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ANN Modeling for Estimation of Surface and Subsurface 
Flows Based on Watershed Geomorphology 

M. R. Najafi1*, K. T. Lee2 and S. M. Hosseini1 

ABSTRACT 

In recent years, artificial neural networks (ANNs) have been widely used for flood esti-
mation. In this study, an ANN model based on the geomorphologic characteristics of a 
watershed such as the number of possible paths and their probabilities is developed 
(GANN model). Nodes in the input layer are allocated to the surface flows, subsurface 
flows, excess-rainfall and infiltrated rain. The number of nodes related to excess rainfall is 
predetermined according to the time of concentration of the watershed. The dependability 
of the infiltrated rain and surface and subsurface flows on previous time steps are calcu-
lated by assigning a different number of nodes to each component. The results of the 
study showed that the simulated hydrographs by the proposed ANN model have good 
agreement with the hydrographs observed.  

Keywords: Artificial neural networks, characteristics, Geomorphologic, Subsurface flow, 
Surface flow.  
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INTRODUCTION 

The rain in a watershed may be directed 
into two paths: 1) the surface flow (overland 
flow) which moves over the land surface 
when the rainfall rate is greater than the in-
filtration capacity or when surface saturation 
exists, and 2) the subsurface flow which in-
cludes interflow and groundwater. The rain-
fall that infiltrates the soil surface moves 
through the upper soil layers into the streams 
as interflow and/or some of it percolates 
deeply and joins the groundwater (Lee and 
Chang, 2005). The proportions of these three 
parts of the flow depend on the geomorpho-
logic and hydrologic characteristics of the 
watershed as shown schematically in Figure 
1.  

Estimation of the runoff from a watershed 
follows two major modeling approaches: 1) 

the conceptual modeling approach which 
uses some physical laws in its mathematical 
formulation; and 2) the black-box modeling 
approach, which relies heavily on an input-
output description of the conceptual model. 
Conceptual models require a large amount 
of data and, thus, make the black-box mod-
els more attractive to hydrologists (Wu et 
al., 2005). 
Artificial Neural Networks (ANNs) have 
provided many promising results in the field 
of hydrology simulation. This interest has 
been motivated by the complex nature of 
hydrological systems and the ability of 
ANNs to model the non-linear phenomena 
in this field. The role of ANNs in hydrology 
and its comparison with other modeling phi-
losophies is reviewed by the ASCE Task 
Committee on Application of ANNs in Hy-
drology. Elshorbagy et al. (2000) compared 
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the ANN technique with linear and non-
linear regression techniques for runoff pre-
diction in the Red River, remarking on the 
superiority of the ANN model. Kisi (2004) 
has suggested that the ANN approach may 
provide a superior alternative to the autore-
gressive (AR) model in situations that do not 
require modeling of the internal structure of 
the watershed for prediction of mean 
monthly streamflows. Anctil et al. (2005) 
applied an ANN model at a daily time step 
for 47 watersheds. In their developed ANN 
model, a predetermined range of precipita-
tion duration that is roughly equal to the 
time of concentration of the watersheds and 
the potential evapotranspiration have been 
considered as the nodes in the input layer. 
Sudheer (2005) has discussed the use of per-
turbation analysis for determining the order 
of influences of the elements in the input 
vector on the output vector in the ANN 
model. Analyses of the results indicated that 
each variable in the input vector influences 
the shape of the hydrograph in different 
ways. The selection of an appropriate ANN 
depends on a lot of tests and trials which are 
often time-consuming. Application of the 
ANN model for the estimation of direct run-

off in ungaged watersheds has recently be-
come interesting to many hydrologists. 
Zhang and Govindaraju (2003) developed an 
ANN model that explicitly accounts within 
its architecture for the geomorphologic char-
acteristics of the watershed for direct runoff 
prediction. They called their developed 
model the ‘GANN model’. They compared 
results of the GANN model with results ob-
tained by using in order the Geomorphologic 
Instantaneous Unit Hydrograph theory 
(GIUH). Their study reveals the GANN 
model in order to be a promising tool for 
estimating direct runoff. Lee and Chang 
(2005) revised the GIUH model to consider 
both the surface and sub-surface flow com-
ponents where kinematic-wave approxima-
tion was used for the travel-time function of 
the surface flow and Darcy’s law for defini-
tion of the travel-time function of the sub-
surface flow. 

