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Optimum Cropping Pattern Based on Irrigation Water 

Productivity Using AquaCrop Simulation Model  
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ABSTRACT 

 Optimum cropping pattern increases productivity where input resources are limited. 

An optimized cropping pattern was developed for a region in Moghan Plain, located in 

the northwestern Iran, to help water supplier in pre-season decision making on water and 

land allocation. AquaCrop simulation model was calibrated and executed for yield 

predictions for 11 different crops and 13 diverse soil types. Evaluation of AquaCrop 

model showed great robustness for a broad range of crops, even for the crops like canola 

and alfalfa that were undefined for the model. The precise generated crop water functions 

revealed the ideal conditions for water allocation by considering the impact of the existing 

limitation in monthly water availability on optimum cropping pattern without imposing 

any manipulation. Optimum cropping pattern based on water productivity (OCPWP) was 

identified by LINGO software. Integrating AquaCrop model and LINGO optimization 

problem solver created a Decision Support System (DSS) for technical analysis at the 

regional level. The created DSS is able to support the OCPWP in terms of the complex 

regional crop-mixture acreage. The ecological considerations introduced diverse winter 

crops to benefit from autumn precipitations. This strategy decreases irrigation 

requirement and saves some water for spring/summer high water-demanding crops like 

alfalfa and cotton, which generally enhances the system resiliency. The generated DSS 

revealed that 8,762 m3 water ha-1 was required for optimum cropping pattern, which is 

8% lower than the maximum and 3% more than the average available water.  

Keywords: Crop per drop index, Decision support system, System resiliency. 

INTRODUCTION 

Water is the most widely existing natural 

resource on our planet, although about 

97.5% of it is saline. However, only a small 

fraction is available as freshwater

(Shiklomanov, 2000). Freshwater is an 

indispensable natural resource, which plays 

a vital role in the development of any 

country. Presently, many countries of the 

world are experiencing scarcity of fresh 

water (Mekonnen and Hoekstra, 2016). This 

finite freshwater resource supports life on 

the planet, and is threatened by population 

growth, pollution, and food demands. 

Therefore, an integrated water management 

strategy is necessary to avoid the risks of 

water scarcity (Poff et al., 2016). Failure to 

develop such a strategy will intimidate 

health, social and economic well-being, food 

security, biodiversity and generally 

promotes human conflicts. As a result, 

optimal water allocation has become one of 

the most confusing challenges faced by 

policy makers. Freshwater scarcity develops 
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not only from the physical constraints but 

also due to inefficient water uses and poor 

management, which has widened the gap 

between the water sources and sinks in most 

parts of the world (Simonovic, 2002). 

Optimum cropping pattern is a key to close 

the gap between water supply and water 

demand. 

In many water-scarce countries like Iran, 

the agricultural sector is the main water 

consumer that withdraws the main quota of 

all available freshwater at insufficient water 

use efficiency (Motiee et al., 2001). Some 

studies have predicted a 14% net increase in 

the use of water to meet the food demands 

by the year 2030 compared to 2000 

(Rockström et al., 2007). Hence, pursuing 

sustainable technique to increase crop water 

productivity along with preserving the soil 

and water resources, is gaining prominence 

in arid and semiarid regions of the world. 

Optimum cropping pattern, as a sustainable 

management technique, could shift the focus 

on maximizing total production to 

maximizing water productivity (Debaeke 

and Aboudrare, 2004; Sepulcre-Cantó et al., 

2007). Optimum cropping pattern is directly 

related to the productivity of irrigation 

systems and greatly contributes to soil and 

water utilization (Sethi et al., 2002). 

Furthermore, optimal cropping pattern 

interacts with water requirement and crop 

yield, as well as optimal profitability. 

Therefore, cropping pattern plays an 

important role in rural economic 

development through its impacts on 

increased income levels and water use 

efficiency (Montazar and Rahimikhob, 

2008). Analyzing crop responses to water is 

a multi-variable process, because it depends 

on soil characteristics, weather conditions, 

crop growth behaviors, planting dates, farm 

management, and many other circumstances. 

Crop simulation models are designed to 

imitate the behavior of such a complex 

system (Hoogenboom, 2000). Crop 

simulation models study the plant response 

to different combinations of resources and 

interactions with time phenomena. 

