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Genomic Evaluation of Average Daily Gain Traits in a
Mixture of Arian Line and Urmia Iranian Native Chickens
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ABSTRACT

The aims of this investigation were to compare the accuracy and bias of prediction of
Estimated Breeding Values (EBV) for Average Daily Gain (ADG) at 2-4 weeks old by
employing pedigree-based BLUP and single-step Genomic BLUP (ssGBLUP) techniques.
Additionally, the study aimed to identify the optimal minor allele frequencies (MAF)
threshold for pre-selecting SNPs for genetic prediction. The present investigation utilized
a total of 488 F2 broiler chickens, which were derived from the crossbreeding of fast-
growing Arian chickens and slow-growing native chickens from Urmia, Iran. These
chickens were between 2-4 weeks old at the time of the study. Samples were genotyped
using the Illumina 60K chicken Beadchip. In order to examine the impact of MAF on
prediction accuracy, a total of 48,379 quality-controlled SNPs were categorized into five
subgroups based on their MAF values: 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5. The
findings substantiated the dominance of ssGBLUP over conventional BLUP techniques.
The average accuracy of GP improved by 1.96, 3.87, and 2.12% using ssGBLUP
compared to BLUP method for ADG at 2-4 weeks of age, respectively. Using a specific
MATF bin and a subset of SNPs based on age group significantly enhanced the accuracy of
genomic prediction for ADG traits. Current results highlighted that the pre-selection of
SNPs based on allele frequency may provide a reasonable compromise between accuracy
of results, number of independent variables to be considered and computing
requirements.
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INTRODUCTION to effectively identify genetically superior
animals, thereby enabling more accurate
selection and ultimately achieving higher
genetic gain (Goddard and Hayes, 2007).
The availability of high-density SNP panel
and the implementation of Genomic
Selection (GS) present an exceptional
opportunity to unravel the underlying
genetic factors of complex traits. This is
particularly advantageous for traits that are
challenging or costly to measure, as well as
those with low heritability (Meuwissen et
al., 2001). Various studies have utilized the
single-step Genomic Best Linear Unbiased
Prediction (ssGBLUP) method to Estimate

The breeding program faces a significant
constraint in the form of uncertainty
surrounding the actual genetic value of
breeding animals. Consequently,
investments in breeding programs are
frequently directed towards trait
measurement, genetic evaluation
methodology, and technologies aimed at
enhancing reproductive performance. By
ensuring a reliable measurement system and
employing a more accurate genetic
evaluation methodology, it becomes possible
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Genomic Breeding Values (GEBV) for
livestock (Salek Ardestani et al., 2021;
Legarra et al., 2009). By combining the
pedigree-based relationship matrix (A) with
the Genomic relationship matrix (G) into a
Hybrid matrix (H), ssGBLUP enhances the
accuracy and minimizes the prediction bias
of GEBVs compared to multi-step genomic
predictions (Christensen et al., 2012;
Simeone et al., 2012; Li et al., 2014; Song et
al., 2017).

In theory, the probability of finding
Linkage Disequilibrium (LD) between
Single Nucleotide Polymorphisms (SNPs)
and Quantitative Trait Loci (QTL) is
enhanced with the use of higher density SNP
panels (Meuwissen et al, 2016).
Nevertheless, the utilization of High Density
(HD) SNP panels for constructing a G
matrix has not resulted in substantial
enhancements in the accuracy of the
estimates (Misztal et al., 2013). Using a high
density SNP panel can result in a significant
statistical and computational problem.
Additionally, the expense of genotyping
animals with medium to high density SNP
panels can be a burden in numerous
livestock and poultry breeding programs.
Therefore, employing preselection and
utilizing a subset of SNPs may offer a
practical solution that balances result
accuracy, the number of independent
variables to be taken into account,
computing demands, and genotyping
expenses (Meuwissen and Goddard, 2010;
Druet et al., 2014).

Although Average Daily Gain (ADG) is
one of the main objective traits in poultry
breeding due to their economic implications,
the best age for conducting genomic
evaluation for ADG has not been well
determined. In the current study, we aimed
to predict Genomic Breeding Values
(GEBYV) using ssGBLUP methodology for
average daily gain at 2-4 weeks of age on a
set of 488 F, broiler chicken by using whole
SNPs data and 5 different subsets of SNPs
based on different MAF bins (0.05-0.1, 0.1-
0.2, 0.2-0.3, 0.3-04 and 0.4-0.5). Also,
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GEBVs were compared with BVs estimated
from a traditional BLUP method.