In this study, an ANN model based on the 
Zhang and Govindaraju’s GANN algorithm 
was developed for both surface and subsur-
face flow mechanisms. This model incorpo-
rates the GIUH model characteristics in an 
ANN model structure. Hence, in the archi-
tecture of this model, the geomorphologic 

Figure 1. Interaction between surface, sub-surface and interflow. 
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characteristics of the watershed such as the 
number of possible paths and their probabili-
ties were used. The model efficiency is en-
hanced in terms of the run time of the ANN 
model in estimating watershed runoff while 
using predetermined components of the 
ANNs structure (weights and nodes) based 
on the geomorphological characteristics of a 
watershed.   

MATERIALS AND METHODS  

The GIUH theory assumes that the water-
shed is a linear and time-invariant system 
with uniformly distributed rainfall (Zhang 
and Govindaraju, 2003). Figure 2 illustrates 
schematically a flow diagram of surface and 
subsurface flows comprising streamflow and 
their interrelations based on GIUH theory. 
Here, the theory described by Rodriguez-
Iturbe and Valdes (1979), and Lee and 
Chang (2005) for the derivation of Instanta-
neous Unit Hydrograph (IUH) is adopted for 
the surface flow and subsurface flow of the 
watershed as follows: 

Let 
iox  denote the ith overland flow re-

gion, 
isubx  the ith subsurface flow order, ix  

the ith surface flow order, and i= 1, 2, 3, …, 
Ω  (where Ω  is the watershed order). The 
total IUH of a watershed u(t) as a linear sys-
tem of surface and subsurface flows is ex-
pressed as follows: 

)()()( tututu subs +=    

[ ]∑
∈

Ω
=

ss
s

jiio
Ww

swxxxx wPtftftftf )(.)(*...*)(*)(*)( ,

Ω= xxxxW jios i
,...,,,  

( )* ( )* ( )*...* ( ) . ( )
sub i ji sub

sub sub

x x x x subww W
f t f t f t f t P w

Ω
∈

⎡ ⎤= ⎣ ⎦∑   

,
Ω= xxxxW jisubsub i

,...,,,   (1 

where  us(t)= the surface flow IUH of the 
watershed, usub(t)= the subsurface flow IUH 
of the watershed, )(tf

jx = the travel-time 

probability density function in state xj, Ws= 
the surface flow path space which includes 
{xoi, xi, xj, …, xΩ}, Wsub= the subsurface flow 
path space which includes {

isubx , xi, xj, …, 
xΩ}, P(ws)= the probability of the surface 
flow adopting path ws (the path probability 
of the path ws) and P(wsub)= the probability 
of the subsurface flow adopting path wsub 
(the path probability of the path wsub). 

P(ws) and P(wsub) are defined by Lee and 
Chang (2005) as follows: 

( ) . ...
i i j ks OA x x x xP w P P P

Ω
=     (2 

( ) . . ...
i sub i i j kisub OA x x x x x xP w P P P P

Ω
=      (3 

iOAP is the ratio of the surface/subsurface 
flow region of the ith order hillslope to the 
total watershed area which is expressed as 
follows: 

Figure 2. Flow diagram of surface and subsurface flows in GIUH theory. 
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where AΩ= total area of watershed, Ni= 
number of ith order, and iA = average area of 
ith order subwatersheds.   

