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ABSTRACT 

Subsurface drainage systems are used to control the depth of the water table and to 

reduce or prevent soil salinity. Water flow in these systems is described by the Boussinesq 

Equation, and the Advection-Dispersion Equation coupled with the Boussinesq Equation 

is used to study the solute transport. The objective of this study was to propose a finite 

difference solution of the Advection-Dispersion Equation using a lineal radiation 

condition in the drains. The equations’ parameters were estimated from a methodology 

based on the granulometric curve and inverse problems. The algorithm needs the water 

flow values, which were calculated with the Boussinesq Equation, where a fractal 

radiation condition and variable drainable porosity were applied. To evaluate the solution 

descriptive capacity, a laboratory drainage experiment was used. In the experiment, the 

pH, temperature, and electric conductivity of drainage water were measured to find the 

salt’s concentration. The salts concentration evolution was reproduced using the finite 

difference solution of the Advection-Dispersion Equation, and the dispersivity parameter 

was found by inverse modelling. The numerical solution was used to simulate the leaching 

of saline soil. The result showed that this solution could be used as a new tool for the 

design of agricultural drainage systems, enabling the optimal development of crops 

according to their water needs and the degree of tolerance to salinity. 

Keywords: Boussinesq Equation, Dispersivity parameter, Finite difference, Fractal radiation 

condition, Inverse modeling. 
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INTRODUCTION 

 Soil salinity is a worldwide problem as well as 

in Central and Northern Mexico. Nearly 8.4 

million ha worldwide are affected by soil salinity 

and alkalinity, of which about 5.5 million ha are 

waterlogged (Ritzema et al., 2008). The problem 

worsens in arid and semiarid areas, in soils with 

insufficient drainage (Mousavi et al., 2009) and 

high evaporation (Ruiz Cerda et al., 2007). In 

Mexico, there are 6.46 million ha irrigated 

mainly in the central and northern areas 

(CONAGUA, 2010); 10-30% of irrigated land is 

affected by salinity and nearly two thirds of this 

area is located in the North (IMTA, 1998).  

 The salinization of these irrigated areas is an 

increasing problem and the lands are abandoned; 

therefore, a technical and economic alternative to 

recover this land is needed. Agricultural 

subsurface drainage is a solution which takes 

into account the technology by environment 

interaction, as well as lowering the water table 

levels along with the salt concentration in the soil 

profile (Ritzema et al., 2008). 

 The dynamics of water drainage systems has 

been studied by applying the Boussinesq 

Equation (1904) for unconfined aquifers using 

the finite element technique (Verhoest et al., 

2002; Zavala et al., 2007) and the finite 

difference (Sing et al., 2009; Chavez et al., 
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2011), and the solutes dynamics has been studied 

by applying the Fick’s law (Taylor, 1954; Elder, 

1959; Fischer, 1967). These results in the 

Advection-Dispersion Equation, namely, by 

gravity and Fick’s law. The solutes are also 

found in the gas phase and adsorbed by soil in 

the solid phase, the first phase is disregarded for 

purposes of transport modeling in water, but it is 

really important in terms of the amount of 

fertilizer transferred into the atmosphere at a 

given time (Holly, 1975, 1985; Rutherford, 

1994), and incorporating the adsorbed substance 

in the solid phase. The relationship between the 

substance which is transported by the water flow 

and the substance which is adsorbed and 

exchanges in the soil solid structure is known as 

the adsorption isotherm (Taylor, 1954; Elder, 

1959; Fischer, 1967).  

 A large number of models for simulating 

solute transport in the unsaturated zone are now 

increasingly being used for a wide range of 

applications in both research and management 

(Mirabzadeh and Mohammadi, 2006), some of 

the more popular models include SWAP (van 

Dam et al., 1997), HYDRUS-1D (Simunek et 

al., 1998), STANMOD (STudio of ANalytical 

MODels) (Simunek et al., 1999), UNSATH 

(Fayer, 2000) and COUP (Jansson and Karlberg, 

2001), but the majority of applications for water 

flow in the vadose zone requires a numerical 

solution of the Richards Equation (1931), also 

requires more calculation time in order to find 

the equation solution. 

 This study aimed to solve the one-dimensional 

Advection-Dispersion Equation using the 

technique of finite differences, coupled with the 

Boussinesq Equation in order to model the 

transport of solutes in subsurface drainage 

systems, assuming that the solute is concentrated 

in the liquid phase. 