MATERIALS AND METHODS
Experimental Population

To investigate ADG traits at the age of 2-4
weeks, the F; population was generated by
applying reciprocal crosses between a
commercial fast-growing broiler strain
(Arian line, A) and a slow-growing
indigenous population (Urmia Iranian native
chickens, N). Each F; male, resulted from a
reciprocal cross and, mated with four to
eight females from the other families.
Finally, 488 F, chickens from eight half-sib
families were generated in five different
hatches. Day-old F2 chickens were initially
weighed and raised on the floor for a
duration of 7 days, with continuous exposure
to 24-hour lighting and a brooding
temperature of 33°C. However, on the 7th
day, the temperature was reduced to 30°C.
Subsequently, on the 8th day, the birds were
weighed again and transferred to individual
cages with a temperature of 30°C. Over
time, the temperature gradually decreased
until it reached a final temperature of 22°C.
Additionally,  throughout the entire
experimental period, the chickens were
subjected to a light and dark cycle of 22 and
2 hours, respectively.

Genotyping and Population S tructure

DNA was extracted from 312 blood samples
by the standard salting-out procedure. All
samples were genotyped at Aarhus University,
Denmark, using the Illumina Chicken 60K
BeadChip provided by Cobb Vantress. Quality
control was performed by using PLINK (v1.9)
(Chang et al., 2015; Purcell et al., 2007). SNPs
that had a Minor Allele Frequency (MAF)
below 5% and a call rate below 95% were
eliminated. Additionally, a Hardy-Weinberg
equilibrium threshold of 1x107® was applied.
Furthermore, samples with a high rate of


http://dx.doi.org/10.22034/JAST.26.2.299
https://jast.modares.ac.ir/article-23-62521-en.html

[ Downloaded from jast.modares.ac.ir on 2024-05-20 ]

[ DOI: 10.22034/JAST.26.2.299 ]

Genomic evaluation in chickens

JAST

missing genotypes (< 99.9%) were excluded.
Following the quality control process, the final
dataset consisted of 48,379 SNPs and 308
birds, comprising 170 males and 138 females.
Numbers of SNPs before and after quality
control, as well as the average distance
between adjacent SNPs on each chromosome,
determined using synbreed (Wimmer et al.,
2012), are shown in Table 1. The normality of
the data after quality control was assessed and
confirmed using a QQ-plot in R. In order to
examine the correlation between allele
frequencies and predictive abilities, a total of
48,379 SNPs were divided into 5 subsets
based on different MAF bins. These subsets
included 6,731 SNPs in the 0.05-0.1 range,
8,884 SNPs in the 0.1-0.2 range, 10,148 SNPs
in the 0.2-0.3 range, 11,128 SNPs in the 0.3-
0.4 range, and 11,488 SNPs in the 0.4-0.5
range. The software tools PLINK (v1.09)
(Purcell et al., 2007) and GCTA (Yang et al.,
2013) were utilized for this analysis. The
population structure was assessed through
Multi-Dimensional Scaling (MDS) analysis
using PLINK (v1.09) (Chang et al., 2015). To
obtain independent SNPs for all autosomes,
the independence-pairwise option  was
employed with a window size of 30 SNPs, a
step of five SNPs, and an 1* threshold of 0.2, as
recommended by Wang e al. (2009). Next,
the  pairwise  Identity-By-State  (IBS)
relationship between all individuals was
estimated using independent SNPs, as
described by Liu et al. (2015). The MDS
components were then obtained by utilizing
the MDS-plot option, which was based on the
IBS matrix as outlined by Sun et al. (2013). To
perform cluster analysis on all genotypes, the
neighbor joining method was employed, and
agglomerative clustering was utilized based on
genetic distance, following the approach
described by Luo et al. (2020).