In equations (2) and (3),
ji xxP ,  denotes the 

transition probability of the runoff moving 
from the ith order surface/subsurface flow 
region to the ith order channel as follows:  

[ ]
[ ]

1 1
1,

( 2 ) , 2 ,
,

2,...,

i j

i i i
x x i j

i
i

k j

N N E j NP
NE k N

i

δ+ +
+Ω

=

− Ω
= +

Ω

= Ω

∑    (5 

and   1,

1 1
0i j

if j i
otherwise

δ +

= +⎧
=⎨
⎩

  

E[i,Ω] is average number of upstream 
channel orders joining ith order stream, 
which can be defined as:  

[ ] 1

2

( 1)
,

2 1

i
j

j j

N
E i N

N
−

=

−
Ω =

−∏  and  i=2,…,Ω      (6 

The required parameters to compute the 
flow path probabilities using equations (2) to 
(6) are directly measurable from the geo-
morphological characteristics of a water-
shed, where the travel-time probability den-
sity function ( )

jxf t  must be estimated for 

computing the transition probabilities of dif-
ferent orders. In this research, an attempt 
was made to estimate the transition prob-
abilities of different orders using the capa-
bilities of ANNs model.  

Artificial Neural Network Technique 

A three-layer ANN model was adopted in 
this study. In the developed ANN model the 
output of node j, yj, is obtained by comput-
ing the value of function f with respect to the 
inner product of vectors X and Wj minus bj, 
where bj and the function f are called the 
bias and the transfer function of this node, 
respectively. The following equations define 
this process (Wu et al., 2005). 
yi= f (X.Wj + bj)                     (7 

Xe
Xf −+

=
1

1)(                         (8 

According to the sketch given in Figure 3 
for sigmoid functions, it has a range between 
(0, 1), therefore all input data were initially 
normalized to lie within the values in this 
range. In this study, the normalized values 
are obtained by dividing the data by the 
maximum value of each corresponding data 
set. 

The configuration of the developed ANN 
model is shown in Figure 4, in which Et re-
fers to excess rainfall at time step t, It is in-
filtrated rainfall at time step t, Qs(t) is sur-
face-runoff at time step t, and Qsub(t)  is sub-
surface flow at time step t. 

A back-propagation algorithm was adopted 

for the training process. In this process, con-
nection weights of the layers and values of 
biases are derived through a continuous 
process of simulation by the environment in 
which the network is embedded by minimiz-
ing a predetermined error function (usually 
the mean squared error, MSE) as follows: 

2 2

1 1

1 ˆ ˆ( ) ( ) ( ) ( )
n n

s s sub sub
t t

MSE Q t Q t Q t Q t
n = =

⎧ ⎫⎡ ⎤ ⎡ ⎤= − + −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑  

 (9 
where n= the number of data sets used in 
training process, )(tQs = observed value of 

surface flow in time step t, )(ˆ tQs = estimated 
value of surface flow in time step t, )(tQsub = 
observed value of subsurface flow in time 

Figure 3. Sigmoid transfer function. 
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step t, and )(ˆ tQsub = estimated value of sub-
surface flow in time step t. 

The GIUH theory and ANN model struc-
tures developed by Zhang and Govindaraju 
(2003) were merged to develop the GANN 
model. For this purpose, the following as-
sumptions were made: 

1. The travel-time of a raindrop in sur-
face/subsurface flow is considered as the 
connection weight between input and hidden 
layers, which is estimated during the training 
process.  

2. The path probability values are consid-

ered as the initial connection weights be-
tween the hidden and output layers, which 
would be updated during the training proc-
ess.   