MATERIALS AND METHODS 

Boussinesq Equation 

 In the study of the water dynamics in 

agricultural subsurface drainage systems 

using the Boussinesq Equation, the 

variations in hydraulic head along the drain 

pipes ( y direction) are negligible with 

respect to head variations in the cross 

section ( x direction). It is the one-

dimensional Boussinesq Equation which is a 

result of the Continuity 

Equation, ( ) ( )∂ ∂ + ∂ ∂ = wH t Hq x   Rυ , 

and the Darcy’s law, = − ∂ ∂
s

q K H x , 

namely: 

( ) ( )
∂ ∂ ∂ 

= + ∂ ∂ ∂ 
w

H H
H T H R

t x x
µ  

     (1) 

Where, ( )Hµ  is the storage capacity, 

( ),=H H x t  is the elevations of the free 

surface or hydraulic head above the 

impervious layer [ ]L , and is a function of 

the horizontal coordinate ( x ) and the time 

( t ), ( )T H  is the transmissivity given by 

( ) = sT H K H  
2 1L T −   , 

w
R  is the volume 

of recharge in the unit of time per unit of the 

aquifer 
3L   , ( )= Hυ υ  is the drainable 

porosity as a head function, and 
s

K  is the 

saturated hydraulic conductivity 
1LT −   .  

 The storage capacity (Fuentes et al., 

2009) is: ( ) ( )= − −s sH H Hµ θ θ , where 

s
θ  is the saturated volumetric water content 

3 3L L−   , and ( )− sH Hθ  represents the 

water content evolution in the position 

=
s

z H , while the free surface decreases, 

and z  is the elevation of ground surface 

[ ]L .  

Drainable Porosity 

 To calculate the storage capacity and the 

drainable porosity, it is necessary to provide 

the soil water retention curve. The model of 

van Genuchten (1980) was accepted in field 

and laboratory studies: 

( ) ( ) ( )1
−

 = + − +
 

m
n

r s r d
θ ψ θ θ θ ψ ψ , 
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where ψ  is the soil water potential defined 

by ( )= −H zψ  [ ]L , 
d

ψ  is the pressure 

scale parameter [ ]L , 
s

θ  is the saturated 

volumetric water content 
3 3L L−   , 

r
θ  is the 

residual volumetric content 
3 3L L−   , m  

and n  are parameters (dimensionless) that 

determine the shape of the soil water 

retention curve. The introduction of this 

equation in the storage capacity results in the 

following expression for storage capacity: 

( ) ( ) ( )( )1 1
−  = − − + −   

m
n

s r s d
H H Hµ θ θ ψ

 The saturated volumetric water content can 

be assimilated to the soil porosity ( )φ , 

dimensionless, this is calculated with the 

formula 1= −
t o

φ ρ ρ , where 
t

ρ  is the 

bulk density 
3ML−    and 

o
ρ  is the 

particles density 
3ML−   ; the residual 

volumetric water content ( )rθ  is considered 

to be zero. 

Initial and Boundary Conditions 

To study the agricultural drainage by 

Equation (1), the initial and boundary 

conditions should be defined at the domain. 

The initial condition is established from the 

water table position at the initial time. 

Dirichlet and Neumann boundary type 

conditions can be used on drains to solve 

Equation (1), the pressure head on the drains 

is required in the first condition, whereas the 

drainage flux is required in the second one 

(Zavala et al., 2007). A third type of 

boundary condition is a linear combination 

of the precedent conditions; this condition 

includes a resistance parameter to the flow at 

the soil–drain interface. Null resistance 

corresponds to the Dirichlet condition and 

infinite resistance corresponds to Neumann 

condition. The third condition is a radiation 

type condition (Carslaw and Jaeger, 1959). 

In the case of drainage, the radiation 

condition establishes that drainage flux is 

directly proportional to the pressure head on 

the drain and inversely proportional to the 

resistance in the interface between soil and 

the drainpipe wall in concordance to the 

Ohm’s law. 

 The hydraulic head measured above the 

impermeable barrier ( )H x,t  is associated 

with the head ( )h x,t  measured from above 

the drains using: ( ) ( )= +oH x,t D h x,t , 

where 
o

D  is the distance from the 

impermeable barrier to the drains [ ]L . 

Transversal variation of h at the beginning is 

considered as the initial condition 

( ) ( )0 = sh x, h x , where 
s

h  is the head on 

the drain in the initial time [ ]L . 

 The fractal radiation condition for the 

Boussinesq Equations is given by Zavala et 

al. (2007): 
2

0
 ∂

− ± = 
∂  

s

s s

s

h h
K q

x h
 ;

 0=x ,L    (2) 

Where, the positive sign corresponds to 

0=x  and the negative sign to =x L . L is 

the distance between drains; 
s

q  is the 

corresponding flux to 
s

h  and it is a function 

of the soil-drain interface characteristic 
1LT −   . For the s  parameter, the authors 

argued that it is defined by =s D E , where 

D  is the effective fractal dimension to the 

soil-drain interface, and 3=E  is the 

Euclidean dimension of physical space. The 

relation of the s  parameter and effective 

porosity is obtained from the equation 

( ) 21 1− + =
s sφ φ  given by Fuentes et al. 