Statistical Analyses

The AIREMLF90 (v1.61) module from
the Blupf90 program was utilized to predict
the breeding values of each animal,
employing Model 1 (Misztal et al., 2002):
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y=1lu+Xb+Za+e [1]

Where, y is the vector of adjusted
phenotype, p is the overall mean, X is the
incidence matrix relating fixed effects of
sex—hatch—year to phenotypes, b is the
vector of fixed effects, Z is the incidence
matrix relating phenotypes to additive
genetic effects, a is the vector of additive
genetic effects assumed to be distributed
as ~ N (0,40,°), where A is the pedigree-
based relationship matrix, 6, is the variance
of additive genetic effects and e is the vector
of random residual effects as ~ N (0, Io.’),
where I is the identity matrix, and 6.’ is the
residual variance. Adjusted phenotypes were
calculated as sum of the animals’ PBV and
residual values (Lourenco et al., 2020).
PBV’s and the residuals for each animal
were estimated using AIREMLf90 and
Pridictf90 modules from Blupf90 program
by pedigree and raw phenotype fitting in
model 1.

The prediction of single-step genomic
breeding values was carried out using Model
2. AIREMLF90 (v1.61) (Misztal et al.,
2014) was employed for this purpose. The
entire set of SNPs, consisting of 48,379
SNPs, was utilized in the analysis.
Additionally, five subsets of SNPs were
created based on different Minor Allele
Frequency (MAF) bins, namely 0.05-0.1,
0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5.

y=1lu+Xb+Zg+e 2]

Where, y, p, X, b, and e are the same as
Model 1, Zis a design matrix for the
random additive genetic effects; g is a vector
of random additive genetic effects assumed
to be distributed as ~N(0, Ho}), where, H is
a combination of Genomic relationship
matrix (G) and pedigree-based relationship
matrix (A). The H matrix inverse utilized in
this research was formulated as follows:

H!=

1 0 0
A o t(aG + BAy) ™" - U)Azz_l]

131

In the AIREMLF90 (v1.61) software
(Misztal et al., 2014), A, represents the
subset of the A matrix that pertains to
genotyped animals. The scaling factors, t
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Table 1. Distribution of SNPs before and after quality control and the average distance between adjacent

SNPs on each chromosome.

No. of SNP Markers

Chromosome after quality control
1 7546
2 5762
3 4340
4 3553
5 2303
6 1815
7 1907
8 1502
9 1269
10 1378
11 1329
12 1356
13 1251
14 1081
15 1094
16 20
17 898
18 930
19 878
20 1587
21 805
22 313
23 631
24 763
25 177
26 685
27 518
28 582
29 118
30 4
V4 1984

Total 48379

and o, were both initially set to one as the
default option. To enhance predictions and
prevent singularity issues, the blending
factors o and B were assigned values of 0.95
and 0.05, respectively (VanRaden, 2007;
Lourenco et al., 2014). The correlation
between Prediction Breeding Values
(GEBVs/PBVs) and adjusted phenotypes of
birds in the validation population was used
to calculate the accuracy. The equation
below was used to calculate the standard
error of prediction accuracy (Salek
Ardestani et al., 2021):
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No. of SNP in chip Average distance (kb)

8303 26.5
6355 26.7
4739 26.3
3872 26.5
2542 27.1
1995 19.6
2089 20.1
1636 20.1
1366 18.8
1553 16.1
1531 16.4
1559 14.4
1371 14.6
1179 14.3
1222 11.8
24 21.7
994 11.8
1048 11.9
973 11.3
1815 8.8
901 85
432 12.6
724 9.3
853 85
211 11.5
776 7.4
576 9.4
708 7.6
142 7.7
7 6.9
2842 37.5
54338 15.8

1—accuracy?
Standard error = L

vnumber of individuals—1
[4]
The accuracy improvement was computed
utilizing the subsequent formula (Salek
Ardestani et al., 2021):

Improvement accuracy =
accuracy of GEBV—accuracy of EBV.

(

accuracy of EBV ) X 100 [5]

The prediction bias was determined by
calculating the regression coefficients (r) of
GEBVs on adjusted phenotype using the Im
function in R (R Core Team, 2013).
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Cross Validations for Model Assessment

In order to evaluate the predictive
accuracy of various prediction models, the
5-fold Cross-Validation (CV) method was
employed. Among the total of 308 birds, a
random selection of 40 birds was designated
as the validation population, while the
remaining 268 birds constituted the
reference population. This process was
repeated 5 times to ensure reliability. The
estimation of GEBVs in the validation set
was carried out using the ssGBLUP method.
Additionally, traditional breeding values
were estimated using the BLUP method for
different age groups. The accuracy and bias
of GEBVS/EBVs were utilized to compare
the predictive performance of different
scenarios.