AquaCrop is a water-driven simulation 

model that requires a relatively low number 

of parameters and input data to simulate the 

yield response to water of major crops 

cultivated worldwide. The limited AquaCrop 

inputs are the key elements to investigate 

and determine the plant response to different 

resource management while maintaining the 

sufficient balance between accuracy, 

simplicity, and robustness (García-Vila et 

al., 2009; Katerji et al., 2013; Mkhabela and 

Bullock, 2012; Rankine et al., 2015; 

Wellens et al., 2013). AquaCrop simulates 

attainable yields of major herbaceous crops 

as a function of required water under various 

irrigation conditions in the atmosphere–

plant-soil system (Steduto et al., 2009). The 

growth engine of AquaCrop is water-driven, 

which initially separates ET into soil 

evaporation and crop transpiration, then 

translating the crop transpiration into 

biomass using conservative, crop-specific 

parameters. The separation avoids the 

confounding effect of non-productive water 

requirement (Geerts et al., 2010). AquaCrop 

model generates normalized crop water 

productivity (Steduto et al., 2007) which is 

the model’s key approach for applicability in 

different locations under varying spatio-

temporal settings (Steduto and Albrizio, 

2005).  

Cropping pattern considers regional water 

and land allocations among different crops. 

Nonlinear programming models can be used 

as effective tool to optimize cropping pattern 

for both ecological and economic goals in 

the command areas. In crop production 

system, Water Use Efficiency (WUE) is 

used to define the crop production per unit 

volume of water (Ali and Talukder, 2008). 

WUE refers to the ratio between the final 

dry matter yield and cumulative crop 

evapotranspiration. WUE is a useful 

indicator for quantifying the impact of water 

management. Water production function is a 

key output of crop simulation models from 

which the yield response to water is 

regularly simulated with empirical functions 

(Goldhamer and Fereres, 2017). 

The objective of the present study was to 

develop and execute a nonlinear 
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Figure 1. Location of the study area as a part of Moghan Plain in northwest of Iran. 

 

 

Study Area 

optimization model to determine an optimal 

cropping pattern based on WUE by Crop Per 

Drop (CPD) index. CPD index is the total 

crop yield per one cubic meter of total water 

used (Monaghan et al., 2013). For this 

purpose, the crop water productivity 

function is combined with the CPD index as 

an objective function of the optimization 

model to design the optimum cropping 

pattern for part of the Moghan Plain in Iran. 

MATERIALS AND METHODS 

Description of the Study Area 

The study area is a newly developed part 

of the Moghan Plain located at 47° 33' 18" 

to 47° 52' 32" E Longitude, 39° 21' 05" to 

39° 33' 06" N Latitude, 180 to 330 m above 

mean sea level, in Ardabil province, 

northwest of Iran (Figure 1). The Moghan 

Plain is one of the major agricultural regions 

in Iran (Nasseri et al., 2006). Currently, 

dryland agriculture is practiced in the main 

parts of the study area. The area is irrigated 

through Khodaafarin dam, which is 

constructed on the Aras River. Due to the 

land slope and topography, the sprinkler 

irrigation system is applied. In this study, 11 

irrigated crops were chosen according to the 

regional policy and climatic conditions. The 

crops included wheat, barley, canola, and 

sugar beet in winter, cotton, grain maize, 

soybean and alfalfa in spring and soybean, 

grain maize and silage maize in summer. 

Climate and Soil Data  

Moghan Plain has a semi-arid climate with 

relatively high Evapotranspiration (ET). 

Previous 20-year climate data were obtained 

from the nearest weather station (39° 39' N, 

47° 55' E, 32 m above mean sea level) in 

Parsabad City (Figure 2). Based on a recent 

soil survey, an area of 12,004 ha is covered 

by 13 different soil types with different 

characteristics including salinity, hardpan, 

and slope, (Table 1). The soil survey 

provides soil classification and physical and 

chemical properties at different depth 

intervals of 0.15 m to a depth of 1.5 m 

(Seyedmohammadi et al., 2018). The 

irrigation water with relatively moderate 

salinity (1.1 dS m-1) causes soil salinity and 

imposes a reduction in crop yield.  

The runoff Curve Number (CN) of each 

soil series was calculated based on the soil 

series physical characteristics to estimate 

surface runoff from rainfall that occurred 

during the simulation period. According to 

the soil series slope, the soils are divided 

into four groups (A, B, C and D) 
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representing land slopes of 0-2, 2-5, 5-8 and 

8-12%, respectively.  

Regional Crop Data 

Data of crops water consumptions were 

collected from local experts (Table 4) and 

crop phenology data were obtained from 

Oltan Agrometeorological Research Station 

(39° 36.217' N; 47° 46.733' E, 72 m above 

mean sea level) located near the study area. -

In the present study, according to the local 

information, the simulations were conducted 

with sprinkler irrigation, 50% depletion of 

available moisture and 100% wetted area. 

Moreover, total irrigation efficiency was 

assumed to be 65%. All crops have their 

built-in crop parameters in AquaCrop, 

except canola, silage maize, and alfalfa. 

Canola and silage maize are already 

calibrated (Hsiao et al., 2009; Salemi et al., 

2011; Zeleke et al., 2011). A leafy crop 

using AquaCrop multiple run project was 

defined to simulate alfalfa for five cutting 

cycles (Allen et al., 1998). The crops’ 

optimum planting dates were previously 

calibrated for the region (Izadfard et al., 

2017).  