(2001). Equation (2) contains as particular 

cases the lineal radiation condition when 

1 2=s  and the quadratic radiation 

condition when 1=s . In a system of 

parallel drains, the drained water flows by 

length unit at each drain and is given 
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by:

( ) ( ) ( )
2

2 0 0= +      
s

d o s s
Q t D h ,t q h ,t h , 

and the cumulative drained depth is 

calculated by ( ) ( )
0

1
= ∫l

t

d
t Q t dt

L
, where 

t  is the integration variable. 

Solute Transport Equation 

 The Advection-Dispersion Equation used 

to study the solute transport (Abassi et al., 

� 2003; Zerihun et al., 2005; Simunek, 

2005) in a one-dimensional form is a result 

of the Continuity Equation, 

( )∂ ∂ + ∂ ∂ =T sHC t Qs x  R , and the 

dynamic law given by 

( )= − ∂ ∂Qs HqC  HDa C xυ , namely: 

( ) ( )∂ ∂ ∂ ∂ 
+ = + ∂ ∂ ∂ ∂ 

T

s

HC HqC C
   HDa  R

t x x x
υ

     

     (3) 

Where, Da  is the diffusion coefficient in 

the water 
2 1L T −   ; 

T
C  is the total solute 

concentration in soil 
3ML−   ; C  is the 

solute concentration in water 
3ML−   ; and 

s
R  is the term which includes gains or 

losses of the solute due to chemical reactions 

and the extraction plant [ ]M . Note that q  

and υ  are obtained from the water flow 

model. The diffusion coefficient in the water 

is calculated by =Da vλ , where λ  is the 

dispersivity [ ]L  and v  the interstitial 

velocity of water calculated by =v q υ  

1LT −   . 

 The water soluble compounds that have a 

negligible vapor pressure can exist in three 

phases in soil: (1) dissolved in water, (2) as 

vapor in the soil atmosphere, and (3) as 

stationary phase adsorbed to soil organic 

matter or in the clay mineral surfaces 

(Taylor, 1954; Elder, 1959; Fischer, 1967). 

The total concentration of the compound 

(
T

C ), expressed in units of mass per volume 

of soil can be written as: = +
T t a

C C Cυ ρ , 

where 
a

C  is the concentration of the 

adsorbed compound 
3ML−    and is a 

function of the concentration of the solute in 

the mobile phase (
d

C ) 
3ML−    and the 

adsorption constant of the solute to the 

stationary phase surface ( )κ , =
a d

C Cκ , 

namely, linear isotherm. Thus, the 

concentration of the substance compared to 

the volume of the porous medium (
T

C ) will 

be the result of a part that is in the water, air 

and the dynamic equilibrium with the phase 

that generates it. Generally, in studies in 

small time scales, such as irrigation and 

drainage in a porous medium, the gas phase 

is not considered (Zerihun et al., 2005). 

Thus, in this work, the concentration in the 

adsorbed and in the gas phase and the term 

s
R  are ignored. 

Numerical Scheme 

 The numerical scheme presented is based 

on the assumption that the solute is 

concentrated mainly in the liquid phase. Thus, 

the Advection-Dispersion Equation in one-

dimensional form is given by Equation (3). To 

solve this equation, we used the same 

discretization scheme to transfer water in the 

Boussinesq Equation (Chávez et al., 2011), for 

which two interpolation parameters are 

introduced: ( )1+ += − −
i i i i

x x x xγγ  

and ( )1+ += − −
j j j j

t t t tωω , where 

0 1≤ ≤γ  and 0 1≤ ≤ω ; 1 2=i , ,...  and 

1 2=j , ,... are the space and time indices, 

respectively. 

