. This has caused difficulty in *Trichoderma* taxonomy and species identification. To identify all known *Trichoderma* species based on sequence analysis, Druzhinina et al., (2006) developed modern tools for *Trichoderma* species identification: the oligonucleotide barcode program *TrichoKEY* version 1.0, and *TrichoBLAST*, the multilocus database of vouchered sequences powered by a similarity search tool including the application of the Genealogic Concordance Phylogenetic Species Recognition approach. These advances make it possible to identify all known *Trichoderma* species based on sequence analysis. The species *Hypocrea rufa* and its anamorph *T. viride* have been re-described and epitypified using phylogenetic analyses of the translation-elongation factor 1 α gene (Jaklitsch et al. 2006.)

Composts and Trichoderma

Addition of organic amendments that have no selective stimulatory effect on the pathogen increases suppressiveness. For example, densities of *Phytophthora* and *Pythium* propagules in soil were lower while those of *Trichoderma* were higher in soils amended with various organic materials (composted cotton in trash, composted yard waste, or cattle manure) than with synthetic fertilizer (Bulluck et al., 2002).

There is a great need to develop alternative management systems that would enhance biocontrol ability of *Trichoderma*. Biological system management is a term proposed by Vilich and Sikora (1998) to describe the concept of managing relationships between the biological elements of the agroecosystem and the biological elements of the crop production system to develop new or altered crop production techniques that contribute to a self-regulating system. Soil suppressivity is an important concept in biological systems management. The antagonistic potential of microorganisms against soil-borne pathogens is an active component of a suppressive soil. Organic amendments such as green manures and stable manures have long been recognized to enhance biological control of soil-borne plant pathogens if applied before planting (Baker and Cook, 1974). The use of composts and plant residues or green manures for biofumigation is a potential strategy to provide biological control of plant diseases caused not only by root pathogens but even foliar pathogens as well.

Composts produced from biosolids are used widely as peat substitutes to reduce production costs in horticulture (Hoitink and Grebus, 1994). Beneficial effects of composts include increased plant yield and vigor, improved food quality, and improved soil fertility including suppression of diseases caused by plant pathogens (Hoitink and Keener, 1993). The natural disease suppressive effects of composts are due to increase in microbial biomass and activity not only of *Trichoderma* but other beneficial microorganisms as well. As an ideal food base for biocontrol agents, it aids in their introduction and establishment into the soil for sustained biocontrol activities of soil microbiota (Hoitink and Boehm, 1999).

Composting with the fungus *Trichoderma* as an activator is mainly utilized in rice as
organic fertilizer in the Philippines (Cuevas, 1997). The use of this technology resulted in reduction of fertilizer use by 30-50% and an increase in rice and corn yield by 20% (Cuevas, 1997). Strains of Trichoderma with good cellulolytic and competitive saprophytic abilities are suitable for crop residue decomposition in rice-based cropping systems under Philippine conditions (Cumagun et al., 2009). Trichoderma spp. play an important role both as biocontrol agents and decomposers (Papavizas, 1985). However, there is a competition between cellulose and chitinase produced by Trichoderma. As long as cellulose is present, Trichoderma would readily prefer to degrade it to chitin, the degradation of the latter being more complex (Kubicek et al., 2001). Thus, in the presence of raw organic material, the biocontrol activity of Trichoderma spp. is usually greatly reduced. For this reason, decomposition of raw organic materials such as straw is crucial. Microbial degradation of crop residues or stubbles in fields planted after or before rice could lead to potential control of unspecialized chitin containing pathogens such as R. solani. T. asperellum (strain-34) when added to cork compost rendered the soil highly suppressive against Rhizoctonia damping-off of cucumber plants due to minimal levels of biodegradable substances (Trillas et al., 2006). T. asperellum strain T34 provided protection of tomato plants against Fusarium oxysporum and iron toxicity through inhibition of the fungus’ siderophore synthesis (Segarra et al., 2010).

