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Abstract 14 

Micromorphological characteristics of seed sculpturing might be effective in circumscribing 15 

the infra-specific taxa in the genus Vicia. The present study was conducted to determine 16 

whether microstructural and seed coat texture data obtained from SEM images can serve as 17 

sufficient tools for delimiting Vicia genus. Other than visual inspections, a variety of texture-18 

based methods, including the four conventional approaches of GLCM, LBP, LBGLCM, and 19 

SFTA, and the four pre-trained convolutional neural networks (namely. ResNet50, VGG16, 20 

VGG19, and Xception models) were employed to extract features and to classify the species of 21 

Vicia genus using SEM images. In a subsequent step, the four unsupervised k-means, Mean-22 

shift, agglomerative, and Gaussian mixture classification methods were exploited to group the 23 

identified Vicia spices based on the underlying features thus extracted. Moreover, the three 24 

supervised classifiers of multilayer perceptron network (MLP), Support Vector Machine 25 

(SVM), and k-nearest neighbor (kNN) were compared in terms of capability in discriminating 26 

the different visually-identified classes. SEM results showed that three classes might be 27 

identified based on the micromorphological character-species connections and that the 28 

differences among the species in the Vicia genus and the validity of Vicia sativa could be 29 

confirmed. Regarding the performance of the classifiers, SFTA textural descriptor 30 

outperformed the GLCM, LBP and LBGLCM algorithms but yielded a decreased accuracy 31 

compared with deep learning models. The combined Xception model and a MLP classifier was 32 

successful to discriminate the species in the Vicia genus with the best classification 33 

performances of 99% and 96% in training and testing, respectively.  34 

Keywords: Scanning electron microscope (SEM), seed sculpturing, Vicia, micromorphology, 35 

plant taxonomy, Convolutional neural networks. 36 
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1. Introduction 38 

Taxonomy identification methods involve destructive sampling followed by physical, 39 

physiological, biochemical, and molecular determinations (Luo et al. 2021). Scanning electron 40 

microscopy (SEM) and light microscopy (LM) have recently been used as important non-41 

destructive taxonomic delimitation tools for various families and genera (Ilakiya and 42 

Ramamoorthy 2021; Jalal et al. 2021). SEM analysis of the seed coat surface has revealed 43 

genetic diversity among Astragaleae and Trifolieae (Rashid et al. 2021), Vicieae (Rashid et al. 44 

2018), Geranium (Aedo 2016), Brassicaceae (Gabr 2018), Hypericum (Szkudlarz and Celka 45 

2016), and so on. More recently, visual assessment of SEM images has been coupled with 46 

computer-aided image processing for better interpretation of SEM images to attain precise and 47 

automatic identification of genera.  48 

Seed surface ornamentation may be a useful and rich source of data for clustering or 49 

classification based on feature determination. SEM coupled with image analysis offers a 50 

powerful tool for evaluating microstructural changes (Pieniazek and Messina 2016). However, 51 

the question remains whether species delimitation and identification can be solely based on 52 

microstructural data and seed coat texture traits.  53 

From among the few detailed studies reported on seed species identification using SEM 54 

coupled with image analysis, one is Prasad et al. in which an image processing software was 55 

used to analyze the seed coat structure of 23 cultivated and six wild sesame germplasms 56 

obtained from digital and SEM images (Prasad et al. 2014). The results indicated that the seeds 57 

of wild sesame species could be well differentiated from those of the cultivated varieties based 58 

on shape and architectural analyses. Pieniazek and Messina conducted SEM image analysis as 59 

an alternative to the analysis of the effects of freeze-drying on the microstructure and texture 60 

of legume and vegetables (Pieniazek and Messina 2016). Results revealed the success of the 61 

combined SEM and classical texture analysis methods as a useful tool for the investigation of 62 

quality parameters.  63 

Depending on the method used for extracting textural features, classical texture analysis 64 

techniques can be quite diverse and varied (Ribas et al. 2020). In recent years, new methods 65 

based on transfer learning with deep convolutional neural networks (CNNs) have emerged that 66 

outperform the classical texture analysis in terms of the significantly better results they yield 67 

