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ABSTRACT 6 

The present study investigates the effect of baking temperatures (140, 160, 180, 200, and 220℃) 7 

on texture kinetics. It also explores a statistical classification meta-algorithm, called Adaptive 8 

Boosting (AdaBoost), to predict texture changes during conventional cake baking. The 9 

experimental results indicated that texture properties were significantly affected by baking 10 

temperature and time. As time and temperature increased, there was an increase in hardness, 11 

cohesiveness, gumminess, and chewiness and a decrease in springiness. However, the impact of 12 

time and temperature on resilience was inconsistent, as it was maximum in the last quarter of the 13 

process. The predicted results revealed that the AdaBoost algorithm accurately predicted the 14 

texture properties with a high coefficient of determination (R2 > 0.989) and minimal root mean 15 

square error (RMSE < 0.0019) across all textural properties. Therefore, it can serve as an efficient 16 

tool for predicting the texture properties of cakes during baking. Furthermore, the proposed 17 

methodology can be extended to predict the texture properties of other baked goods. 18 

Keywords: Machine learning, Prediction, Texture Profile Analysis, Hardness, Cohesiveness. 19 

 20 

INTRODUCTION 21 

Cakes are bakery products that are widely consumed worldwide. Regardless of the variety of 22 

cakes, which are attributed to various formulations and process conditions, achieving the desired 23 

texture in the product is still challenging. 24 

Understanding the textural characteristics of the cake improves quality control. However, 25 

determining these properties requires expensive equipment and significant time (Crispín-Isidro et 26 

al., 2015). The use of predictive algorithms based on mathematical models is recommended.  27 
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Researchers have developed various algorithms to predict the texture of food materials. Some of 28 

these approaches include Artificial Neural Network (ANN) (Abbasi et al., 2012; Ahmad et al., 29 

2014; Batista et al., 2021a; Khawas et al., 2016; Lee et al., 2024; Meng et al., 2012; Pan et al., 30 

2015; Qiao et al., 2007; Vásquez et al., 2018), Bayesian Extreme Learning Machine (BELM) (Lee 31 

et al., 2024), Random Forest (RF)(Lee et al., 2024; H. Lin et al., 2024; Sun et al., 2021; Zhou et 32 

al., 2024), Support Vector Machine (SVM) (H. Lin et al., 2024; Zhu et al., 2017), Genetic 33 

Algorithm (GA) (Abbasi et al., 2012; H. Lin et al., 2024; Zhu et al., 2017), Partial Least Squares 34 

Regression (PLSR) (Darnay et al., 2017; Polak et al., 2019; Sun et al., 2021; Vásquez et al., 2018; 35 

Zhu et al., 2017), Monte Carlo Cross (MCC) (Darnay et al., 2017), Weighted Regression (WR) 36 

(Zhu et al., 2017), Successive Projections Algorithm (SPA) (Zhu et al., 2017), Gaussian Process 37 

Regression (GPR) (Barzegar et al., 2024), eXtreme Gradient Boosting algorithm (XGBoost) (Zhou 38 

et al., 2024). 39 

The AdaBoost is a powerful algorithm that can select properties during learning (Chuan et al., 40 

2021). Furthermore, since increasing the sample size requires reasonable speed and accuracy, this 41 

method can be useful and efficient when dealing with large amounts of data. The AdaBoost 42 

algorithm also offers numerous advantages, including ease of use, simple and interpretable 43 

classification rules, and having only one regularization parameter (i.e., the number of algorithm 44 

repetitions), resulting in a high level of automation. Also, this algorithm is compatible with 45 

unbalanced training data and offers great flexibility compared to many other algorithms (Chen et 46 

al., 2014; Freund & Schapire, 1997). In addition, it has various applications in food products, 47 

including ripe fruit detection (G. Lin & Zou, 2018), sweetness prediction (Bouysset et al., 2020), 48 

camellia oil fraud detection (Kuang et al., 2022), food glycemic index prediction (Khan et al., 49 

2022), wheat varieties, and mixing ratio detection and classification (Jiang et al., 2023).  50 