3. The number of nodes in the hidden layer 
is equal to the number of possible flow paths 
in a watershed. 

In runoff estimation based on GIUH the-
ory, the main step is the introduction of the 
probability density function (PDF) of travel-
time for the computation of transition prob-
abilities of different orders. Different forms 
of PDF of travel-time are proposed by dif-
ferent researchers (Rodriguez-Iturbe and 

Figure 4. Configuration of the three-layer adopted ANN model. 
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Valdes, 1979; Gupta et al., 1980; Lee and 
Chang, 2005) none of them being unique. In 
the GANN model the transition probabilities 
of different orders of watershed, incorpo-
rated as the connection weights between in-
put and hidden layers, are obtained during 
the training process using trial and error pro-
cedure.  

 Data and Study Watershed  

The Heng-Chi watershed located in north-
ern Taiwan was selected for investigating 
the applicability of the proposed GANN 
model where the results could be compared 
with the results obtained by Lee and Chang 
(2005). This watershed is of the fourth order 
and covers an area of 53 km2. Figure 5 
shows the location of a discharge ganging 

station, raingage station and the channel 
network. The watershed geomorphologic 
factors are listed in Table 1. Based on equa-
tions (2) to (6) the path probabilities and 
transition probabilities for this watershed are 
computed and their values are given in Ta-
bles 2 and 3. 

The available rainfall-runoff data comprise 
10 events recorded during 1984 to 2000. For 
each rainfall-runoff event, initial abstrac-
tions were subtracted from rainfall and, sub-
sequently, the subsurface flow was sub-
tracted from hydrographs to arrive at the 
values of direct runoff using the variable 
slope method (Zhang and Govindaraju, 
2003). The excess rain and infiltrated rain 
were computed based on the equivalent 
heights of direct runoff and groundwater 
runoff. For separation of base-flow from 
subsurface flow, the constant slope method 
was used (Figure 6). Tables 4 and 5 show 
the characteristics of the ten storm events 
used in this study.  

RESULTS AND DISCUSSION 

The Heng-Chi watershed is of the fourth 
order with eight possible paths. Hence, eight 

Table 1. Geomorphologic data of the water-
shed. 

i Ni PoAi Āi (km2) 
1 
2 
3 
4 

30 
6 
2 
1 

0.635 
0.215 
0.092 
0.058 

1.043 
6.919 

19.898 
53.227 

 

Table 2. The transition probabilities (Pxi,xj) for the watershed. 

Pxi,xj Value 
Px1,x2 
Px1,x3 
Px1,x4 
Px2,x3 
Px2,x4 
Px3,x4 

0.727 
0.400 
0.600 
0.888 
0.333 

1 

 

Table 3. Path probabilities P(w) for the watershed. 

Path number Path Path Probabilities  
P(w) 

1 
2 
3 
4 
5 
6 
7 
8 

O1 → C1 → C2 → C3 → C4 
O1 → C1 → C2 → C4 
O1 → C1 → C3 → C4 
O1 → C1 → C4 
O2 → C2 → C3 → C4 
O2 → C2 → C4 
O3 → C3 → C4 
O4 → C4 

0.4099 
0.1537 
0.2538 
0.3810 
0.1909 
0.0716 
0.092 
0.058 
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nodes in the hidden layer were considered. 
Based on GIUH theory, the connection 
weights between the hidden and output lay-
ers were initially considered as the path 
probabilities which were updated during the 
training process.  

From the 10 available rainfall-runoff 

events, seven events were chosen randomly 
for the training process and the three remain-
ing events were used for model validation.   

In the training process, for optimizing the 
number of nodes related to infiltrated rain-
fall, six nodes were initially considered in 
the input layer including Et-2, Et-1, Et, It, Qt-1 

Table 4. Rainfall characteristics of the storm events of the watershed. 

Sl No. Excess rain Infiltrated rain 
 

Date 
Depth (mm) Duration (hr) Depth (mm) Duration (hr) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

08/16/1984 
09/16/1985 
09/17/1986 
07/27/1987 
09/08/1987 
08/18/1990 
06/05/1993 
07/10/1994 
07/30/1996 
10/31/2000 

242.50 
300.50 
246.00 
54.35 
148.19 
235.20 
72.20 
27.95 
133.00 
329.53 

78 
19 
49 
9 

40 
39 
13 
10 
36 
27 

129.50 
46.50 
139.22 
41.65 
61.90 
87.40 
43.80 
23.17 
114.70 
81.74 

83 
23 
71 
11 
43 
42 
15 
12 
38 
29 

 
 

Table 5. Runoff characteristics of the storm events of the watershed. 