 The dependent variable ( )Φ  in an 

intermediate node +i γ  for all j  is estimated 

as: ( ) 11+ += − +j j j

i i iγΦ γ Φ γΦ   (4) 
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while the intermediate time +j ω  for all i  is estimated as: 

( ) 11+ += − +j j j

i i i

ωΦ ω Φ ωΦ        (5) 

 The discretization of the temporal derivative in the Equation (3) is: 

( ) ( ) ( ) ( ) ( )
1 11 1

1

2 1 0

+ + ++ +

+
− + −∂

= = − +
∂

j j j j jj j j j

i i t di t di j ji i i i
i i

ji

H C H C H C H CHC
b C b C b

t t

ω
υ υ ρ ρυ

∆

; 1+= −
j j j

t t t∆          (6) 

Where, 

( ) ( )
1 1

0

+ + −
=

j jj j

t di t dii i

j

H C H C
b

t

ρ ρ

∆
; 

( )
1 =

j

i

j

H
b

t

υ

∆
; 

( )
1

2

+

=

j

i

j

H
b

t

υ

∆
  (7) 

 The spatial derivative discretization in the continuity equation is: 

( )1

+ ++
+ − −

−∂
=

∂

j jj
i i

i i

Qs QsQs

x x

ω ωω
γ γ

∆
;  ( )( ) ( )1 11 − += − − + −i i i i ix x x x x∆ γ γ  (8) 

 According to the dynamic law: 

( ) ( ) ( ) 1

1

+ +
+ + + ++ +

++ + ++
+

−
= −

−

j j
j j j jj i i

ii i ii

i i

C C
 Qs Hq C H Da

x x

ω ω
ω ω ω ωω

γγ γ γγ
υ    (9) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

11 1 11
1

+ +
+ + + ++ −

− −− − − − − −− −
−

−
= −

−

j j
j j j jj i i

ii i ii

i i

C C
 Qs Hq C H Da

x x

ω ω
ω ω ω ωω

γγ γ γγ
υ   (10) 

 According to the Equation (4), the spatial interpolation is: 

( ) 11+ += − +j j j

i i iC C Cγ γ γ ; ( ) ( ) 11
1 −− −

= − +j j j

i ii
C C C

γ
γ γ    (11) 

and according with the Equation (5) the temporal interpolation is 

( ) 11+ += − +j j j

i i iC C C
ω ω ω . 

The dependent variables involved in the advective term of the Equations (9) and (10) are 

defined by: 

( ) ( ) ( ) ( )1 1 1

1 1
1 1 1 1+ + + +

+ + + + +
   = − + = − − + + − +   

j j j j j j j

i i i i i i i
 C C C C C C Cω

γ γ γω ω ω γ γ ω γ γ

          (12) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 11 1 1
1 1 1 1+ + + +

− −− − − − − −
   = − + = − − + + − +   

j j j j j j j

i i i ii i i
 C C C C C C C

ω

γ γ γ
ω ω ω γ γ ω γ γ

          (13) 

while the dependent variables involved in the dispersive term of the same equations are 

defined by: 

( ) 1

1 1 11+ +
+ + += − +j j j

i i iC C C
ω ω ω ; ( ) 11+ += − +j j j

i i iC C C
ω ω ω ; ( ) 1

1 1 11+ +
− − −= − +j j j

i i iC C C
ω ω ω  

          (14) 

Considering Equations (9) and (10), Equation (8) can be written as: 

( ) ( ) ( )1 2 1 3 4 11

+

+ + + + + +

+ + −− −

∂
= − − − + −

∂

j

j j j j j j

i i i i ii

i

Qs
a C a C C a C a C C

x

ω

ω ω ω ω ω ω
γ γ

  (15) 

Where, 

( )
1

+

+
=

j

i

i

Hq
a

x

ω

γ

∆
 ; 

( ) ( )

( )2

1

+ +

+ +

+

=
−

j j

i i

i i i

H Da
a

x x x

ω ω

γ γ
υ

∆
; 

( ) ( )1

3

+

− −
=

j

i

i

Hq
a

x

ω

γ

∆
; 

( ) ( ) ( ) ( )

( )
1 1

4

1

+ +

− − − −

−

=
−

j j

i i

i i i

H Da
a

x x x

ω ω

γ γ
υ

∆
       (16) 
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Substituting Equations (12)-(14) in Equation (15) and associating similar terms 

allows obtaining: 

( ) ( ) [ ]

( ) ( ) ( ) ( )

( )[ ]

1 1 1

4 3 1 1 2 3 4 1 2 1

4 3 1 4 3 2 1

1 2 1

1 1

1 1 1 1

1

+

+ + +

− +

−

+

∂
= − + − + − + − + + −      ∂

− − + − + − − + + −      

+ − −

j

j j j

i i i

i

j j

i i

j

i

Qs
a a C a a a a C a a C

x

a a C a a a a C

a a C

ω

ω γ ω γ γ ω γ

ω γ ω γ γ

ω γ

 (17) 

 Substituting Equations (6) and (17) in the Continuity Equation, the following 

algebraic equations system is obtained: 
1 1 1

1 1

+ + +

− ++ + =j j j

i i i i i i i
As C Bs C Ds C   Es ; 2 3 1= −i , ,...,n      (18) 