RESULTS

Summary Statistics and Population
Structure

Table 2 presents the statistical measures of
ADG, including the mean, standard
deviation, coefficient of variation, and the
minimum and maximum values, for weeks 2
to 4. In order to investigate the genetic
population structure, we conducted MDS
analysis (Figure 1) and neighbour-joining
tree analysis (Figure 2) using 48,379 SNPs
in a crossbreed population. Our analysis
identified the presence of eight distinct
subgroups within the population under
study.

Predictive Ability

The accuracy of EBV (GEBV) for ADG at
2 to 4 weeks of age were 0.102 (0.104),
0.155 (0.161) and 0.094 (0.096),
respectively (Figure 3). The highest and
lowest accuracy improvement in ssGBLUP
over BLUP were observed for 3 (3.87%) and
2 (1.96%) weeks of age, respectively. The
lowest bias of genomic predictions (0.91)
using ssGBLUP model was observed for
ADG at 3 weeks of age (Table 3).

Impact of MAF bins on predictive
ability

In order to assess the influence of MAF on
predictive capability, we categorized SNPs
into five distinct subgroups based on
different MAF ranges: 0.05-0.1 (6,731
SNPs), 0.1-0.2 (8,884 SNPs), 0.2-0.3
(10,148 SNPs), 0.3-0.4 (11,128 SNPs), and
0.4-0.5 (11,488 SNPs). For ADG at week 2,
the highest accuracy (0.111, 0.105) was
observed for MAF bins 0.3-0.4 and 0.4-0.5,
which resulted in respectively, 6.86% and
0.98% improvement compared to using all
SNPs. The lowest bias of estimates (r= 0.81)
was observed for MAF bin 0.4-0.5 (Table
4). However, for ADG at 3 weeks of age,
using MAF bin 0.4-0.5 resulted in the
highest accuracy improvement (8.38%) and
the lowest bias of estimates (r= 1.02) (Table
5). For ADG at 4 weeks of age, MAF bins
0.4-0.5 (0.108) and 0.3-0.4 (0.107) showed
the highest accuracy of prediction,
respectively. The regression coefficient of
GEBVs predicted using this two MAF bins
ranges between 1.32 to 1.56 (Table 6). The

Table 2. Descriptive statistics of the Average Daily Gain (ADG) traits in chickens.”

Trait/g Mean SD ()% Min Max
ADG2 18.03 6.64 36.80 0.864 30.90
ADG3 28.70 7.82 27.23 7.460 58.92
ADG4 38.70 10.71 27.67 5.813 72.95

“ ADG2 to ADG4= Average Daily Gain at 2 weeks of age to Average Daily Gain at 4 weeks of age
based grams (g), SD= Standard Deviation, CV= Coefficient of Variation, Min= Minimum, Max=

Maximum.
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Figure 1. Population structure identification with multidimensional scaling analysis. Fullsib families are
shown in the same color (HSF = half-sibling family).
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Figure 2. Genetic relationships among 8 chicken groups constructed using a neighbor-joining
phylogenetic tree from shared allele distance, based on 48,379 single nucleotide polymorphisms (SNPs).
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Figure 3. Comparison of BLUP and ssGBLUP accuracy in the second, third, and fourth weeks for the

average daily gain (ADG) traits in F, chickens.

Table 3. Accuracy and bias of BLUP and ssGBLUP predictions for broiler average daily gain traits in

different weeks using 5-fold cross-validation method.

Weeks Accuracy / Accuracy /
BLUP ssGBLUP

2 0.102 £ 0.044 0.104 £ 0.044

3 0.155+0.044 0.161 = 0.044

4 0.094 + 0.044 0.096 + 0.044

Improvement accuracy% /

Regression coefficient /

ssGBLUP ssGBLUP
1.96 0.75
3.87 0.91
2.12 1.5

Table 4. Accuracy and bias of genomic prediction of average daily gain trait using different MAF bins at

two weeks of age.

MAF Accuracy / Improvement
ssGBLUP accuracy% / ssGBLUP
0.05-0.1 0.066 £ 0.045 -35.29
0.1-0.2 0.099 £ 0.044 -2.94
0.2-0.3 0.094 £ 0.044 -7.84
0.3-0.4 0.111£0.044 8.82
0.4-0.5 0.105 £ 0.044 2.94

accuracy based on the SNPs with MAF bin
0.3-0.4 and 0.4-0.5 across all traits was
slightly increased relative to ssGBLUP (60k)
(Figures 4, 5 and 0).