According to the studies presented in the research literature, no study was found that could predict 51 

the texture profile analysis (TPA) characteristics of the cake using existing algorithms. Therefore, 52 

we chose the AdaBoost algorithm to predict the cake’s fundamental textural properties (i.e., 53 

hardness, springiness, cohesiveness, chewiness, gumminess, and resilience) during conventional 54 

baking. Also, a split-plot based on complete block design was applied for TPA experiments. 55 

Based on the mentioned points, the main contributions of this paper are as follows: 56 

- For the first time, the AdaBoost algorithm is used to model the textural properties of food and 57 

applied RMSE, R2, and QC  58 
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- Time and temperature are used simultaneously to enhance the model’s accuracy. 59 

 60 

MATERIALS AND METHODS 61 

a. Experimental Data 62 

Baking Procedure: In this step, a vanilla cake batter including sugar (21.1 g), milk powder (1.6 63 

g), emulsifier (0.25 g), salt (0.45 g), baking powder (1.35 g), flour (21.1 g), Vanilla (0.45 g), liquid 64 

egg (24.7 g), vegetable oil (14.5 g), and water (14.5 g) was prepared by stirring the liquid egg using 65 

a mixer (Bosch-CNCM57,1100 W, Slovenia) at high speed for 10 min and mixing with water and 66 

vegetable oil. Finally, other ingredients of batter were added and mixed until uniformity in the cake 67 

batter was obtained (Soleimanifard et al., 2024). The moisture content of the batter was 49% on a 68 

dry basis. 69 

About 100 g of vanilla batter was baked in a conventional oven (Butane MR-1, Iran) at 140, 160, 70 

180, 200, and 220℃ for 1.59, 0.81, 0.66, and 0.63 hour, respectively. The total process time at each 71 

temperature was divided into 17 parts, where all textural parameters were measured. 72 

Texture Profile Analysis: A texture analyzer (TA Plus, Lloyd Instruments, UK) with a 50 N 73 

load cell was used to conduct double-compression TPA on cake crumbs. A cylindrical probe (40 74 

mm in diameter) was used to compress cylindrical samples with a diameter of 24.5 mm and a height 75 

of 20 mm to 50% compression at a speed of 60 mm (Bourne, 2002; Zareifard et al., 2009). TPA 76 

was designed to simulate the mastication processes.  77 

 78 

Figure 1. The textural parameters of the TPA curve. 79 

 80 

As shown in Fig. 1, the force peak height on the first compression cycle is defined as hardness 81 

(N). The ratio of the positive force areas under the first and second compressions (A2/A1) was used 82 

to measure cohesiveness (N/N). This ratio indicates the extent to which a sample can be deformed 83 

before it ruptures. Springiness (s/s) is defined as the time index it takes for the sample to return to 84 
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its original shape or size after being partially compressed. The parameter was calculated as 85 

distance2/distance1. Moreover, resilience (N.s/N.s), i.e., the degree to which the sample returns to 86 

its original shape and elasticity, was calculated as A4/A3. Two additional parameters were derived 87 

from the measured parameters. Here, gumminess (N) was defined by multiplying hardness by 88 

cohesiveness, while chewiness (N) was calculated by multiplying gumminess by springiness 89 

(Bourne, 2002; Zareifard et al., 2009). All experiments were performed in five replications. 90 

Statistical Analysis: The experimental data was analyzed by analysis of variance 91 

(ANOVA) using a split-plot design based on complete block design with the SAS statistical 92 

program (version 9.4). Means of treatment were separated using the Dunkan test (p\0.05). 93 