Ultra-violet irradiation

The drawbacks in biocontrol have led to efforts to enhance the biocontrol ability of Trichoderma. The simplest method of genetic modification of biological control agents is mutation by irradiation or chemical mutagenesis. This is done to induce fungicide resistance or to develop rhizosphere competent mutants (Abd-El Moity et al., 1982; Ahmad and Baker, 1987). This technique is however limited to random point modification of single genes and therefore not capable of large changes in the genome. Cumagun (2006) studied the effect of irradiation of T. harzianum on its biocontrol ability. Reduction in growth of R. solani in vitro due to volatile compounds produced by the irradiated mutant isolate was not significant compared to the wild type. Recently, a UV-irradiated strain of T. harzianum in pellet form comparable to the chemical fungicide Mancozeb against damping-off of vegetables was applied 2 weeks before planting in a farmers’ field in Laguna province, Philippines. (Cuevas et al., 2005)

Chitinase protein and genes expression of Trichoderma

Little is also known about the enzymatic mechanism of the fungus effect on the pathogen. Chitin was demonstrated by Cumagun and Ilag (1997a) as an enhancer of biocontrol ability of T. harzianum when added in sterile and natural soil. The fungus excreted chitinase when grown on chitin. The endochitinase gene of Trichoderma confers resistance to the transgenic plants (Lorito, et al., 1998). Some reported the role of chitinase in the antagonistic action of Trichoderma on R. solani and S. rolfsii (Carsolio et al., 1999). Woo et al. (1999) demonstrated that a strain of T. harzianum deficient in the ability to produce endochitinase provided better control of R. solani. Trichoderma chitinase genes may be used to improve the defence mechanism of plants. Lorito et al.(1998) transferred the ecb42 gene of T. atroviride into tobacco and potato. This resulted in an almost complete resistance to Alternata solani, A. alternata, Botrytis cinerea and R. solani.

Production and formulation

In general, biological control agents are very fragile to hostile environmental conditions. Attempts have been made to overcome this problem through proper formulation. Pelleting using common starch (gaw-gaw) and rice bran at 1:3 ratio is the most practical and economical binding method for Trichoderma in managing sheath blight of rice in the Philippines (Cumagun and Lapis, 1993). The pelleted Trichoderma was found to be viable for more than three months under room conditions (Cumagun and
Lapis, 1993). The pelletized *Trichoderma* has been used by Cuevas et al. (2001) in managing seedling diseases of vegetables caused by *S. rolfsii*. The same formulation was employed by Llaguno et al. (2008) in rapid decomposition of different types of garbage. The development of a stable, cost-effective and easy-to-apply biocontrol formulation is critical for the advancement of biological control of plant pathogens with introduced antagonists (Lisansky, 1985). The addition of soil amendments like peat and wheat bran is to increase the nutrient status of the soil and possibly for mycoparasitism to occur due to the fact that *Trichoderma* is a facultative or opportunistic mycoparasite which means that the fungus attacks living mycelium when furnished with an external food base (Henis, 1984). The addition of food base also prolongs the viability of stored biocontrol preparations. For example, Jensen et al. (1996b) recommended the temperature of 4°C for the storage of *Gliocladium roseum* in a mixture of peat and wheat bran since the viability was stable for 23 weeks. Etebarian (2006) also added wheat bran with *Trichoderma* to better control charcoal stem rot in melon. Other types of formulations used under Philippine conditions include granules and liquid formulations (Cumagun and Ilag 1997a and 1997b).

Biocontrol Studies, Product Commercialization and Monitoring of *Trichoderma*

Studies on biocontrol with *Trichoderma* in the Philippines

A large amount of work on *Trichoderma* comprising of over 50 research projects over the last 30 years has been conducted in the Philippines (Table 2). Only a few of these (<10%) have been published at full length in scientific journals. All outputs have shown the potential of *Trichoderma* as a biocontrol agent. *Trichoderma* have often been used in the management of diseases of rice and solanaceous crops. Most isolates of *Trichoderma* used are not identified up to the species level. The majority of experiments were conducted both in the laboratory and greenhouse and both in vitro and *in vivo* but rarely in the field. This indicates that *Trichoderma* has not yet reached the farmers at the field level.

The control of damping-off pathogens of vegetables caused by *Pythium* spp., *Sclerotium rolfsii* and *Rhizoctonia solani* using *T. harzianum* pellets in Bengal, a high altitude province in northern Philippines not only reduced damping-off disease caused by *Rhizoctonia solani* but also showed growth enhancement in *Apium graveolens* (celery) and increased fruit size of *Solanum melongena* (eggplant) compared with the use of mancozeb (Cuevas et al. 2005). Recently, three farmers in Buguias, Benguet, Northern Luzon, Philippines used *Trichoderma* microbial inoculant to control club root of crucifers. There was an immediate control of the disease in treated plots with *Trichoderma* and new infections were prevented resulting in yield increase whereas the club root incidence remained at high levels in plots treated with pesticides. The use of the biocontrol product also tripled the farmers’ partial gross income (Cuevas et al., 2011).