DISCUSSION

Developing an accurate and unbiased
genomic prediction technique can prove to
be a lucrative approach for genetic
improvement of economic in the poultry
sector (Mrode et al, 2019). Using a
combination of pedigree and genomic
information is expected to result in more
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Improvements for Regression coefficient

each MAF % / ssGBLUP
-37.25 0.59
-4.9 0.76
-9.8 0.66
6.86 0.74
0.98 0.81

accurate estimates of genetic merit
compared to using pedigree information
alone. In the current study, we employed the
ssGBLUP technique to forecast the GEBVs
for ADG traits during the 2 to 4-week age
range. Subsequently, we compared the
accuracy and bias of these predictions with
estimates obtained through the conventional
BLUP approach. Figure 3 demonstrates that
ssGBLUP consistently outperforms the
traditional BLUP method in terms of
prediction accuracy across all age groups
(Gao et al., 2012; Koivula et al., 2015).
According to the findings of Silva et al.
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Table 5. Accuracy and bias of genomic prediction of average daily gain trait using different MAF bins at

three weeks of age.

MAF Accuracy / Improvement accuracy
ssGBLUP % / ssGBLUP
0.05-0.1 0.153 £ 0.044 -1.29
0.1-0.2 0.160 + 0.044 3.22
0.2-0.3 0.142 + 0.044 -8.38
0.3-0.4 0.164 + 0.044 5.80
0.4-0.5 0.174 £ 0.043 12.25

Improvements for each  Regression coefficient

MAF % / ssGBLUP
-5.16 1.02
-0.65 1.08
-12.25 0.89

1.93 0.85
8.38 1.02

Table 6. Accuracy and bias of genomic prediction of average daily gain using different MAF bins at four

weeks of age.

MAF Accuracy / Improvement
ssGBLUP accuracy% / ssGBLUP
0’(())51_ 0.066 £ 0.045 -29.78
0.1-0.2 0.104 £ 0.044 10.63
0.2-0.3 0.099 + 0.044 5.31
0.3-04 0.107 £ 0.044 13.82
0.4-0.5 0.108 + 0.044 14.89

(2016), the utilization of ssGBLUP resulted
in higher accuracy compared to the
implementation of BayesCrt and GBLUP
methods for evaluating residual feed intake
and feed conversion ratio traits in Nelore
cattle. Furthermore, in their study, Salek
Ardestani et al. (2021) discovered that
ssGBLUP exhibited the highest level of
prediction accuracy when compared to
BLUP, GBLUP, BayesC, and BayesCn
methods for the medium-size genotyped
Canadian pig population. Similarly, Yan et
al. (2017) reported that ssGBLUP
demonstrated lower bias in estimates and
higher prediction accuracy in comparison to
traditional BLUP for a pure line of laying
hens. Nevertheless, predictions using
ssGBLUP compared to BLUP resulted in
small improvement in accuracy for most of
the age groups, which could be due to the
small reference population size used in the
current study and the architecture of the
growth traits which is polygenic (Clark et
al., 2011). The attainment of high accuracy
in GEBV necessitates a substantial number
of records in the reference population due to
the relatively low to moderate heritability of
growth traits at various weeks of age
(Mebratie et al., 2017; Adeyinka et al.,
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Improvements for Regression

each MAF % coefficient / ssGBLUP
-31.9 1.40
8.51 1.82
3.19 1.80
11.7 1.56
12.77 1.32