Where, 

( )4 31= − + −  i
As  a aω γ         

  (19) 

( ) 1 2 3 4 21= − + − + +  i
Bs a a a a bω γ γ      

  (20) 

[ ]1 2= −iDs a aω γ         

  (21) 

( ) ( )

( ) ( ){ } ( )[ ]

4 3 1

4 3 2 1 1 1 2 1 0

1 1

1 1 1

+

−

+

= + − + −  

− − − + + − − − − − −  

j j

i i i

j j

i i

Es   Rs a a C

a a a a b C a a C  b

ω ω γ

ω γ γ ω γ
 (22)  

 

 The water flow and the head are obtained 

from the Boussinesq Equation solution, so 

that they should be included in the system 

(18). To find the solution of the water 

transfer equation, it is necessary to specify 

the initial and boundary conditions, 

Equation (18) can be solved with the 

Thomas Algorithm (see Zataráin et al., 

1998, Chávez et al., 2011). 

 The Thomas algorithm, also known as the 

tridiagonal matrix algorithm (TDMA), is a 

simplified form of Gaussian elimination that 

can be used to solve tridiagonal matrix 

systems [Equation (18)] (Freund and Hoppe, 

2007). It is based on LU  decomposition in 

which the matrix system =Mx r , where L  

is a lower triangular matrix and U  is an 

upper triangular matrix. The system can be 

efficiently solved by setting =Ux p  and 

then solving first =Lp r  for p  and then 

=Ux p  for x . The Thomas algorithm 

consists of two steps. In the first step, 

decomposing the matrix into =M LU  and 

solving =Lp r  are accomplished in a single 

downwards sweep, taking us straight from 

=Mx r  to =Ux p . In the second step, the 

equation =Ux p  is solved for x  in an 

upwards sweep (Conte and De Boor, 1980). 

Linear Radiation Condition 

 The radiation boundary condition, or 

mixed condition, is used to accept a linear 

variation between the dispersive flux and 

concentration difference with the external 

medium (
ext

C ) and the border, for all time. 

The linear radiation condition is due 

originally to Newton, who postulated that 

the heat flow at the border of a body is 

proportional to the temperature difference 

between the body and the medium that 

surrounds it; the result is equivalent to 

Ohm’s law in electricity. To linearize these 

conditions, we introduce a generalization of 



 Advection-Dispersion Equation _______________________________________________  

1381 

the dimensionless conductance coefficient 

(
s

κ ), as follows: 

( ) ( ) 0− ∂ ∂ + − =s extC x C C Lκ . If we 

observe the one-dimensional equation of 

solute transport, the dimensionless 

conductance coefficient ( )sκ  must be zero 

by the advective component, however, the 

solution is allowed only for purposes of 

illustration to derive the boundary 

conditions. 

Selection of the Space ( )x∆  and Time 

( )t∆  Increments 

 Chavez et al. (2011) discuss the selection 

of spatial and temporal increments pointing 

out a comparison of the depletion of the free 

surface for all time between the results 

obtained with the finite difference solution 

of the Boussinesq Equation and the results 

obtained with an analytical solution reported 

in the literature. Chávez et al. (2011) 

concluded that the optimal interpolation that 

minimizes the sum of the squares errors are 

0 5= . xγ ∆  (cm) and 0 98= . tω ∆  (h), for 

space and time, respectively. 

Laboratory Experiment 

 To evaluate the descriptive capacity of the 

numerical solution, a drainage experiment 

was conducted in a laboratory. The drainage 

module was the one used by Zavala et al. 

(2007) and Chávez et al. (2011). The 

module dimensions were: 100=L cm, 

120=
s

H cm and 25=
o

D cm. The drain 

diameter was 5=d cm and the drain length 

was 30=l cm. The module was filled with 

altered sample of salty soil of Celaya, 

Guanajuato, México. Soil was passed 

through a 2 mm sieve and was disposed on 5 

cm thick layers, in order to maintain the bulk 

density at a constant value. The soil was 

saturated by applying a constant water head 

(no salt) on its surface until the entrapped air 

was virtually removed. Once the drains were 

closed, the water head was removed from 

the soil surface; the surface of the module 

was then covered with a plastic in order to 

avoid evaporation. Finally, the drains were 

opened to measure the drained water 

volume; the initial condition was equivalent 

to ( )0 = sh x, h  and the recharge was null 

0=
w

R  during the drainage phase. Soil 

porosity ( )φ  was calculated with the 

formula 1= −
t o

φ ρ ρ  (the bulk density 

was determined by the weight and volume of 

the soil of drainage module 

1 14=
t

.ρ 3g cm  and the particles 

density 2 65=
s

.ρ 3g cm , 

0 5695= .φ 3 3cm cm  was obtained). The 

soil fractal dimension obtained was equal to 

0.7026. 