AquaCrop Calibration 

AquaCrop version 5.0 (available at 

http://www.fao.org/aquacrop/en) was used 

in this study, and all simulations were 

implemented in the degree-day mode. For 

the simulations, soil fertility was considered 

near optimal (about 80%) to cope with the 

real situation. Runoff was considered by the 

model based on each soil characteristics. 

The model calibration was performed by 

using the observed values from Oltan 

Agrometeorological Research Station during 

2013–2014 cropping seasons. The dry 

matter yield output of the simulations was  

 

 
Figure 2. (a) Minimum and maximum temperatures and (b) Evapotranspiration and precipitation in Moghan 

Plain based on historical data (January 1994 to December 2013).  

 

 

http://www.fao.org/aquacrop/en
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Table 1. Soil series physical, chemical and hydraulic characteristics in the study area. 

M
A

1
/ 

0
-2

 %
 

sl
o

p
e 

Depth (cm) Texture Saturation (%) EC (dS m-1) pH OM (%) FC at 33.3 kPa WP At 1500 kPa BD (g cm-3) 

0-20 CL 57.0 1.41 7.81 1.56 29 20 1.41 

20-35 CL 45.0 0.56 7.87 0.52 26 19 1.33 

35-75 SL 29.0 1.07 7.66 0.20 18 12 1.40 

75-120 SCL 52.0 2.90 7.68 0.16 24 17 1.33 

120-170 C 79.0 5.81 7.84 0.00 31 23 1.30 

H
H

3
/ 

2
-5

 %
 

sl
o

p
e 

0-20 CL 52.0 1.07 7.78 1.22 27 18 1.44 

20-52 C 61.0 8.28 7.72 0.46 32 24 1.31 

52-72 C 61.0 1.34 8.11 0.38 33 25 1.29 

72-91 C 62.0 12.46 7.63 0.19 33 25 1.30 

91-110 C-CL 56.0 10.68 7.68 0.08 30 21 1.36 

110-150 CL 54.0 10.68 7.59 0.00 27 19 1.39 

M
T

1
/ 

2
-5

 %
 

sl
o

p
e 

0-10 SL 33.0 0.89 7.71 1.07 20 14 1.37 

10-31 LS 38.0 0.53 7.86 0.23 15 10 1.50 

31-41 SL 33.0 0.53 7.84 0.27 19 13 1.38 

41-49 LS 35.0 0.50 7.82 - 15 10 1.50 

58-81 SL 36.0 2.31 7.61 0.30 20 14 1.40 

110-150 SiC 60.0 5.61 7.70 0.68 33 23 1.38 

K
O

4
/ 

2
-5

 

%
 s

lo
p

e 

0-30 CL 51.0 0.89 7.21 1.00 29 20 1.41 

30-65 C to CL 48.0 2.24 7.54 0.24 30 21 1.37 

65-97 CL 50.0 1.74 7.96 0.04 28 20 1.37 

97-125 SiCL 46.0 8.30 7.60 0.04 30 20 1.44 

125-150 SiCL 45.0 9.13 7.64 0.00 30 19 1.49 

G
L

2
/ 

2
-5

 %
 

sl
o

p
e 

0-11 CL 49.0 1.91 7.81 1.16 29 19 1.48 

11_30 SiCL 49.0 0.81 7.93 0.60 30 21 1.41 

30-66 SiC 49.0 1.17 7.86 0.28 32 24 1.34 

66-74 SiC 48.0 2.10 7.77 0.15 21 14 1.48 

74-100 SL 44.0 3.99 7.76 0.04 22 13 1.47 

100-150 L 40.0 2.41 7.71 0.04 25 14 1.58 

D
E

1
/ 

2
-5

 