(Liu X and Aldrich 2022).  68 

CNNs used to classify seeds have been extensively reported on in the literature in order to 69 

illustrate their applications in recognizing an individual barley kernel variety with satisfactory 70 

accuracy (Kozłowski et al. 2019), determining the viability of mechanically scarified Quercus 71 
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robur L. seeds (Przybyło and Jabłoński 2019), identifying Chickpea (Cicer arietinum L.) seed 72 

varieties (Taheri-Garavand et al. 2021), assessing seed germination in three different crops 73 

(namely, Zea mays, Secale cereale, and Pennisetum glaucum) (Genze et al. 2020), and 74 

obtaining high-throughput soybean seed phenotypes with efficient calculation of morphological 75 

parameters (Yang et al. 2021). So far, the application of CNNs in classifying varieties based on 76 

SEM images of seed coat has been mentioned in only one study, in which five different network 77 

architectures were trained for classifying Allium seed walls based on recognizing SEM images 78 

(Ariunzaya et al. 2023). Nonetheless, no study has yet been reported on the application of CNNs 79 

in classifying varieties based on SEM images of seed coat surfaces.  80 

 It is the objective of the present work to investigate the potential of seed coat sculpturing in 81 

the taxonomy of the genus Vicia, describe seed coat sculpturing at a specific level among the 82 

Iranian species, and evaluate the diagnostic value of this character in terms of variability among 83 

populations of Vicia. Moreover, the current study endeavors to examine the architecture of deep 84 

learning convolutional neural networks and some classical texture analysis methods with 85 

respect to their capabilities in categorizing Vicia species. 86 

 87 

2. Materials and Methods 88 

The methodology used in this work consists of the following five stages: 1) SEM image 89 

acquisition, 2) visual observation of the SEM images thus acquired, 3) classical and deep feature 90 

extraction, 4) feature dimensionality reduction, and 5) clustering and classification. The block 91 

diagram illustrating the image processing and data mining steps involved in the proposed 92 

methodology is presented in Figure 1.  93 

 94 

2.1 Plant material 95 

For the purposes of this study, ninety seed samples belonging to 18 Vicia species were 96 

collected mostly from different locations in Iran. Voucher specimens of the wild specimens and 97 

those obtained from the herbarium were deposited at the Herbarium Conservation Center of 98 

Isfahan University of Technology (Table 1). In order to provide samples with herbarium 99 

specimen labels, the accessions were grown in Chah-Anari Research Farm of Isfahan 100 

University of Technology.  101 
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 102 

Figure 1. Block diagram of the proposed methodology. 103 

2.2 SEM image acquisition  104 

A minimum number of three mature, clean, and perfect seeds from each accession were used 105 

for taking SEM images and the subsequent analyses. The seeds were mounted on a twin-walled 106 

conductive metal stand and prepared without any dehydration using a gold grain of 107 

approximately 8-30nm thick and a BAL-TEC (Baizers) SCD 005 Sputter Coater. SEM photos 108 

from the lateral and frontal views were then taken at different magnifications (SEM, Model 109 

XL30, PHILIPS – EDAX). The density of the projections per square mm of the area at a given 110 

magnification (9 cm2 at a magnification of 1000, representing 900 m) was determined 111 

thoroughly on the display screen. Other useful specifications such as projection height, form, 112 

number, and ridge sharpness were measured and recorded. Stern (Stern 1983) terminology was 113 

used to describe the SEM images. 114 

 115 

 116 
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Table 1. Voucher specimens and herbarium data of the selected species of Vicia used in the 127 

SEM study of seed micromorphology.  128 

No. Species/ Section 

Herbarium 

number Location/Province 

Currently herbarium 

nomenclature 

 Sect. Anatropostylia    

1 V. koeieana 2510 Bakhtaran V. koeieana Rech. F. 

 Sect. Cracca    

2 V. aucheri 5698 Mazandaran V. aucheri Boiss. 

3 V. cracca 99 Isfahan Vicia cracca (L.) 

4 V. akhmaghanica 3774 West Azarbayegan V. akhmaghanica Kazar 

5 V. cappadocica 19571 West Azarbayegan V. cappadocica Boiss & Bal. 

6 V.ciceroidea 12292 Tehran V.ciceroidea Boiss 

7 V. cinerea 49536 BandarAbbas V. monantha Retz. subsp. 

monantha Retz. 