Surface flow Subsurface flow Sl. 
No. Date Peak 

(m3/s) 
Peak time 

(hr) 
Duration 

(hr) 
Peak 
(m3/s) 

Duration 
(hr) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

08/16/1984 
09/16/1985 
09/17/1986 
07/27/1987 
09/08/1987 
08/18/1990 
06/05/1993 
07/10/1994 
07/30/1996 
10/31/2000 

135.80 
552.35 
428.00 
140.00 
305.95 
468.00 
156.94 
49.90 

199.00 
290.40 

67 
8 

41 
7 

36 
32 
11 
12 
30 
18 

105 
26 
37 
33 
47 
61 
20 
46 
40 
45 

22.00 
35.35 
27.90 
21.50 
11.50 
18.40 
12.96 
7.10 

43.10 
19.43 

111 
43 
100 
46 
50 
65 
52 
78 
97 
59 

 

 
Figure 6. Separation of surface, sub-surface and base flow from total hy-

drograph. 
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and qt-1 (Et refers to excess rainfall at time 
step t, It is infiltrated rainfall at time step t, 
Qt-1 is surface-runoff at time step t-1 and qt-1 
is subsurface flow at time step t-1) were 
considered. The numbers of nodes related to 
excess rainfall in the input layer are prede-
termined. It is equal to three nodes and com-
patible with the time of concentration of 
Heng-Chi watershed (the time of concentra-
tion based on Lee and Chang (2005) is ap-
proximately 3 hours). By altering the num-
ber of time steps for subsurface flow in the 
input layer, and calculating the MSE of pre-
dicted and observed data during the training 
process, the optimum number of time steps 
for subsurface flow were obtained (Table 6). 

The results given in Table 6 indicate that 
the infiltrated rainfall at time step t signifi-
cantly depends on the infiltrated rainfall at 
previous time steps, as the minimum value 
MSE= 236.873 is related to this pattern. As 
the next step, the optimum numbers of time 
steps for surface and subsurface flows corre-
sponding to the best results were selected. 
The patterns considered for this purpose are 
shown in Table 7. 

The results given in Table 7 indicate that 
the minimum MSE is related to the pattern 
which uses the surface and the subsurface 
runoffs in the two previous time steps. With 
this pattern, the simulation process has been 

conducted. The final result in training proc-
ess was achieved with 600 epochs and 
MSE= 36.907.  

In the ANN optimum pattern, by assigning 
all the inputs values equal to 1, the IUHs for 
surface and subsurface flows were obtained. 
These IUHs were compared with the surface 
and subsurface flow IUHs derived from ob-
served data as reported by Lee and Chang 
(2005). These are presented in Figure 7.  

The ordinates of surface and subsurface 
flows for the events considered for model 
validation were computed. As a sample re-
sult, the storm event dated September 16, 
1985 is presented in Figure 8. 

Based on the linear system assumption, us-
ing GIUH theory, the hydrologic response 
function of a watershed can be recognized as 
the superposition of the ordinates resulting 
from the surface and subsurface flow. So, 
with a summation of the ordinates of surface 
and subsurface flows obtained from ANN 
model, the ordinates of the outflow hydro-
graphs were computed. Detailed results for 
the storm events of 7/30/1996 and 
10/31/2000 are presented in Figure 9. The 
results of applying the model to these storm 
events indicate that the overall shape, rising 
and receding limbs of surface flow, subsur-
face flow and total streamflow hydrograph 
are well simulated by the developed ANN 

Table 6. The MSE values for different number of infiltrated rainfall nodes in 
training mode. 