%
 s

lo
p

e 

0-20 SiC 56.0 0.98 7.57 1.07 32 22 1.39 

20-50 SiC 53.0 0.74 7.93 0.61 32 23 1.37 

50-105 SiC 49.0 2.67 8.29 0.04 32 24 1.35 

105-112 SiC 50.0 3.50 7.86 0.04 29 19 1.51 

112-150 CL 50.0 5.79 7.48 0.00 26 18 1.42 

G
G

2
/ 

8
-

1
2

 %
 

sl
o

p
e 

0-20 SiCL 58.0 1.17 8.25 0.32 30 18 1.53 

20-42 SiCL 48.0 0.53 7.81 0.64 31 21 1.43 

42-100 SiCL 50.0 0.81 7.70 1.32 31 21 1.43 

100-150 SiCL 52.0 9.96 7.79 0.31 30 21 1.44 

S
K

1
/ 

2
-5

 %
 

sl
o

p
e 

0-30 SiCL 50.0 0.68 7.68 1.44 31 20 1.49 

30-62 SiC 64.0 2.07 8.12 0.24 33 24 1.35 

62-69 SiC 62.0 3.40 7.89 0.15 29 19 1.51 

69-80 SiCL 59.0 10.80 7.64 0.12 30 20 1.43 

80-115 SiCL 57.0 14.94 7.51 0.01 31 21 1.42 

115-150 SiC to C 57.0 10.79 7.75 0.00 34 25 1.32 

K
H

1
/ 

2
-5

 %
 

sl
o

p
e 

0-20 CL 51.0 2.67 7.50 1.25 29 20 1.37 

20-40 C 50.0 0.67 7.70 0.61 30 23 1.31 

40-70 CL 47.0 0.98 7.73 0.27 28 20 1.37 

70-76 CL 48.0 1.50 7.70 0.15 27 19 1.42 

76-110 C-CL 54.0 3.38 7.65 0.04 29 21 1.32 

110-150 C-CL 48.0 5.87 7.68 0.11 28 22 1.27 

H
A

2
/ 

2
-5

 

%
 a

n
d
 

H
A

3
/ 

5
-8

%
 

sl
o

p
e 

0-20 SiC-C 61.0 1.66 7.59 1.56 33 24 1.34 

20-47 C 96.0 1.16 8.37 0.92 35 27 1.26 

47-71 C 86.0 10.79 7.83 0.64 36 28 1.25 

71-91 C 74.0 18.26 7.48 0.44 34 26 1.28 

91-150 C 80.0 14.11 7.46 0.32 36 28 1.25 

M
V

3
/ 

2
-5

 

%
 a

n
d
 

M
V

4
/ 

5
-

8
%

 s
lo

p
e 

0-20 C 56.0 2.59 7.66 0.38 33 25 1.29 

20-40 C 58.0 2.41 7.71 0.19 32 25 1.25 

40-70 C to CL 63.0 2.67 7.90 0.15 36 29 1.22 

70-115 C 64.0 4.28 8.00 0.00 36 28 1.23 

115-150 C 71.0 5.34 8.20 0.00 36 28 1.24 

OC= Organic Matter BD= Baulk Density L= Loam C= Clay  CL= Clay Loam 

FC= Field Capacity SiC= Silty Clay SL= Sandy Loam LS= Loamy Sand  SCL= Sandy Clay Loam 

WP= Wilting Point SiCL= Silty Clay Loam     
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converted to actual yield using moisture 

content values of 15, 14, 75, 11, 12, 14, 15, 

80 and 17% for wheat, barley, sugar beet, 

canola, cotton, soybean, grain maize, silage 

maize and alfalfa, respectively. The 

difference between the predictions and 

observations were minimized by mostly 

manipulating canopy cover and harvest 

index using trial and error approach (Steduto 

et al., 2009).  

Model Evaluation 

Regional crop yield and water requirement 

were considered in this study for model 

evaluation. Three statistical indices 

including coefficient of determination (R2), 

Normalized Root Mean Square Error 

(NRMSE) and d index were employed to 

compare the simulated results against the 

observed data. The NRMSE gives a measure 

of the relative difference of simulated versus 

observed data. The simulation is considered 

excellent if NRMSE is less than 10%, good 

if less than 20%, fair if greater than 20, and 

poor if greater than 30 (Andarzian et al., 

2011). The agreement index d represents the 

agreement between the observed and 

predicted observations (Willmott, 1981). It 

overcomes the insensitivity of R² or 

underestimations by the model. It ranges 

between 0 and 1, with 0 indicating no 

agreement and 1 indicating a perfect 

agreement between the predicted and 

observed data (Legates and McCabe, 1999; 

Willmott and Matsuura, 2005).  

NRMSE = [∑
(Pi−Oi)2

n

n

i=1
]

1/2

×
100

M
  (1) 

d = 1 − [
∑ (Pi−Oi)2n

i=1

∑ (|Pi
′|−|O′

i|)
2n

i=1

]     (2) 

CPD DSS Formulation 

All 143 functions comprised by 11 crops 

and 13 soil types were produced by the 

LINGO software version 11, available at 

http://www.lindo.com. The yield of each 

crop can be obtained through crop water 

production function based on average water 

requirement for all soil series during the 

whole growth period. As the generated 

functions show, crop biomass water use 

efficiency was determined by the slope of 

each crop water production function. The 

water use efficiency developed by 

AquaCrop model integrates the precipitation 

and soil water content. The main 

optimization function (Z) has been 

comprised by 143 crop/soil functions (11 

crops×13 soil types). The average crop water 

requirement for each crop was introduced to 

the main optimizing model. The comparable 

yield of each crop/soil function was 

calculated using average irrigation water 

requirement. By introducing the average 

crop water requirement to the main function, 

the optimum acreage for each crop was 

determined. In order to optimize the water 

use efficiency of each crop/soil unit, the 

main objective functions were formulated 

based on all crop/soil units for CPD index 

and monthly crop water requirement indices. 