Analysis of the Salt Content 

 During the module drainage process (154 

hours), measurements of pH, temperature, 

and electrical conductivity of water samples 

were made at defined time intervals (each 

hour during the first 20 hours and, 

subsequently, increased to the range 2, 4, 6 

and 8 hours). The sensor used for 

measurement was a CONDUCTRONIC PC 

18 sensor. The electrical conductivity at 

room temperature was recorded with it. 

However, in order to accurately quantify 

conductivity, it is important to consider a 

standard value of 25°C, which can be used 

to correct the values obtained. The 

correction factor used in accordance with 

Villareal and Bello (1964) was 2-3% for 

every Celsius degree that was measured 

under standard temperature. According to 

Villareal and Bello (1964), the relationship 

between electrical conductivity and 

concentration is: 

640=C x EC    (23) 
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Where, C  is the concentration given in 

mg l
-1

 and EC  the electrical conductivity 

given in dS m
-1 

or mm hos m
-1

. 

Hydrodynamic Characteristic 

 To solve the Boussinesq Equation, the 

van Genuchten model (1980) for the water 

retention curve was used, along with a 

model of hydraulic conductivity of Fuentes 

et al. (2001), namely, geometric mean model 

( ) ( )
2

11 1
  = − −    

sm
m

s
K KΘ Θ  with the 

restriction 0 1 2 1< = − <sm s n ; where Θ  

is the effective saturation defined by 

( ) ( )= − −r s rΘ θ θ θ θ . 

Granulometric Curve 

 The m and n form parameters from the 

water retention curve were obtained from 

the granulometric curve (Fuentes, 1992) 

adjusted with the equation 

( ) ( )1
−

 = +  

M
N

g
F D D D , where ( )F D  

is the cumulative frequency, based on the 

weight of the particles whose diameters are 

less than or equal to D ; 
g

D  is a 

characteristic parameter of particle size, M  

and N  are two form empirical parameters. 

These parameters are rewritten as follows: 

=M m  and ( )1 2 1= −  N s n .  

Inverse Problem 

To evaluate the capacity of the numerical 

solution of the Advection-Dispersion 

Equation, the experimental information 

presented by Chávez (2010) was used. The 

characteristics of the drainage module and 

the soil parameters used in the simulation 

were: 120=
s

h cm , 0 25=D cm , 

100=L cm , 0 5695= .φ cm
3
 cm

-3
, and 

0 7026=s . . The hydrodynamic 

characteristics used were those of van 

Genuchten (1980) and Fuentes et al., (2001). 

The scale parameters ( )d s,Kψ  were 

obtained from the inverse problem, using the 

experimental drained depth and the drained 

depth calculated with the numerical solution 

of the Boussinesq Equation (Chávez et al., 

2011), given an error criterion between the 

previous and the new estimator (1×10
-12

 

cm), using a constant head test and fractal 

radiation condition with variable storage 

capacity and a nonlinear optimization 

algorithm (Marquardt, 1963). The 

calculations were performed on a dual-core 

AMD Opteron machine with 2.6 GHz CPU 

and 8 GB RAM. The computational time 

required to solve the inverse problem was 5 

h.  

In order to model the salt concentration in 

the soil profile, with the numerical solution 

of the solute transport, the hydraulic 

parameters obtained from the previous 

analysis were used. In the numerical 

solution, the unknown parameter is the 

dispersivity coefficient ( )λ , which is 

estimated by minimizing the sum of squares 

errors between the salt concentration 

measured and the salt concentration 

calculated with the numerical solution over 

time, using a Levenberg-Marquardt 

algorithm (Marquardt, 1963), given an error 

criterion between the previous and the new 

estimator (1×10
-9

 g l
-1

). The initial condition 

is the sample initial, taken as a constant in 

all the system and radiation as the boundary 

condition applied in the drains.  

RESULTS AND DISCUSSION 

Granulometric Curve 

The adjusted parameters are shown in 

Table 1. Figure 1-A shows the experimental 

granulometric curve and best fit is obtained 

with 36 2993=
g

D . mµ  and 0 3410=m .  
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Table 1. Values of the adjusted parameters from the granulometric curve and the drained depth. 

Model 
Ajusted parameters 

sK  dψ  κ  RMSE  

 (cm h
-1

) (cm) (Non-dimensional) (cm) 

Geometric mean model 1.5458 143.87 0.0616 0.2195 
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Figure 1. (A) The experimental granulometric curve and adjusted with the model, (B) Comparison between 

the experimental drained depth and the calculated drained depth. 