Basic research to product commercialization

Although basic research provides the backbone for the future, the issue of technological discontinuity between discovery and application has been raised frequently (Marshall, 1985). Once an effective biocontrol system has been found, identified and confirmed by a molecular technique, the next step should be the commercialization of the product. As a biocontrol researcher, it has become clear that solving the technological problems is perhaps the easiest part of developing biocontrol agents and systems. Legal aspects are also important to be
CONCLUSIONS

A substantial amount of work on *Trichoderma* comprising of over 50 research projects over the last 30 years has been conducted in the Philippines. Only a few of these (<10%) have been published at full length in scientific journals. *Trichoderma* have often been used in the management of diseases of rice and solanaceous crops. Most isolates of *Trichoderma* used are not identified up to the species level. Most experiments are conducted in the laboratory and greenhouse and rarely in the field. Similarly both *in vitro* and *in vivo* experiments have been conducted. The modes of action of *Trichoderma* are mycoparasitism, antibiosis, competition and induced resistance.

Enhancement of biocontrol ability of *Trichoderma* in the form of composting, use of UV irradiation, proper product formulation and gene expression for the development of genetically modified biocontrol agent are essential strategies for full realization of biocontrol as an important component of plant disease management. Furthermore, accurate strain identification by molecular approach is a prerequisite to commercialization to safeguard intellectual property rights. Although many studies have been conducted on biocontrol in the Philippines, there is no continuity in sustaining these programs. Little work has been done on the mechanism of action of *Trichoderma*. To my knowledge, only one case of biocontrol agent has been commercialized in the Philippine market. The product is called *Trichoderma* BioSpark effective against damping-off of vegetables and some tropical fruit diseases. However, this technology has been documented as a success story not only in managing crop diseases but improving the income of farmers particularly in vegetable growing areas in the Philippines. There is a need to sustain the biocontrol programs using *Trichoderma* whose beginnings were promising in order to maintain the sustainability and productivity of Philippine agriculture.

REFERENCES

1. Abd-El Moity, T. H., Papavizas, G. C. and Shatla, M. N. 1982. Induction of New Isolates of *Trichoderma harzianum* Tolerant to...

25. Cuevas, V. C. and Bacalangco, N. E. 2005. Efficacy of *Trichoderma* Soil Inoculant in Increasing Lowland Rice Yield and Growth Rate of Nursery Crops. 7th Annual Scientific Meeting and Symposium, Mycological Society
of the Philippines, ERDB, College, Laguna, April 8, 2005.

میوکورا باعث تقویت میکروبی های گیاهی و افزایش پایداری ویروس با تجویز فیلیپین:

ک. چ. ر. کاماجون

چکیده

جنسی از فارچه‌های دارای رژانوری غیرچنی است که در همه نوع خاک پایت می‌شود. گونه‌های Trichoderma به عنوان آنتی‌گونیست‌های خاکی و عوامل بیماری‌زا شناخته و همچنین تحریب کندل کندبیان موثر ضایعات سلولی شاخه‌شده اند. افزون بر این، آنها دارای توانایی افزایش رشد گیاه و افزایش مقاومت نیز نیز می‌باشد. همراه با میکوپارازیتم، آن‌ها بویکته و رقابت، مقاومت القا شده پیکر از مهم‌ترین مکانیسم‌های عمل Trichoderma زای فارچه گیاه می‌باشد. استراتژی‌های مورد استفاده برای تقویت توانایی بویکتله UV عبارتند از استفاده از کمپوزت، ناشی UV مطالعات بین زن در مهندسی زنی‌کش. از بین بیش از 50 برخه‌های تحقیقاتی در فیلیپین که در این مقاله موردی بر آنها اشاره شده است، تنها 10% از آنها به صورت مقالات کامل در مجلات علمی به جای رسیدن از Trichoderma عامدا برای کنترل در برنجه و محصولات و سیاست‌ها خانواده سلولاسی استفاده شده است. بیشتر مطالعات به صورت in vitro و in vivo گزارش شده تا سطح گونه به ویژه توسط گونه‌های مولکولی شناسایی نشده اند که این کار برای Trichoderma کردن محصول ضروریست. در بین سوی‌های مربوطی از بیوکتله میکروب‌های گیاهی جداسازی شده‌اند، تاک‌بیک سویه تجاری شده است. با این حال همین کار به ایجاد فناوری برای به‌هم‌آمپریمیست‌های گیاهی و افزایش در این طرح، کشاورزان انجام‌دهند. سپس در فنون این برنامه‌ها برای دست‌یابی به پایداری و افزایش بهره ویژه تولیدات کشاورزی با استفاده از Trichoderma ضروری می‌باشد.