The constraints imposed on the objective 

function of the model were total available 

Water (W), monthly available water (m), 

Total area (TL), each soil series area (sL), 

first and second crop Production function 

(P) in a year, optimum acreage of each crop 

(S) and calculated CPD index (A). Ten 

percent of the total land was considered 

under fallow. Maximizing the main function 

(Z) based on the constraints was computed 

by LINGO software. While the total land, 

total water, monthly water, and each 

crop/soil CPD are constant, individual crop 

acreage and consequently crop production 

need to be optimized to determine maximum 

production of total area. Some studies have 

shown that crop water function optimization 

can be more accurately solved by nonlinear 

structures compared to linear methods 

(Barati et al., 2020; Zhao et al., 2017). 

ij

i

ijij

j

SPAZMax 



11

1

13

1   (3) 

TLS
j

j



13

1     (4) 

http://www.lindo.com/
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11

1

13
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mSPA ij

i

ijij

j




11

1

13

1    (7) 

RESULTS AND DISCUSSION 

Calculation of ETo is a critical parameter 

for model accuracy. In the current study, the 

available climatic parameters including solar 

radiation, wind speed, air pressure, 

temperature and precipitation were used to 

calculate ETo in FAO ET calculator (Raes 

and Munoz, 2009). The annual temperature 

range is acceptable for most of the crops 

from January to July. The 271 mm annual 

precipitation compared to 2,221 mm of ETo, 

is not enough for dry farming system, except 

for wheat and barley. 

Fine-Tuned Model 

AquaCrop model was fine-tuned for 11 

different field crops under full irrigation 

based on the obtained phenology data. The 

calibrated parameters are shown in four 

different factor groups in Table 2. The 

simulated yields were compared to the 

corresponding regional crop yields. As 

illustrated in Table 3, sugar beet showed the 

best model performance by NRMSE= 10.33, 

R2= 0.93 and d Index= 0.88. It could be 

resulting by adding up the sugar beet-related 

high moisture content, which reduces the 

bias of error in dry mass simulation. On the 

other hand, cotton showed the weakest 

result, which could be the result of using 

local cotton variety with different growth 

habits. The same conclusion has been 

reported for local cotton varieties (Farahani 

et al., 2009). What is clear from Table 3 is 

the weakness of R2 as a single statistical 

factor for model performance.  

It should be noted that the NRMSE and d 

index tended together and the low NRMSE 

index was accompanied by higher d index 

and vice versa. However, considering 

summer soybean as an exception, NRMSE 

was the most accurate index. 

Results showed the model capability to 

simulate average yield for most of the 

cultivated crops in the region. Similar results 

have proved the capability of AquaCrop 

model in simulations of different crops’ 

yield in other regions (Todorovic et al., 

2009). For some of the crops, the irrigation 

measurements were available. The simulated 

irrigation was evaluated against the 

corresponding observations (Figure 3). 

Based on these results, the model could 

perfectly simulate the water requirement 

compared to the measured data. 

 For water requirement evaluation, the R2 

and NRMSE were 0.91 and 12.57, 

respectively. The model could simulate 

water requirement more accurately with 

respect to yield. This could be explained by 

the inadequacy of the measured crop water 

requirements data. Other studies have 

reported diverse findings depending on the 

crop, climate, and water stress severity 

(Horemans et al., 2017; Vanuytrecht et al., 

2014). 

The evaluated AquaCrop model was 

executed to simulate the yield and water 

requirement under full irrigation scenario by 

the model generated irrigation schedule for 

all combinations of crops and soil series. In 

this study, the cumulative irrigation amount 

was plotted against the biomass. Then, crop 

water production function for each crop/soil 

unit has been calculated based on the plotted 

values.  

According to Figure 4, winter sugar beet 

and winter wheat showed the lowest R2 

compared to other crops. This could be a 

result of less water requirements during 

early weeks after planting these two winter 

crops (Kang et al., 2003; Liu et al., 2002; 

Santos et al., 2008). The cotton, soybean, 

silage maize and alfalfa functions 

demonstrated ascending trend compared to 

other crops that followed a descending 
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Table 2. Selected AquaCrop model fine-tuned parameters for the main cultivated crops in the study area. 