 94 

b- AdaBoost Modeling 95 

This research applies the AdaBoost algorithm to predict textural changes in cake samples during 96 

baking under various conditions. AdaBoost was chosen for its ability to improve productivity and 97 

address the problem of imbalanced categories in other learning algorithms. This algorithm can 98 

upgrade a weak classifier with a better classification effect than random classification to a strong 99 

classifier with high classification accuracy (Chuan et al., 2021). 100 

This algorithm integrates many weak classifiers (e.g., simple decision trees and neural networks) 101 

and transforms them into strong ones (Tharwat et al., 2018a) during both the training and testing 102 

phases. The process was performed in the following steps: 103 

In the training step, observation weights were initialized to be equal and were used for the first 104 

classifier 𝒘𝒋
𝟏 =

𝟏

𝑵
,   j=1, …, N. The weights of the first classifier (𝒘𝒋

𝟏). Afterward, they were 105 

determined through the error rates of weak learners (𝑪𝒕), as: 106 

 𝝐𝒕 = ∑ 𝒘𝒋
𝒕𝒍𝒋

𝒕𝑵
𝒋=𝟏  and 𝒍𝒋

𝒕 = 𝟏 107 

where training samples were misclassified; otherwise, 𝒍𝒋
𝒕 = 𝟎. If 𝝐𝒕 ≥ 𝟎. 𝟓, the weights were 108 

readjusted so the misclassified samples were classified more accurately in the next learning step 109 

by increasing their weights. Therefore, weak learner weights (𝜶𝒕) were calculated as: 110 

 𝜶𝒕 =
𝝐𝒕

𝟏−𝝐𝒕
. (Gaber et al., 2016) 111 

Finally, the previous steps were repeated until the best classifier was achieved (Li & Li, 2020). 112 

In the testing step, all weak learners of the algorithm were used to classify the testing sample 113 

(xtest) as follows: 114 
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𝝁𝒕 = ∑ 𝐥𝐧 (
𝟏

𝜶𝒕
),   ∀𝒕 = 𝟏, 𝟐, … , 𝑻𝑪𝒕(𝒙𝒕𝒆𝒔𝒕)=𝝎𝒕

, 115 

where 𝝁𝒕 is the score of a class 𝝎𝒕. Moreover, T, . N, and 𝝐𝒕 are the total number of iterations,  116 

the total number of samples in the training set, and the minimum error, respectively. 117 

Eventually, the unknown sample was devoted to the highest score class (Gaber et al., 2016; 118 

Tharwat et al., 2018b).  119 

 120 

c Validation Criteria 121 

The model was validated using statistical parameters such as R2 = 1 −
∑ (𝑥𝑖_𝑒𝑥𝑝−𝑥𝑖_𝑝𝑟𝑒)𝑁

𝑖

2

∑ (𝑥𝑖_𝑒𝑥𝑝−�̅�𝑒𝑥𝑝)𝑁
𝑖

2 , ), root 122 

mean square error as 𝑅MSE = √
∑ (𝑥𝑖_𝑒𝑥𝑝−𝑥𝑖_𝑝𝑟𝑒)2𝑁

𝑖=1

𝑁
, and quality coefficient as QC =123 

Rtrain
2 +Rtest

2

RMSEtrain
2 +RMSEtest

2  (Batista et al., 2021b; Niu et al., 2020). 124 

where N, xi_pre, xi_exp, and x̄exp represent the number of data sets, the predicted values, the 125 

experimental values, and the average experimental data, respectively. Generally, a model with the 126 

maximum R2 value (close to 1) and the minimum RMSE value (close to 0) would exhibit the best 127 

relative performance. 128 

 129 

RESULTS 130 

a. Experimental Analysis 131 

Hardness: Fig. 2(A) illustrates the effects of baking time and temperature on the hardness of the 132 

baked cakes. As can be seen, hardness increased by increasing the baking time. This behavior is 133 

attributed to the role of water as a plasticizer. By reducing the amount of moisture content during 134 

the process, hardness will increase accordingly. In other words, when the moisture content 135 

decreases, the gelatinization or retrogradation of starch and protein interactions are accelerated, 136 

resulting in a harder texture. Hence, the moisture content had a negative correlation with hardness. 137 