 

with a root mean square error 

RMSE 0.1477= . 

Hydrodynamic Characteristic 

 In order to obtain the values of 
d

ψ  and 
s

K , 

the spatial and temporal increments used in all 

the simulation are 0 0010=z .∆ cm  and 
55 10−=t x∆ h . Figure 1B shows the 

experimental drained depth and the drained 

depth calculated with the finite difference 

solution (Chavez et al., 2011), using a storage 

capacity variable, fractal radiation condition in 

the drains, and the geometric mean model. To 

linearize the boundary condition, one 

generalization of the conductance coefficient is 

optimized ( )κ  (Zavala et al., 2007, Chávez et 

al., 2011). The residual volumetric water 

content is considered to be zero ( 0 0=
r

.θ cm
3
 

cm
-3
) (Haverkamp et al., 2005). 

Analysis of the Salt Content 

The EC data are shown in Figure 1-A 

using a 2.5% like correction factor. 

Applying Equation (23) to the data shown in 

Figure 2-B, we obtained the concentration in 

grams per liter (see Figure 2-B). The initial 

condition used in the numerical solution is 

the sample initial ( 2 4=
ini

C . g l
-1

), taken as 

a constant in all the system and radiation as 

the boundary condition applied in the drains. 

The dispersivity value obtained is 

91 80= .λ cm , with RMSE= 0.1063 g l
-1

 

between the experimental values and the 

values obtained from the numerical solution. 

The computational time required to solve the 

advection-dispersion model was 2.7 hours. 

The dispersivity value found was only for 

this soil, because this value changes with 

depth (Simunek and van Genuchten, 1999), 

increases with the flow rate, and is a soil 

type function. This increase was explained 

by the activation of large pores at higher 

flow rates (Feyen et al., 1998). Figure 2-B 

shows the experimental salt concentration 

evolution and the concentration obtained 

with the numerical solution. 

 Comparison shows that the salt 

concentration obtained with the numerical 

solution, according to RMSE, reproduce the 

experimental salt concentration. Figure 3-A 

shows that in the short time, when the water 
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Figure 2. (A) Evolution of the electrical conductivity of drainage water, (B) Comparison between the 

experimental and the calculated drainage water salt concentration with numerical solution. 
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Figure 3. (A) Solute flow (g h
-1

) in the drainage system, (B) Cumulative mass evolution: 

experimental data and values calculated with the numerical solution. 

flow increased, the salt concentration 

increases sharply, and in the long time, it tends 

toward an asymptote, indicating that the 

system could not continue removing salts from 

the system. However, the value of the 

dispersivity obtained ( 91 80= .λ cm ) 

overestimates the measured data in the long 

time. Second simulation was performed with 

the accumulated mass. To obtain the 

accumulated mass, it was necessary to obtain 

the solute flow, which was estimated by 

multiplying the water flow by the measured 

salt concentration in the time interval (Figure 

3-A). The cumulative solute mass was 

obtained by multiplying the solute flow by the 

time interval (Figure 3-B). 

 The results obtained with the numerical 

solution, the solute flow, and the cumulative 

mass evolution are shown in Figures 3-A and -

B, respectively, which demonstrate that the 

reproductions of the data were acceptable. The 

solute flow decreased rapidly, as seen in 

Figure 3-A, the concentration decreased 3.5 g 

l
-1
 after 20 hours. In the long time, the 

theoretical water flow and experimental water 

flow tended to be constant. Comparison 

showed that the solute flow and the cumulative 

mass evolution obtained with the numerical 

solution, according to RMSE, reproduced the 

experimental salt concentration. The RMSE 

values for estimating the solute flow and 

cumulative solute mass were 0.1842 g l
-1
 and 

0.1104 g , respectively. The dispersivity 

value obtained was 98 03= .λ cm , with 

RMSE 0.1010 g=  between the 

experimental values and the values obtained 

from the numerical solution. The dispersivity 

value for this new optimization (cumulative 

mass evolution) compared to the previous (salt 

concentration evolution) increased 6.2 cm. 

Using the Solution to Simulate the 

Leaching of Saline Soils 

 To reclaim saline soils, it is necessary to 

apply irrigation so that the salts are 
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Figure 4. (A) Evolution of the salt concentration in the soil by applying the leaching, (B) Decrease of the 

midpoint water table at different spacing between drains under a drain depth of 2.00 m. 

  

transported to deeper horizons without 

harming the roots and are carried to other 

areas through the drainage channel. For 

purposes of illustrating the leaching of salts 

in the soil by applying the finite difference 

solution, we assumed a soil with hydraulic 

and hydrodynamic characteristics previously 

found. The initial soil concentration was 

10 dS m
-1

 and the problem was reduced to 

finding the number of irrigation that must be 

applied to carry a given concentration. 