 Cultivation seasons 

 Spring Summer Winter 

 

 

Crop parameters 

A
lfalfa 

C
o

tto
n

 

S
o

y
b

ean
 

M
aize

a 

S
o

y
b

ean
 

M
aize

b 

M
aize

c 

W
h

eat 

B
arley

 

C
an

o
la 

S
u

g
ar B

eat 

U
n

its 

M
eth

o
d

s 

 Growth factors 

Base temperature 0 12 5 8 5 8 8 0 0 0 5 oC D 

Cut-off 

temperature 
30 35 30 30 30 30 30 26 15 30 30 oC D 

Crop water 

productivity 
17 15 15 33.7 15 33.7 33.7 15 15 18 17 g m-2 E 

Expansion upper 

threshold  
0.2 0.2 0.15 0.14 0.15 0.14 0.14 0.2 0.2 0.2 0.2 - D 

Expansion lower 

threshold  
0.7 0.7 0.65 0.72 0.65 0.72 0.72 0.65 0.6 0.55 0.6 - D 

 Morphologic factors 

Initial canopy 

cover 
1.8 0.72 0.1 0.49 0.1 0.49 0.49 6.75 6 2.2 0.1 % E 

Maximum 

canopy cover 
87 93 77 89 78 89 90 88 92 78 96 % C 

Canopy growth 

coefficient  
21.9 7.8 13.6 12.7 13.6 12.7 12.7 3.9 3.7 8.9 5.1 % Day C 

Canopy decline 

coefficient  
0.8 0.24 0.15 0.56 0.15 0.56 0.56 0.38 0.6 0.4 

0.3

8 
% GDD C 

Maximum root 

depth 
150 200 200 230 200 230 230 150 130 100 100 cm D 

 Phenology factors 

Time to 

emergence 
- 36 200 96 162 120 120 150 98 191 125 GDD C 

Time to reach 

full canopy 
75 

124

2 

152

2 
901 998 766 766 

120

3 

100

3 

113

9 
852 GDD C 

Time to reach 

senescence 
362 

141

9 

220

0 

166

4 

160

9 

144

3 

144

3 

170

4 

151

7 

155

6 

113

8 
GDD C 

Time to reach 

harvest 
376 

191

8 

270

0 

216

5 

200

1 

172

3 

145

4 

241

4 

180

5 

175

7 

177

3 
GDD C 

 Planting and harvest factors 

Sowing dated 1
5

 M
ar 

1
5

 M
ay

 

3
0

 M
ay

 

1
5

 A
p

r 

1
0

 Ju
l 

5
 Ju

l 

5
 Ju

l 

3
0

 S
ep

 

2
0

 N
o

v
 

1
0

 N
o

v
 

1
0

 S
ep

 

G
reg

o
ria

n
 

C
alen

d
ar 

C 

Harvest index 85 35 40 48 40 48 94 48 45 30 71 % E 
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function (Figure 4). This different trend line 

for these plants could be justified by the 

indeterminate growing nature of cotton and  

soybean and harvesting time of silage maize 

and alfalfa (Adeboye et al., 2015; Marek et 

al., 2017). 

CPD Optimum Cropping Pattern 

This study adopted the crop yield per unit 

of consumed water as the main productivity 

index for optimum cropping pattern. The 

optimum area for each crop in each soil 

series has been defined. The optimum 
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Table 3. Summary of statistical indices used for model evaluation between simulated crop yields and measured 

average yield in Moghan Plain (Parsabad). 
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No. of Observations 6 4 3 4 4 3 3 11 9 6 3 

R2 0.6 0.8 0.74 0.75 0.79 0.8 0.76 0.71 0.85 0.72 0.93 

NRMSE 28.19 35.84 25.18 28.89 14.93 27.84 21 18.78 29.81 10.89 10.33 

d Index 0.23 0.35 0.44 0.42 0.98 0.38 0.4 0.68 0.55 0.96 0.88 
a Spring, b Summer, 3: Silage 

 
Table 4. Measured crop water requirement based on local experts’ data. 

Net irrigation  

requirement (m3 ha-1) 
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2150 2600 2350 5000 6050 4040 5680 2730 

 

 

Figure 3. Comparison between simulated crop water requirement and actual measurements. 
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acreage of each crop is shown in Figure 5. 

During the cropping pattern optimization, no 

limitation was imposed on crop acreage. 

Similar DSS has been generated for other 

regions (García-Vila and Fereres, 2012; 

Mysiak et al., 2005). Using crop water 

functions for CPD optimum cropping pattern 

illustrated the best acreage for each crop in 

response to water requirement. As shown in 

Figure 5, the 40% wheat acreage in the 

current cropping pattern has been allocated 

to barely, canola and sugar beet in the 

optimum cropping pattern. However, the 

canola acreage is too small because the crop 

production compared to water requirement is 

not that much. In fact, oil production makes 

a very low water use efficiency compared to 

other carbohydrate producing crops (Faraji 

et al., 2009). Increasing crop variation 

decreases the farmers’ economical risk 

regarding climate and water restrictions. In 

fact, variation is a key element in 

sustainability by which resiliency and risk 

management may be improved (Bullock et 

al., 2017; Mehri et al., 2020).  