During the baking process, the evaporation of water from the surface creates a crust that increases 138 

hardness. This increase may explain the surge in hardness observed after the crust (around 1,000 139 

to 2,000 s, depending on temperature). As the baking temperature rises, water evaporation and 140 

pressure gradients increase considerably, leading to rapid moisture loss. In this respect, many 141 

studies have reported an increase in hardness in bread (Das et al., 2012; Içöz et al., 2004; Matos & 142 
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Rosell, 2012), cake (Al-Muhtaseb et al., 2013a), and Chhana Podo (Kumari et al., 2015) with an 143 

increase in baking time and temperature. 144 

Cohesiveness: Fig. 2B illustrates the effects of baking time and temperature on the cohesiveness 145 

of the cake during baking. As also reported by Clarke & Farrell (2000),the cohesiveness of the cake 146 

increased by prolonging the baking time. Furthermore, this parameter increases with the 147 

temperature rise at a constant time. Final mean cohesiveness values ranged from 0.48 to 0.63 in the 148 

temperature range of 140 to 220℃. During the baking process, a stronger and more cohesive 149 

structure will develop by decreasing the moisture content, thereby increasing the hardness. In 150 

addition, as the temperature increases, the sample absorbs more energy over time, reducing the 151 

processing time needed to achieve the final strong structure. 152 

While cohesiveness increased slowly during the baking process at lower temperatures, this 153 

behavior was significantly different at higher temperatures, showing rapid growth initially and then 154 

reaching a plateau over time. 155 

Springiness: Springiness is the time index to which the cake returns to its original state after 156 

removing the compression force. This parameter, which is controlled by the crumb network’s 157 

strength, is thought to be a good predictor of staling initiation (Cauvain & Young, 2009). 158 

Springiness significantly increased with time and decreased with temperature during baking using 159 

a conventional oven (Fig. 2C). One of the most significant changes at the beginning of baking is 160 

the increase in dough temperature. This factor fills the pores and transforms the product from a 161 

liquid batter or semi-viscous dough into a solid alveolar structure by the end of the baking process, 162 

thereby increasing springiness. Similar results have been reported by Gond et al., (2023), and 163 

Osman et al., (2018). 164 

By increasing the temperature from 140 to 220℃, the cake hardness negatively correlated with 165 

the cake’s springiness, where higher hardness led to lower springiness. As the temperature 166 

increases, the cake absorbs more heat during baking. Consequently, it increases water evaporation 167 

inside the cake batter and the pressure gradient between the dough surface and core, resulting in 168 

crumb softening (Shahapuzi et al., 2015). This outcome is probably the reason for the decrease in 169 

springiness. Moreover, As the processing time increases at a constant temperature, porosity 170 

exhibits an upward trend. Consequently, as porosity increases and the sample swells, the formation 171 

of additional air pore during baking enhances the return to the initial state. Therefore, the observed 172 

increase in springiness appears reasonable, despite the rise in hardness. In this respect, similar 173 
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results have been reported in a study on pizza (Clarke & Farrell, 2000) and Chhana Podo (Kumari 174 

et al., 2015). 175 

 176 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

Figure 2. The effect of temperature and time on hardness (A), cohesiveness (B), springiness (C), 

chewiness (D), gumminess (E), resilience (F). 

 

Chewiness and Gumminess: Cake baked in the conventional oven showed an overall increase 177 

in chewiness and gumminess by prolonging the baking time (Figs. 2D and 2E). One possible 178 

explanation for this result could be the rise in cake hardness over time and with temperature (Fig. 179 
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2A). Therefore, the energy required to break down and chew the samples would increase. The 180 

decrease in moisture content might be another reason for the increase in gumminess during baking. 181 

Similar conclusions have been proposed for cake Al-Muhtaseb et al., (2013b) and for Chhana Podo 182 

Kumari et al., (2015). 183 

Resilience: Fig. 2F shows the changes in resilience during cake baking in a conventional oven. 184 