8 V. crocea 12781 Gorgan V. crocea (Desf.) B. Fedstch. 

9 V. multijuga 51707 Tehran V. multijuga (Boiss.) Rech. f.,V. 

10 V. variabilis 45924 Fars V. variabilis Grossh. 

11 V. villosa 26316 Lorestan V. villosa Roth 

 Sect. Ervilia    

12 V. ervilia 63125 Khozestan V. ervilia (L.) Willd 

13 V. tetrasperma 28867 Islamshar V. tetrasperma (L.) Schreb. 

 Sect. Vicia    

14 V. angustifolia 60254 Gilan V. sativa subsp. nigra (L.) Ehrh. 

15 V. hyrcanica 7/4 Isfahan V. hyrcanica Fisch & C. A. 

Mey. 

16 V. michauxii 20/2 Isfahan V. michauxii Spreng 

17 V. pregrina 24/2 Isfahan V. pregrina 

18 V. sativa 8714 Mazandaran V. sativa L. 

 129 

2.3 Extracting classical texture features  130 

Classical image texture analysis was carried out using Open CV and Scikit-image libraries 131 

of the Python programming language. Texture features were extracted from thirty-six 132 

distinctive frontal and lateral SEM images taken at different magnifications from eighteen 133 

different Vicia species. Image augmentation was used to generate new transformed versions of 134 

images to increase the size and diversity of the dataset. The images were initially read and 135 

converted to grayscale before they were split up into six equal square blocks. Each block was 136 

convolved with Gabor filter, which is an orientation sensitive filter used for texture analysis to 137 

achieve the highest response at edges where texture changes (Kaus et al. 2001).  138 

To extract texture features, use was made of four of the successful high-level feature extraction 139 

algorithms, including gray level co-occurrence matrix (GLCM), local binary pattern (LBP), 140 

local binary gray level co-occurrence matrix (LBGLCM), and segmentation-based fractal 141 

texture analysis (SFTA) (Table 2). These texture descriptors were computed and stored for later 142 

comparisons.  143 

 144 

 145 

 146 

 147 
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Table 2 Number of features extracted by the different classical image texture analysis methods. 148 

Classical image texture 

analysis method  No. of features extracted  

Variance ratio (%) 

PC1  PC2  PC3 Overall 

GLCM  20  50.1  32.6  - 82.7 

LPB  26  64.32  20.98  - 85.3 

LBGLCM  20  70.15  19.98  - 90.13 

SFTA  48  36.54  25.64  19.65 81.83 

 149 

2.4. Feature extraction using pre-trained CNN models 150 

The feasibility of CNN discrimination was investigated in the present work by loading four 151 

pre-trained models with pre-trained weights using python Tensorflow and Keras frameworks. 152 

The pre-trained convolutional networks used in this study (namely, ResNet50, VGG16, 153 

VGG19, and Xception) had been trained on features from ImageNet database and were 50, 16, 154 

19, and 71 layers deep, respectively (Table 3), with network depth defined as the largest number 155 

of sequential convolutional or fully-connected layers on a path from the input layer to the output 156 

one. The last fully-connected layer of each network was removed, the model weights were 157 

frozen, and the networks were used as feature extractors. 158 

Table 3. Specifications of the pre-trained CNNs. 159 
Pretrained 

CNNs 

Network 

depth 
Image size 

Non-trainable 

parameters 

No. of output 

features 

No. of PCs to reach 80% 

variance of the dataset 

ResNet50 50 2242243 23,587,712 2048 117 

VGG16 16 2242243 14,714,688 512 117 

VGG19 19 2242243 20,024,384 512 117 

Xception 71 2292293 20,861,480 2048 68 

 160 

2.5 Dimensionality reduction 161 

The dimensionality of the feature space was reduced by Principal Component Analysis 162 

(PCA) as an unsupervised dimensionality reduction technique. The number of PCs was selected 163 

so as to reach a minimum variance of 80% of the data (Tables 2 and 3). Given the large number 164 

of principal components, the data were visualized using the t-SNE dimensionality reduction 165 

method for better performance of the deep feature extractors.  166 

 167 

2.5 Clustering and classification  168 

The conventional and deep feature sets were used as input to the centroid-based (i.e., k-169 

means), density-based (i.e., mean shift), probabilistic (i.e., Gaussian mixture), and hierarchical 170 