 The final average concentration obtained 

in the profile at the end of the first 

simulation was the initial concentration in 

the system for the next simulation, and so 

on. Figure 4-A shows the reduced 

concentration of salts in the soil profile 

based on an initial concentration. The values 

shown are an average concentration in the 

soil profile at 1 m depth. Depth of drains 

was assumed to be 2.0 m. 

 The simulations were performed with 5, 

10, 15, 20, and 25 m of drains spacing. It 

can be seen that the decrease in the 

concentration of salts in the soil profile is 

similar in all the spacing between the drains 

after applying 6 leaching. However, the time 

of drainage in each system was different. 

For example, with 5 days and 5 m spacing, 

decrease of the water table profile was more 

than one meter, while in the system with 

spacing of 25 m, the decrease was only a 

few centimeters (see Figure 4-B); therefore, 

the time of drainage of the soil was a 

function of the distance between drains.  

CONCLUSIONS 

 Irrigation in the arid and semi-arid regions 

to sustain agricultural production against the 

unpredictability of the rainfall has resulted 

in the added problem of salinity in many 

hectares of good agricultural land. 

Subsurface drainage systems are used to 

control the depth of the water table and to 

reduce or prevent soil salinity. 

 The Advection-Dispersion Equation was 

solved in order to model the temporal 

evolution of the concentration of salts 

removed through an agricultural drainage 

system with the method of finite differences. 

The solution requires the values of the flow 

of water previously obtained from the 

solution of the Boussinesq Equation. The 

hydrodynamic characteristics were obtained 

by the inverse problem from the depth 

drained. 

 The optimization of the accumulated mass 

gave better results in terms of mean square 

error criterion between the theoretical and 

experimental values, since it is a property 

integrated in the time and concentration 

observed at specific levels. The solution 

presented, coupled to the Boussinesq 

Equation, satisfactorily reproduced the 

measured data, both in the short time where 

the change in concentration was high, and in 
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the long times where the concentration 

values tended toward an asymptote. This 

asymptotic value of the concentration 

depended on the distance between drains of 

the drainage system.  

 Finally, the solution of differential 

equations of transfer processes of water and 

solute transport, and hydrodynamic 

characterization of the soil in an agricultural 

drainage system, will be a useful tool for 

designing new systems for the optimal 

growth of crops according to their water 

needs and degree of tolerance to salinity. 
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 پراكندگي: كاربرد آن در زهكشي كشاورزي-حل عددي معادله همرفتي

  ف. برامبيلا، و ا. كاستاندا، س. فونتس، زس. چاو

  چكيده

مانه هاي زير زميني زهكشي براي كنترل عمق سفره آب و كاهش يا جلوگيري از شور شدن اراضي سا

-به كار مي روند. جريان آب در اين سامانه ها با معادله بوسينسك بيان مي شود و از معادله همرفتي

ف اين پراكندگي همراه با معادله بوسينسك براي مطالعه انتقال مواد حل شده استفاده مي شود. هد

) با finite difference( به روش اختلاف محدود پراكندگي-همرفتي پژوهش ارايه حل معادله

پارامترهاي معادله از روشي مبتني بر منحني دانه بندي  استفاده از شرايط خطي شعاعي در زهكش ها بود.

ه با استفاده از خاك و مسايل معكوس بر آورد شد. الگوريتم مزبور به مقادير جريان آب نياز دارد ك

معادله بوسينسك و با شرايط تشعشع فراكتالي و متغير بودن منافذ قابل زهكشي محاسبه شد. براي ارزيابي 

ظرفيت تشريحي محلول، يك آزمون زهكشي در آزمايشگاه انجام شد كه در آن اسيديته، درجه 

د. از سوي ديگر، حرارت، و هدايت الكتريكي زه آب اندازه گيري شد تا غلظت نمك تعيين شو

به روش اختلاف محدود و  پراكندگي-تغييرات تكاملي غلظت نمك ها با استفاده از حل معادله همرفتي

تعيين پارامتر پراكندگي با مدل سازي معكوس به دست آمد. از روش حل عددي براي شبيه سازي 

زاين روش به عنوان فرايند شستشوي نمك يك خاك شور استفاده شد. نتايج نشان داد كه مي توان ا

ابزاري جديد در طراحي سامانه هاي زهكشي در كشاورزي و در نتيجه فراهم كردن شرايط لازم براي 

  رشد بهينه گياهان متناسب با تامين نياز آبي آنها و درجه تحملشان به شوري بهره برد.
 

 