Imposing winter crops to optimum 

cropping pattern by DSS system increased 

the total water productivity, because part of 

the water requirement is supplied by the 

autumn precipitations. In fact, applying the 

developed DSS to the study area revealed 

winter crop variations instead of current vast  
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Figure 4. Some of the main crop/soil water functions generated by AquaCrop model for different crops and soils 

series. 
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Figure 5. (a) Current Moghan Plain (Parsabad) cropping pattern and (b) CPD index-based cropping pattern for 

the study area. 
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winter wheat cultivation. Therefore, the 

presented winter crops that are harvested 

before the summer increase water 

availability for high water demanding crops 

like alfalfa and cotton during the warm 

season. Optimum acreage for cotton and 

alfalfa was 16%, causing low acreage for 

spring grain maize and soybean (1 and 2%), 

respectively. Cultivation variation helps to 

better manage the irrigation schedule 

regarding different crop irrigation water 

requirement. This results from the optimized 

model, giving priority to allocate water to 

the most water-use efficient crops 

considering climate, soil, and yield. 

Accordingly, it is the duty of developed 

DSS to balance the regional contradictions 

among water resources allocation, crop 

yield, and CPD index (Yang et al., 2017). 

Monthly Water Requirement 

The monthly water requirement was 

calculated by daily crop water requirement 

and used as a monthly water coefficient in 

the optimization process. As Table 5 shows, 

from May to August was the major water 

demanding competition, and November was 

the minor. This is because the study area has 

high evapotranspiration during this period, 

especially in July. According to Table 5, 

total water requirement for optimum 

cropping pattern was 10.56 Mm3 and the 

peak water requirement was in May and 

July. The increase of water requirement in 

these two months was the upper threshold to 

limit the crop acreages. The monthly 

irrigation water requirement for each crop is 

shown in Table 6. Water requirement of 

alfalfa, cotton, sugar beet, and wheat for 

optimum cropping pattern was 2.65, 2.35, 

1.38 and 1.22 Mm3, respectively.  

As shown in Table 5 and Table 6, the total 

required water in these two tables is a little 

bit different based on daily and monthly 

water requirement calculations. The 

simulated CPD index ranges from 0.36 to 

2.46 kg m-3 (Table 7), which is confirmed by 

similar studies (Ahmadzadeh et al., 2016). 

The highest CPD belongs to grain maize due 

to short growing season and high yield. The 
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Table 5. Simulated monthly and total water required for optimum cropping pattern. 

 

Monthly 

required water 

(mm3) 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Total 

0.207 0.079 0.716 1.358 2.104 1.984 2.104 1.413 0.483 0.056 0.012 0.044 10.566 

 

Table 6. Simulated crop and total water requirement based on optimum cropping pattern acreages. 

Crop water 

requirement 

(mm3) 

Wheat Barley Canola Sugar 

beet 

Cotton Soybeana Soybeanb Maizea Maizeb Maizec Alfalfa Total 

1.220 0.649 0.056 1.380 2.349 0.093 0.573 0.311 0.628 0.608 2.645 10.51 

a Spring, b Summer, c Silage 

 

Table 7. Simulated crop CPD and total CPD based on optimum cropping pattern acreages. 

CPD 

index (kg 

m-3) 

Wheat Barley Canola Sugar 

beet 

Cotton Soybeana Soybeanb Maizea Maizeb Maizec Alfalfa Total 

1.57 1.20 0.67 1.63 0.36 0.41 0.60 1.12 2.40 2.46 1.05 1.22 

a Spring, b Summer, c Silage 

 

two lowest CPD indices were 0.36 and 0.67 

kg m-3 for cotton and canola, respectively. 

As discussed earlier, the oil production 

causes low water productivity as well as lint 

production (Ibragimov et al., 2007). 

Nevertheless, the share of canola and cotton 

in optimum cropping pattern was not the 

same. It seems that the water availability 

during the spring season and winter crop 

competition are effective in this respect. 

Total CPD value was 1.23 kg m-3 for the 

whole optimum cropping pattern. Total CPD 

index for optimum cropping pattern 

indicated obvious benefit per unit water use.  

The global CPD index limits for wheat, 

cotton, and grain maize are 0.6-1.7, 0.14-

0.33 and 1.1-2.7 kg/m3. Universally 

measured average crop water production 

values per unit consumed water are 1.09, 

0.23 and 1.80 kg m-3 for wheat, cotton, and 

grain maize, respectively (Zwart and 

Bastiaanssen, 2004). Considering the global 

range and average crop water productivity, 

the simulated CPDs are within the reported 

limits. The calculated CPD index for cotton 

(0.36 kg m-3) is higher than the global range, 

and CPD index for wheat (1.56 kg m-3) and 

for grain maize (2.46 kg m-3) are near the 

maximum reported values. Although the 

recent remotely-sensed studies stated higher 

CPD values, normalized for the region and 

climate (Bastiaanssen and Steduto, 2017), 

the simulated total CPD for optimum 

cropping pattern considering the climate and 

soil could be acceptable. 