(i.e., agglomerative) clustering methods.  171 

In this study, the above clustering methods were examined with respect to their 172 

performance against three supervised similarity indices: 1) a peer-to-peer correlation metric 173 

(i.e., Jaccard coefficient), 2) an information theoretic-based approach (i.e., Normalized Mutual 174 

information (NMI)), and 3) a matching set similarity measurement index (accuracy).  175 
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The three supervised classifiers of multilayer perceptron (MLP), support vector machine 176 

(SVM), and k-nearest neighbor (kNN) were compared in terms of their ability to recognize 177 

three visually grouped species. In the back-propagation multilayer perceptron classifier, the 178 

number of neurons in the input layer was set equal to the number of features chosen while that 179 

of the output ones was set to 3 (equal to the three visually specified classes) with the logistic 180 

sigmoid functions used in the hidden layer. The MLP was trained using the Stochastic Gradient 181 

Descent (SGD( with the learning rate (𝜂), the exponent for inverse scaling learning rate, and 182 

the momentum coefficient (𝜇) being set to 0.001, 0.5, and 0.6, respectively. Finally, the network 183 

was trained and tested for 1000 epochs. In addition, in the methodology proposed in this paper, 184 

the training datasets were classified using SVM with a Gaussian Radial Basis Function (RBF) 185 

kernel.  186 

To develop classifiers, the dataset consisting of a total of 768 sliced blocks was randomly 187 

split into training and testing (at a split ratio of 80:20) datasets. Within the training set, the 10-188 

fold cross-validation was employed to optimize the parameters and estimate the prediction 189 

performance of the models.  190 

 191 

3. Results 192 

3.1 Visually identified clusters 193 

Despite a generally more or less similar sculpturing pattern, the seed characters of the 194 

selected Vicia species observed exhibited patterns of the papillose type projections (Figures 2-195 

4), representing a variety of distinct shapes, heights, and coronations. The images taken from 196 

seed coat ornamentation did not show significantly adequate agreement with the classification 197 

proposed in Flora Iranica (Table 3).  198 

Among the samples studied, the projections were either of a primary or a secondary type 199 

(only seen in V. koeieana). The primary ones could be described as tuberculate, colliculate, or 200 

aculeate. The proximal part of the projections showed a vertical profile of acute or obtuse 201 

retusus, truncate, or pungens but either curved or erect when seen from a lateral view. The tip 202 

of the projections in the images taken from above appeared rounded, elliptical, or satellite 203 

within the texture configuration. Based on the samples studied, three main projection type 204 

groups were recognized. The first group included seed coats in which the seed surface 205 

projections originated from the projection tips and continued to the background surface to form 206 

Colliculate or Tuberculate projections (Figure 2 a). This group included the species V. koeieana, 207 

V. tetrasperma, and V. crocea. Those seeds on which the projections originated from below the 208 

peak to form an Aculeate were in the second group, which included the species V. angustifolia, 209 
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V. villosa, V. pregrina, V. sativa, V. cappadocica, V. cinerea, V. ciceroidea, V. multijuga, V. 210 

akhmahgancia, V. aucheri, V. cracca, and V. ervilia (Figures 2b & 3). Finally, the third group 211 

that contained the species V. hyrcanica, V. variabilis, and V. michauxii had projections starting 212 

from below the peak but formed Tuberculate projections (Figure 4). Figure 5 shows some of 213 

the salient seed coat topographic characters of the various species studied for use in developing 214 

the key.  215 

A review of the literature reveals the rival theories on how to classify species into sections. 216 

For example, Boissier (Boissier and Buser 1888) divided the genus Vicia into two sects; namely, 217 

Sec. Euvicia and Sec. Cracca (as reported in Cronquist (Cronquist 1988)) while Engler (Engler 218 

1892) divided it into the four Sec. Euvicia, Sec. Cracca, Sec. Euvicia (link) WDKOH, and Sec. 219 

Euvicia (L.) SF Grag. Other classifications have also been proposed (Fedchko 1948). No 220 

satisfactory agreement was observed between the images taken from seed coat ornamentation 221 

in this study and the four-way classification proposed in Flora Iranica; hence, the latter cannot 222 

be reliably used as a standard reference descriptor for the classification of Vicia species 223 