As can be seen, resilience increased and then decreased, reaching a peak at about the last quarter 185 

of the process time. 186 

The cohesiveness and hardness of the cake increased during baking (Figs. 2A and 2B). These 187 

modifications, along with the differences in height as shown in Fig. 3A, led to favorable results 188 

that improved the formation and stability of the structure. Hence, they ultimately increased the 189 

cake’s resilience and height, allowing it to return to its original state. After a while, when the center 190 

temperature of the cake reaches starch gelatinization and protein coagulation (85-90℃), expansion 191 

stops, but evaporation continues. The end of the cake’s expansion can be demonstrated by the open 192 

structure of the cake, which occurs due to the formation of bubbles and the significant release of 193 

gases. Finally, the cake shrinks at the end of its expansion due to water evaporation (Lostie et al., 194 

2002). The texture would be so hard that it could not recover to its original shape after removing 195 

the compression. As a result, resilience would decrease (Fig. 3B). 196 

Results showed that the resilience increased as the temperature rose from 140 to 220℃. Also, the 197 

increase in the slope of the hardness curve in the final steps had a positive correlation with its 198 

resilience. 199 

 200 

(A) 

 

(B) 

 

Figure 3. Relationship between height (A) and center temperature (B) with resilience of the cake 201 
at 180°C. 202 
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b. Model Analysis 203 

The cake texture properties during conventional baking were predicted by performing AdaBoost 204 

modeling in Python (version 3.6). The selected estimator must have the highest R2 and the lowest 205 

RMSE for the mean values of each temperature in both the training and validation phases (Table 206 

1), resulting in a higher quality coefficient value. Here, the best-estimated number was 50, with the 207 

highest quality coefficient among all textural properties (Fig. 4). 208 

Therefore, a model of textural properties containing two inputs (i.e., time and temperature), 50 209 

estimators, 5 folds, and 6 outputs was selected (Fig. 5). 210 

The efficiency of the composite models was verified using AdaBoost. As it turned out, the 211 

maximum differences between hardness, cohesiveness, springiness, resilience, chewiness, and 212 

gumminess were 0.38, 0.01, 0.05, 0.02, 0.26, 0.21, and 0.41, respectively, suggesting the 213 

effectiveness of the proposed model. Fig. 6 compares the experimental and predicted values to 214 

demonstrate the efficacy of models in predicting texture properties. These graphs indicate the 215 

proximity of the values obtained by the models to the TPA data.216 

 217 

 218 

Figure 4. The effect of estimator number on AdaBoost algorithm performance in the training 219 

and testing phase. 220 
 221 

Table1. R2 and RMSE values in the training and validation phase. 222 

 223 

 224 

 225 

 226 

 Training  Validation 

 R2 RMSE  R2 RMSE 

Hardness 0.99 0.068  0.99 0.167 

Cohesiveness 0.99 0.002  0.98 0.003 

Springiness 0.99 0.005  0.98 0.013 

Resilience 0.99 0.002  0.97 0.005 

Chewiness 0.99 0.035  0.99 0.089 

Gumminess 0.99 0.043  0.99 0.103 
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 227 
Figure 5. AdaBoost topology for Texture prediction. 228 

 229 

Table 2 demonstrates the effect of different cooking temperatures on the prediction of the 230 

AdaBoost algorithm. In fact, we only included the average values of textural properties during 231 

cooking at each temperature in this table to demonstrate that as the process temperature increased 232 

from 140°C to 220°C, the total time and, consequently, the time intervals (at which samples were 233 

taken) decreased, leading to potentially higher measurement errors. As a result, the differences 234 

between predicted and experimental values would increase resulting in lower R2 and higher RMSE. 235 

This indicates a gradual decrease in the accuracy of predictions. Another reason for lower model 236 

accuracy may be the increased chemical reactions at higher temperatures, which could affect the 237 

textural properties. By all means, the least amount of R2 was 0.989, and the maximum amount of 238 

RMSE was 0.034, respectively, proving the ability of AdaBoost in predicting the textural properties 239 

of food. Also, there are several studies on predicting food properties using the AdaBoost algorithm. 240 