Monthly available water and monthly 

water requirement appeared as advantages in 

the developed DSS by saving adequate 

water for each crop. In fact, without 

accounting monthly available water, some 

high yield crops like sugar beet could move 

out all other crops from the picture. The 

reasonable simulated yields support the 

suitability of AquaCrop model. The 

developed optimum cropping pattern has 

shown to be a good tool to perform scenario 

analysis, assisting irrigation scheme 

managers, water suppliers, and policy 

makers. Different amounts of available 

water  were defined for the study area. 

Hence, three scenarios were generated for 

the ecologically available water (maximum 

9,500 m3 ha-1, average 8,500 m3 ha-1, and 

minimum 7,500 m3 ha-1) for the region. The 

generated DSS clarified that 8,762 m3 ha-1is 

the optimum available water for the 



Optimum Cropping Pattern Based on Water Productivity ___________________________  

1175 

designed cropping pattern. In case of 

changes in basin conditions, the DSS could 

manage the new situation by altering the 

optimum acreage and location of each 

cultivated crop.  

CONCLUSIONS 

Combining a crop simulation model with 

an optimization program is a complex task. 

Here, the AquaCrop simulation model was 

used to generate nonlinear crop water 

production functions for different crops and 

soil types. This paper proposed a method for 

agricultural water resources management. 

The research demonstrated that water use 

efficiency alone could not be enough for this 

management; but still, it is a trusted 

indicator. This study did not consider 

uncertainties and economic considerations, 

which are ubiquitous in water resources 

management. The developed system could 

be applied to a real-world study in part of 

the Moghan Plain. Decision makers for 

water resources management can choose 

water allocation scheme according to the 

optimum scenarios and actual economic 

considerations. Although economic 

situations are altering every year, but 

ecological conditions are more stable. The 

impact of socio-economic factors on 

optimum cropping pattern deserves further 

studies. 
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 با استفاده از مدل آکوآ کراپ الگوی کشت بهینه بر اساس کارایی آب آبیاری

 ف. سرمدیان، م.ر. جهانسوز، ا. اسدی اسکویی ا. ایزدفرد،

 چکیده

 یالگو کیدهد. یم شیرا افزا یور، بهرهیدر صورت محدود بودن منابع ورودکشت بهینه  یوالگ

آب و  صیاز فصل در خصوص تخص شیپ یهایریگ میآب در تصم نیکمک به تأم یبرا نهیکشت به

 یساز هیساخته شد. مدل شب رانیا یدر دشت مغان، واقع در شمال غرب یامنطقه یبرا نیزم

AquaCrop  عملکرد  ینیب شیپ یو برا برهیکال خالفنوع خاک م 11و  تفاوتمحصول م 11 یراب

، طیف گسترده محصولات زراعیشبیه سازی رای ب  AquaCrop شده صحت سنجی شد. مدل ستفادها

. توابع که در آن تعریف نشده بود، توانایی بالایی را نشان داد مانند کلزا و یونجه یحتی برای محصولات

 یالگووجود بدون دستورزی و تحمیل در ماهانه مآب  یها تیبا توجه به محدود قیدق یآب زراع

با وری آب مبتنی بر بهره نهیبهکشت  یکرد. الگومشخص آب را  صیآل در تخص دهیا شرایط، نهیبه

 ستمیس کی،  LINGO مدلو  AquaCrop مدل تلفیقشد.  مشخص LINGO از نرم افزاراستفاده 

 میاز تصم یبانیپشت ستمیکرد. س جادیدر سطح منطقه ا یفن لیو تحل هیتجز یبرا (DSS) میتصم یبانیپشت

است.  یزراع محتلف سطح محصولاتمیزان  یدگیچیاز نظر پ نهیبهکشت  یاز الگو یبانیقادر به پشت

الگوی کشت در پاییزه محصولات از  یمتنوعموجب معرفی طیف  یکیملاحظات اکولوژبهره مندی از 

 ازیبا ن ه/ تابستانهمحصولات بهار یآب برا یرا کاهش داده و مقدار یاریآب ازین راهبرد نیابهینه شد. 

. شودیمزراعی  مستیمقاومت س تیباعث تقو یکه به طور کلرا آزاد نمود و پنبه  ونجهیمانند  ادیزآبی 

کشت  یالگو یمتر مکعب در هکتار آب برا 2678، توسعه داده شده میاز تصم یبانیپشتبر اساس نظام 

 .استاز حد متوسط  شتربی ٪1تر از حداکثر آب در دسترس و  نپایی ٪2است که  ازین نهیبه
 