(Chrtková-Žertová 1979). 224 

While most efforts on the classification of this genus have been based on such morphological 225 

characters as shape, size, and hilum location (Gunn 1971; Voronchikhin 1981), analysis of more 226 

species of the genus may reveal a greater variety in seed coats. This has been shown by Rashid 227 

et al. (Rashid et al. 2018) in their classification of the different species of the genus Vicia on 228 

the basis of seed characters. Extensive studies of morphological characters in other plants have 229 

been almost exhaustive, leaving out only a few characters and traits. However, the great 230 

differences and similarities among the plants in a species make their classification difficult. 231 

Indeed, a great many species do not lend themselves to individual study to the extent that most 232 

present-day scholars even claim that most observations in the past have been fallacious or 233 

misinterpreted. Consequently, much emphasis is being nowadays laid on trivial traits such as 234 

scale, hair, spores, or epidermal structure as descriptors for species or genus identification. 235 

Pakravan et al. (Pakravan et al. 2001) showed that seed coat micro-ornamentation types are 236 

especially important as identifier characters, particularly in close species that have 237 

distinguishable differences such as pore-like structures on seed coat, albeit they are quite similar 238 

in a general way. The authors concluded that the ornamentation types could be used as 239 

distinguishing characters in very close species while judgment on more alien species had better 240 

be reduced to variety level. 241 

It is, therefore, impossible to draw firm conclusions on the overall Vicia taxonomy based on 242 

the SEM analysis of only 18 species out of the 160 existing ones. Drawing upon previous work 243 
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on the taxonomy of Vicia as a model and the results obtained from the present study, it might 244 

be suggested that seed coat ornamentation types (especially the size and shape of the projections 245 

on the seed external coat) might be regarded as the significant and systematic characters and 246 

that repeated images derived from image processing techniques might be exploited in novel 247 

classifications and interpretation of the results. In addition to identification for which these 248 

characters are primarily meant (e.g., recognition and pattern associations among individuals or 249 

groups as additional characteristics to distinguish different Vicia species), these characters 250 

could be utilized as the taxonomic key in plant sciences. 251 

 252 

3.2 Clustering performance 253 

Not all the proposed clustering approaches can generally yield satisfactory clustering results. 254 

Indeed, accuracy and Jaccard indices of less than 0.55 were recorded for all the clustering 255 

methods (Table 4). With all the conventional and deep feature sets, the visually classified 256 

species could not be reasonably discriminated; this was evidenced by accuracy values ranging 257 

from 0.36 to 0.55. While the mean-shift clustering method failed to recognize the visually 258 

identified clusters so that most of the CNNs feature sets were partitioned into less than three 259 

clusters, higher values of accuracy and Jaccard indices have been reported for this method. It 260 

might be Jaccard and Accuracy similarity indices provide incorrect information when the 261 

numbers of cluster members are dissimilar. NMI index fixes this problem by normalization. 262 

The results in the present case indicated that the three k-means, agglomerative, and Gaussian 263 

mixture clustering methods attained their highest NMI index values with the SFTA feature set 264 

(Table 4). Moreover, when these same clustering methods were used, the silhouette coefficient, 265 

which is an internal evaluation metric, was greater than 0.5 with all the feature spaces (Figure 266 

6), confirming the existence of a clustering structure in the data.  267 

Chuang et al. (Chuang et al. 2006) mentioned that image clustering with the use of spatial 268 

information such as image textural features mostly leads to undesirable results. Generally, 269 

common image clustering draws upon image segmentation based on pixel colors. Moreover, 270 

better clustering results can be achieved by combining color and texture features (Wei Tan et 271 

al. 2018). This is while SEM images are usually described as grayscale images and are colorless 272 

so that color features cannot be extracted. 273 

Although the clustering based on SEM images was not successful in this study, it revealed 274 

the clustering structure inherent in the data. It also showed that SEM images of the same 275 

magnification and taken from a specified angle could surely improve the clustering performance 276 

since image resolution, magnification, and angle of view greatly affect clustering performance. 277 
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In conclusion, using a larger dataset with SEM images taken from a predefined direction and 278 

at known magnification ratios might be recommended if improved clustering performance and 279 

detection of the proposed method are sought.  280 

  

(a) (b) 

Figure 2. a) A typical primary projection in V. koeieana seen as a Tuberculate type of the 281 

rounded or irregular shape on the seed, b) Primary projections in V. ervilia seen as Colliculate 282 

projections of the short type with elliptical to irregular forms (side- and front-view images are 283 

placed in the top and bottom rows, respectively). 284 

 285 

   