2006) as highlighted by previous studies
(Bermann et al., 2021; Goddard and Hayes,
2009). Furthermore, the occurrence of false
positive errors in actual data can also
contribute to a slight improvement in
accuracy compared to BLUP (VanRaden et
al., 2017). Moreover, if a limited effective
population is chosen over an extended
duration, the majority of the genetic
variability can be elucidated by the genetic
variability of SNPs owing to the
interconnection among individuals
(VanRaden er al., 2009). Consequently,
substantial advancements in prediction
accuracy will not be attained (MacLeod et
al., 2014). According to the latest findings,
Song et al. (2019) discovered a slight
enhancement in accuracy (1%) when
utilizing ssGBLUP instead of BLUP for
growth traits in a Yorkshire population of
592 pigs. This improvement can be
attributed to the limited number of animals
with genotype and phenotype information,
as well as the shallow pedigree depth.
Additionally, Song et al. (2019)
demonstrated that increasing the size of the
reference  population further improved
accuracy. In a similar vein, Lourenco et al.
(2014) observed a 3% increase in prediction
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Figure 5. Comparison of the accuracy of each MAF subgroup with the accuracy of information about all
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Figure 6. Comparison of the accuracy of each MAF subgroup with the accuracy of information about all
markers in the fourth week.
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accuracy for fat percentage using
ssGBLUP compared to BLUP in a relatively
small population of dairy cows with
genotype information. In the current study,
the enhancement in genomic prediction
accuracy using ssGBLUP in comparison to
BLUP was evident for the 3-week-old age
group (3.87%). This improvement could be
attributed to the higher genetic correlation
observed between adjusted phenotypes and
GEBVs as compared to EBVs for this
specific age category. In general, a stronger
genetic correlation between GEBVs and
adjusted phenotypes leads to a higher level
of accuracy in genomic prediction. The
degree of genetic correlation between
adjusted phenotype and EBVs for ADG at 3
weeks of age were increased by be 0.006
using ssGBLUP compared to BLUP method.
However, small accuracy improvement was
observed for ADG at 2 and 4 weeks of age,
which could be due to the relatively small
increase in genetic correlation between
adjusted phenotypes and EBVs using
ssGBLUP over BLUP (0.002 at 2 and 4
weeks of age, respectively). Based on the
current results, implementation of genomic
evaluation based on ssGBLUP method using
whole SNPs for ADG at 3 weeks of age can
result in more accurate results in populations
with similar structure. Our research has
yielded valuable findings regarding the
implementation of genomic selection using
low-density markers in the F2 cross broiler
population. While it is commonly believed
that a large portion of genetic diversity can
be accounted for by utilizing high-density
panels, it should be noted that the majority
of SNPs in these panels are in Linkage
Disequilibrium (LD) with causal mutations.
Therefore, increasing the number of markers
may not necessarily lead to a significant
improvement in the accuracy of genomic
evaluation for populations with a single-
breed reference population (Su et al., 2012;
Zhang et al., 2018). Additionally, the
utilization of a high-density SNP panel may
give rise to a significant statistical and
computational concern. Furthermore, the
genotyping of animals through medium to
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high-density SNP  panels will incur
substantial expenses in numerous livestock
and poultry breeding initiatives. Therefore,
employing preselection and utilizing a
subset of SNPs can offer a satisfactory
balance between result accuracy, the number
of independent variables to be taken into
account, computational demands, and
genotyping expenses (Meuwissen and
Goddard, 2010; MacLeod et al., 2014). In
the present study, we constructed five
subsets of SNPs based on different MAF
bins for ADG at 2-4 weeks of age. The
results showed that the use of SNPs with
MAF bins 0.3-0.4 and 0.04-0.5 for ADG at
2, 3 and 4 weeks of age, and SNPs with
MAF bins 0.1-0.2 and 0.2-0.3 for ADG at 4
weeks of age, can result in noticeable
improvement of accuracy of prediction
compared to using all SNPs (Figure 7).
Consistent with our results, several studies
showed that using the subset of SNPs can
provide even better results than using of all
SNPs information (Rolf et al., 2010;
Wellmann et al., 2013; Ogawa et al., 2014;
Li et al., 2018; Salvian et al., 2020).

CONCLUSIONS

In the current study, we investigated the
accuracy and bias of genomic prediction
across different age group, 2-4 weeks of age
in the F, broiler population using 5-fold
cross-validation method based on the
ssGBLUP method. Moreover, different
subset of SNPs varying minor allele
frequency were used for genomic
predictions using ssGBLUP method. Given
the level of regression coefficient and
accuracy of genomic prediction, it seems
that ADG at 3 weeks of age using whole
SNPs or subset of SNPs with MAF bins 0.3-
0.4 and 0.4-0.5 could be used for future
genomic prediction in broiler populations
with population structure like the one used
in the current study. Generally, SNPs with
MAF bin 0.4-0.5 had higher predictive
ability compared to other MAF bins for most
of the age groups. However, one of the
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limitations of the current study is that the
small population size was used for genomic
prediction and so further studies are needed
to confirm the current results.
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