Number Nodes in input layer MSE value 
1 
2 
3 
4 

Et-2, Et-1, Et, It, Qt-1,qt-1 
Et-2, Et-1, Et, It-1, It, Qt-1,qt-1 

Et-2, Et-1, Et, It-2, It-1, It, Qt-1,qt-1 
Et-2, Et-1, Et, It-3, It-2, It-1, It, Qt-1,qt-1 

432.910 
236.873 

1127.559 
1128.23 

 
 
 

Table 7. The MSE values for different number of surface and sub-surface runoff nodes in 
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model. To evaluate the suitability of the de-
veloped ANN model, three criteria (Lee and 
Chang, 2005) were chosen to analyse the 
degree of goodness of fit.  
1) The coefficient of efficiency (CE): 

[ ]2

1
2

1

( ) ( )
1

( )

n
obs calt

n
obs obst

Q t Q t
CE

Q t Q
=

=

−
= −

⎡ ⎤−⎣ ⎦

∑
∑

 (10 

where Qobs(t) is the recorded discharge at 
time t, Qcal(t) is the simulated discharge at 
time t, obsQ is the average recorded discharge 
value during the storm event, and n is the 

number of hydrograph ordinates. 
2) The error in peak discharge:  

( ) ( )
(%) 100

( )
p cal p obs

p
p obs

Q Q
EQ

Q
−

= ×  (11 

where (Qp)cal is the peak discharge of the 
simulated hydrograph and (Qp)obs is the ob-
served peak discharge. 
3) The errors in time to peak of the simu-
lated hydrograph: 

( ) ( )p p cal p obsET T T= −  (12 
where (Tp)cal is the simulated time to peak 

0

0.05

0.1

0.15

0.2

0 5 10 15 20

Time (hr)

IU
H

 (h
r-

1)

Surface Flow IUH by GANN Model

Observed Surface Flow IUH

Subsurface Flow IUH by GANN Model

Observed Subsurface  Flow IUH 

Figure 7. Observed and simulated surface and subsurface flow IUH. 

Figure 8. Comparison of observed surface and subsurface hydrographs with         
results from ANN model. 
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discharge and (Tp)obs is the recorded time to 

peak discharge. 
Equations (10) to (12) were applied to all 

the events used for the training process and 
the corresponding computed values are pre-
sented in Table 8. It is evident that the 
GANN model performs efficiently in terms 
of the magnitude of the predicted peak dis-
charge and time to peak while the subsurface 
flow concept was further included in model-

ing.  
The results obtained from model validation 

were compared with the results reported by 
Lee and Chang (2005).  Both the results are 
summarized in Table 9. The values in Table 
9 indicate the higher efficiency of the 
GANN model in terms of CE, ETp, and EQp.  

CONCLUSION  

The ANN models are criticized for their 
perceived weakness of being black-box 
models for rainfall-runoff computations. 
Nevertheless, if these models are equipped 
with the geomorphological characteristics of 
a watershed and a suitable training algo-
rithm, they become efficient physiographic- 
based instead of being black-box.  

Finding the best architecture of the ANNs 
model as the optimum number of nodes in 
hidden layers and searching the best weights 
connected between layers is time consum-
ing, while the GANN model uses watershed 
geomorphologic characteristics to reach the 
best performance in a lower run time com-
pared to common methods. 

The optimum number of nodes in the input 
layer in an ANN model for the estimation of 
the surface and subsurface flow was ob-
tained when the surface flow and subsurface 
flow at a time step is related to the two pre-
vious time steps. By setting the infiltrated 
rain and excess rainfall in the present and 
the preceding time steps, better results were 
obtained. As the Heng-Chi is a steep slope 

Table 8. Results of criteria for determining the goodness of fit of the ANN model in training 
mode. 