(a) (b) (c) 

 286 
Figure 3. Primary projections in a) V. akhmaghanica, b) V. craca, and c) V. peregrina. The 287 

projections in all these species originate from below the peak to form an Aculeate and the 288 

proximal part of the projections exhibit a vertical profile of acute Aculeate (side- and front-289 

view images are placed in the top and bottom rows, respectively). 290 

 291 
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(a) (b) 

Figure 4. Primary projections in a) V. michauxii, and b) V. variabilis. Features in the two 292 

species are seen as Tuberculate (side-view and front-view images are placed in the top and 293 

bottom rows, respectively). 294 

 295 

Figure 5. The description key for the seed coat ornamentation using Stern’s terminology (Stern 296 

1983). 297 
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 298 

Figure 6. Computed Silhouette coefficient in evaluating the different clustering methods (KM: 299 

K-means, AG: Agglomerative, and GM: Gaussian Mixture). 300 
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Table 3. Seed micromorphological traits of eighteen Vicia species using SEM technology along with those of the species examined in different 301 

flora. 302 
Main projection type 

group 
G1 G2 G3 

Flora Orientalis   
Sect. II Cracca 

Series B 
     

Sect. II. 

Cracca 

SeriesA 

Sect. I. Euvicia 
Sect. I. 

Euvicia 
 

Flora of Turkey 

Sect. 

Anatropostylia 

Plitm 

Sect. Cracca 

S. F. Gray 

Sect. Ervum 

(L.) S. F. Gray 

Sect. Cracca 

S. F. Gray 
      

Sect. 

Vicia 
 

Sect. 

Vicia 
 

Selected Vicia species 1 2 3 4 5 15 6 7 8 9 10 11 12 13 14 16 17 18 

Projection type Ps Pt Pb 

Seed surface pattern T T C A T 

Base and apex angles O Q 

Seed shape Er Cu Er 

Characteristic projections 

at the tip of the seed 
S R El 

Legend: 303 

Ps: Primary and secondary projections Pt: Primary projections at the endmost tip (peak) Pb: Primary projections below the peak 

T: Tuberculate A: Aculeate C: Colliculate 

O: Obtuse Q: Acute 

Cu: abaxially curved Er: abaxially erect 

1. V. koeieana 2. V. crocea 3.V. tetrasperma 4. V. ervilia  5. V. cappadocica 6. V. cinerea 7. V. cracca 8. V. akhmaghanica 9. V. aucherii 

10. V. multijuga 11. V. ciceroideae 12. V. sativa 13. V. peregrina 14. V. angustifolia 15. V. villosa 16. V. michauxii 17. V. hyrcanica 18. V. variabilis 

 304 

 305 
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Table 4. Clustering results with classical texture and CNN selected features when both side-view 306 

and front-view images were used. 307 

  ACC JAC NMI    ACC JAC NMI 

GLCM 

KM 0.39 0.24 0.02  

ResNet50 

KM 0.54 0.37 0.10 

AG 0.45 0.29 0.02  AG 0.42 0.26 0.10 

GM 0.38 0.23 0.02  GM 0.42 0.26 0.10 

MS 0.39 0.24 0.02  MS 0.5* 0.33* 0.00* 

LBP 

KM 0.41 0.26 0.03  

VGG16 

KM 0.42 0.26 0.07 

AG 0.37 0.23 0.01  AG 0.50 0.33 0.05 

GM 0.39 0.24 0.02  GM 0.37 0.25 0.05 

MS 0.4 0.25 0.02  MS 0.5* 0.33* 0.00* 

LBGLCM 

KM 0.47 0.31 0.06  

VGG19 

KM 0.42 0.27 0.08 

AG 0.44 0.28 0.05  AG 0.5 0.33 0.05 

GM 0.38 0.23 0.09  GM 0.36 0.19 0.06 

MS 0.38 0.23 0.06  MS 0.50* 0.33* 0.00* 

SFTA 

KM 0.44 0.28 0.15  

Xception 

KM 0.33 0.2 0.07 

AG 0.50 0.33 0.16  AG 0.55 0.37 0.14 

GM 0.48 0.32 0.12  GM 0.40 0.26 0.09 

MS 0.47 0.31 0.08   MS 0.44 0.29 0.1 

KM: K-means, AG: Agglomerative, GM: Gaussian Mixture, MS: Mean-shift 308 
ACC: Accuracy index, JAC: Jaccard index, NMI: Normalized Mutual Information index. 309 
* Mean-shift clustering method failed to recognize the visually identified clusters, feature sets were partitioned into 310 
less than three clusters. 311 
  312 
3.3 Classification Results 313 