The following research examples demonstrate that AdaBoost is a powerful algorithm in this 241 

context.242 
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Figure 6. Predicted and experimental values of TPA characteristics at the phases of training (left 243 

column) and test (right column). 244 

 245 

 246 

 247 

 248 
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Table 2. The effect of process temperature on models accuracy for different textural Properties. 249 

250 

Khan et al. (2022) obtained food glycemic index by data extracted from pictures using five 251 

machine learning (ML) algorithms, i.e., AdaBoost, random forest, decision tree, k-nearest-neighbor 252 

classifier, and Naive Bayes classifier. They divided food into three categories: high, low, and 253 

moderate sugar. The results demonstrated the better accuracy of the AdaBoost model in the 254 

classification of the food glycemic index. 255 

Bambil et al. (2020) collected 40 leaves of 30 varieties of trees and shrubs from 19 families 256 

concerning the plant species detection from its morphology. The studied features from collected 257 

pictures were color, shape, and texture. Also, the models employed for detecting the plant 258 

morphology were three ML algorithms, namely AdaBoost, random forest, and support vector 259 

machine (SVM), and a deep learning ANN model. The least correlation factor was 0.93, 260 

representing the model’s efficiency. 261 

In another study, Kuang et al. (2022) used the AdaBoost algorithm to improve camellia oil fraud 262 

detection. They employed this algorithm to optimize the backpropagation neural network model to 263 

distinguish the fake and pure camellia oil by applying NI-Raman spectroscopy data. The results 264 

showed a great accuracy with R2=0.999 and RMSE= 0.01. 265 

Lin & Zou (2018) used the AdaBoost algorithm to diagnose ripe fruit and their spatial positioning 266 

for mechanized harvesting. The number of pictures used in this research was 120, of which 20 were 267 

for the training part and the rest for the test step. Also, the lowest model accuracy was 0.867. 268 

 269 

CONCLUSIONS 270 

The effect of conventional baking on textural properties were investigated, followed by using 271 

AdaBoost to predict textural properties during the conventional baking of cakes. The results 272 

indicate that the hardness, cohesiveness, chewiness, gumminess, and resilience increased, while 273 

springiness decreased when higher operating temperatures were applied. Model results confirmed 274 
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that both baking temperature and time significantly influence the texture properties. Also, R2 > 275 

0.989 and RMSE < 0.0019 for predicted texture characteristics reveal that the AdaBoost model 276 

was an effective tool for predicting the textural properties of baking products during the process. 277 
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 405 الگوریتم آدابوست رپایهب سنتی پیش بینی بافت کیک طی پخت

 406 نیا نیک سمیه و ،بخشیان جهان نفیسه فرد، سلیمانی صدیقه

 407 چکیده

 408گراد( بر سینتیک درجه سانتی 001و  011، 081، 061، 041پژوهش حاضر به بررسی تأثیر دمای پخت )

 409برای پیش بینی تغییرات بافت در  نام آدابوست راچنین یک متاالگوریتم طبقه بندی آماری بهپردازد. همبافت می

 410داری تحت تأثیر دما طور معنیکند. نتایج تجربی نشان داد که خواص بافت بهطول پخت سنتی کیک بررسی می

 411گیرد. با افزایش زمان و دما، سفتی بافت، چسبندگی، صمغی بودن و قابلیت جویدن افزایش و زمان پخت قرار می

 412در یک چهارم انتهایی  و پذیری متناقض بودحال، تاثیر زمان و دما بر انعطافو فنری بودن کاهش یافت. با این 

 413یین بالا های بافت را با ضریب تعشده نشان داد که الگوریتم آدابوست ویژگیبینیفرآیند حداکثر بود. نتایج پیش

(> 0.9892R( و حداقل ریشه میانگین مربعات خطا )0.0019 <RMSEدر تمام ویژگی ) 414بافتی به دقت های 

 415کند. بنابراین، می تواند به عنوان یک ابزار کارآمد برای پیش بینی خواص بافت کیک در حین پخت بینی میپیش

 416توان برای پیش بینی خواص بافت سایر محصولات پخته شده عمل کند. علاوه بر این، روش پیشنهادی را می

 417 گسترش داد.