Date Recorded Simulated Evaluation criteria 

 Qp 
(m3/s) 

Tp 
(hr) 

Qp 
(m3/s) 

Tp 
(hr) 

CE 
(-) 

EQp 
(%) 

ETp 
(hr) 

08/16/1984 
09/17/1986 
07/27/1987 
09/08/1987 
08/18/1990 
06/05/1993 
07/10/1994 

157.8 
455.9 
161.5 
318.0 
486.4 
173.4 
57.0 

67 
41 
7 

36 
32 
11 
12 

157.5 
449.5 
161.2 
315.4 
471.0 
172.5 
58.2 

67 
41 
7 
37 
31 
11 
12 

0.99 
0.96 
0.99 
0.95 
0.91 
0.93 
0.88 

0.00 
-1.39 
-0.14 
-0.51 
-3.02 
-0.02 
-.006 
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Figure 9. Comparison of the observed and 
simulated direct runoff hydrographs by the 
ANN model. 
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watershed, the subsurface flow and the infil-
trated rain at a time step cannot be related to 
infiltrated rainfall or subsurface flows of 
much earlier time steps.  

By comparing the results of this study with 
the results reported by Lee and Chang 
(2005) it can be concluded that the formu-
lated model is competent. 
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مبتنی بر ژئومورفولوژی حوضه برای برآورد  ANNمدل 
 های سطحی و زيرزمينی جريان

 حسينی. م. و سلی . ت. ک, نجفی. ر.م

Table 9. Criteria for evaluating the goodness of fit of the ANN model in validation mode and Lee and 
Chang (2005) model. 

Simulated Evaluation criteria 

Recorded 
GANN model 

Lee and 
Chang (2005) 

model 
GANN model Lee and Chang 

(2005) model Date 

Qp 
(m3/s) 

Tp 
(hr) 

Qp 
(m3/s) 

Tp 
(hr) 

Qp 
(m3/s) 

Tp 
(hr) 

CE 
(-) 

EQp 
(%) 

ETp 
(hr) 

CE 
(-) 

EQp 
(%) 

ETp 
(hr) 

07/30/1996 
10/31/2000 
09/16/1985 

242.1 
309.8 
587.7 

30 
18 
8 

254.1 
224.0 
567.5 

29 
18 
8 

237.2 
307.6 
589.3 

29 
17 
7 

0.96 
0.98 
0.80 

-2.02 
-1.37 
0.28 

-1 
-1 
-1 

0.98 
0.97 
0.98 

-2.22 
-3.36 
-0.07 

-1 
0 
0 
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هاي سطحي و  مبتني بر ژئومورفولوژي حوضه براي برآورد جريان ANNمدل 
 زيرزميني

  حسيني. م. لي و س. ت. ك, نجفي. ر.م

  چكيده

در ايـن  . شود  در سالهاي اخير از شبكه عصبي مصنوعي براي برآورد سيلاب بطور گسترده استفاده مي             
. صوصيات ژئومورفولوژي حوضه توسعه داده شده است      مطالعه يك مدل شبكه عصبي مصنوعي مبتني بر خ        

تعـداد  . باشـد   هاي سطحي و زيرزميني و باران نفوذ يافته مي          جريان, هاي لايه ورودي شامل باران اضافي       گره
وابستگي باران  . هاي مربوط به باران اضافي از قبل تعيين و برابر با زمان تمركز حوضه در نظر گرفته شد                   گره

هـاي مختلـف هـر        هاي زمان قبل با اختصاص دادن تعداد گـره          يان سطحي و زيرزميني به گام      جر ،نفوذ يافته 
هاي برآورد شده توسـط   دهد كه هيدروگراف نتايج اين مطالعه نشان مي    .  محاسبه شد  ،مؤلفه در لايه ورودي   

  .باشد هاي مشاهده شده مي مدل شبكه عصبي مصنوعي داراي هماهنگي خوبي با هيدروگراف
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