Based on the classification performances reported in Table 5, the best results were recorded 314 

for SFTA feature space. When both side-view and front-view images were used for the 315 

classification, a MLP with two hidden layers of 10 and 5 neurons achieved the best accuracy 316 

values of 90% and 85% in the training and testing processes, respectively. However, 317 

classification accuracy rose just when side-view images were used. In this case, a MLP with 318 

two hidden layers of 6 and 3 neurons achieved its best accuracy values of 96% and 88% in the 319 

training and testing sets, respectively. Results also revealed that the accuracy index values of 320 

SVM and kNN were not significantly different from those obtained with MLP. 321 

The classification performances of different deep feature extraction models are summarized 322 

in Table 5. Clearly, three classes were better separated in the deep feature sets than they were 323 

in the conventional ones. Xception yielded the best classification result. As reported in Table 324 

5, the deep feature extraction methods outperformed the SFTA traditional textural descriptors. 325 

The features yielded by Xception and a neural network with two hidden layers of 10 and 5 326 

neurons led to better classification results with the high accuracy values of 99% and 96% in the 327 

training and testing sets, respectively. In agreement with these results, Wei Tan et al. (Wei Tan 328 
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et al. 2018) reported that the best method for the classification of plant species would be a MLP 329 

classifier with CNN features. Similar studies conducted on texture analysis of SEM images not 330 

only indicated the effectiveness of combining deep and textural features (Cai et al. 2022) but 331 

also showed that convolutional neural networks would perform equally well or better than the 332 

traditional algorithms (Liu L et al. 2016; Liu X and Aldrich 2022). The high capability of pre-333 

trained neural networks has also been demonstrated in barley varietal classification with an 334 

accuracy value of less than 75% in varietal classification when color, texture, and 335 

morphological attributes were used and above 93% when pre-trained convolutional neural 336 

networks were employed (Kozłowski et al. 2019). 337 

 338 

Table 5. Classification results with classical texture and CNNs selected features when both 339 

side-view and front-view images were used. 340 
Accuracy index     Accuracy index   

Test Train    Test Train  

0.74 0.96 MLP 

ResNet50 

 0.65 0.66 MLP 

GLCM 0.73 0.97 SVM  0.63 0.65 SVM 

0.71 0.84 KNN  0.54 0.75 KNN 

0.75 0.99 MLP 

VGG16 

 0.70 0.74 MLP 

LBP 0.72 0.97 SVM  0.70 0.72 SVM 

0.70 0.86 KNN  0.62 0.81 KNN 

0.75 0.96 MLP 

VGG19 

 0.67 0.71 MLP 

LBGLCM 0.71 0.96 SVM  0.66 0.71 SVM 

0.75 0.84 KNN  0.57 0.81 KNN 

0.96 0.99 MLP 

Xception 

 0.85 0.90 MLP 

SFTA 0.94 0.99 SVM  0.80 0.88 SVM 

0.94 0.98 KNN  0.81 0.91 KNN 

MLP: Multilayer perceptron, SVM: Support Vector Machine, KNN: K-Nearest Neighbors. 341 

 342 

Regarding the application of pre-trained CNN models coupled with common classifiers, the 343 

results obtained proved consistent with those used VGG16+SVM in the determination of 344 

physiological disorders in apple (Buyukarikan and Ulker 2022), DenseNet169+MLP model in 345 

classifying rice plant diseases (Narmadha et al. 2022), AlexNet + SVM in assessing the severity 346 

of tomato late blight disease (Verma et al. 2020), and classifying rice plant disease (Shrivastava 347 

et al. 2019) where reached the highest accuracy of 96.11, 97.68%, 93.4% and 91.37%, 348 

respectively.   349 

In conclusion, the deep models were found capable of extracting effective features for 350 

classification equally well or even better than the conventional image texture analysis methods 351 

despite the fact that they had not been trained using colorless SEM images of seed coat surfaces.  352 
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4. Conclusion 353 

The paper reported on the significance of SEM image observations and analysis for the 354 

classification of the different species of the genus Vicia into different sections. In agreement 355 

with recent studies (Asadova and Asgarov 2018), the study showed that the diversity in seed 356 

coat ornamentation is far less flexible and variable compared to that in growth and flowering 357 

structures and that seed coat ornamentation could, thus, be exploited to disclose interspecies 358 

diversity. The visual classification developed in this study showed that micromorphological 359 

traits could be used as good distinctive criteria. Image analysis of Vicia species coupled with 360 

clustering and the classification of this genus based on morphological characters 361 

(microtaxonomy) could efficiently differentiate the Vicia species. All the pre-trained CNNs 362 

deep feature extractors were found to perform equally well or better than the traditional 363 

algorithms (GLCM, LBP, LBGLCM, and SFTA). Of the four CNNs used in this study, 364 

Xception yielded the most reliable features and the best classification results were obtained 365 

using a MLP classifier. Transfer learning was exploited to reduce the labor-intensive aspects of 366 

the taxonomic classification of the genus based on seed coat surfaces. However, the scientific 367 

impact of this research should be augmented by studying more samples to develop a more 368 

accurate and robust classifier. 369 

 370 
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 490 به روش مرسوم SEMبافت تصاویر  تحلیل و تفسیربا استفاده از  یرانیا Vicia یاز گونه ها یبرخ یطبقه بند

 491 قیعم یریادگیو 

 492 مهرنوش جعفری، سید علی محمد میرمحمدی میبدی، و محمد حسین اهتمام

 493 چکیده

 494د. مطالعه نمؤثر باش Viciaجنس  یهاگونه شناساییدانه ممکن است در  های روی سطحبرجستگی یکیکرومورفولوژیم یهایژگیو

 495به عنوان ابزار  توانندیم SEM ریآمده از تصاودستپوشش دانه به تزئیناتو  یزساختاریر یهاداده ایآ نکهیا نییحاضر به منظور تع

 496ر بر بافت، از جمله چها یمبتن یانواع روش ها ،یبصر بررسیاز  رید. به غاستفاده شوند، انجام ش Viciaجنس  شناسایی یبرا یکاف

 ResNet50 ،497 یعنی) دهیآموزش د شیکانولوشن از پ ی، و چهار شبکه عصبSFTA، و GLCM ،LBP ،LBGLCMمرسوم  روش

VGG16 ،VGG19 و ،Xceptionجنس  یگونه ها دسته بندی وها  یژگیاستخراج و ی( براVicia ریتصاو با استفاده از SEM 498 

 Gaussian mixture 499و  k-means ،Meanshift، agglomerative یبندچهار روش طبقه ،یاستفاده شد. در مرحله بعد

 500گرفتند.  رقرا یبردارمورد بهره ،شدهاستخراج یهایژگیبر اساس و شدهییشناسا Vicia هایگونه یبندگروه یبدون نظارت برا

 501 نیترکینزد-k( و SVM) بانیبردار پشت نی(، ماشMLP) هیشبکه پرسپترون چندلا شامل نظارتبا  کنندهیبندسه طبقه ،همچنین

 502نشان داد که  SEM جیشدند. نتا سهیمقا ،یبصر به روش شدهییمختلف شناسا هایدسته زیدر تما تی( از نظر قابلkNN) هیهمسا

 503و  Vicia ها در جنسگونه نیشود و تفاوت ب ییگونه شناسا-صفت یکیزمورفولوژیر یوندهایممکن است سه کلاس بر اساس پ

 GLCM ،504 یهاتمیاز الگور SFTA یبافت رگفیتوصعملکرد  ها،کنندهیبندطبقه نتایجاست. با توجه به  دییقابل تأ Vicia sativaاعتبار 

LBP  وLBGLCM  یبینشان داد. مدل ترک، قیعم یریادگی یهانسبت به مدلتری بهتر بود اما عملکرد ضعیف Xception   505و 

MLP ها در جنس گونه کیدر تفکVicia 506 موفق بود. وندر آموزش و آزم %99و  %99 بیبه ترت یبندعملکرد طبقه نیبا بهتر 

 507 


