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ABSTRACT 

The complexity of rainfall-runoff-sediment yield hydrological processes remains a 

challenge for runoff and sediment yield prediction for large mountainous watersheds. In 

this study, a simple Non-Linear Dynamic (NLD) model has been employed for predicting 

daily runoff and sediment yield by considering the watershed memory based rainfall and 

runoff, and rainfall-runoff and sediment yield, respectively. The results were compared 

with two commonly used Artificial Neural Network (ANN) and Wavelet based ANN 

(WNN) models by taking maximum input parameters of values of time memory for 

rainfall, runoff, and sediment yield derived from the developed NLD model through step-

wise regression. The feed forward ANN models with back propagation algorithm was 

used. Twenty-six years’ daily rainfall, runoff, and sediment yield data of Bino Watershed, 

Uttarakhand, were used in this study. The coefficient of determination, root mean square 

error, and model efficiency were adopted to evaluate the model’s performance. The 

results revealed a better performance by the ANN and WNN rainfall-runoff models 

compared to the NLD, however, NLD rainfall-runoff-sediment model showed higher 

efficiency than the ANN and WNN models in case of considering whole time series 

data. Under-prediction of sediment yield by all the models resulted from sudden 

landslides/flash floods in Himalayan Watersheds. The study showed that though WNN 

was better than ANN and NLD, its application cannot be generalized for entire 

mountainous watersheds. Again, criteria for successful selection of a useful sub-

component in WNN need to be developed. The study also indicates the greater capturing 

power of WNN for simulation of extreme flows with lowest percent-error-peak-flow 

values. 
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INTRODUCTION 

The runoff and sediment generation 

processes in watersheds are very complex in 

nature involving a number of variables 

pertaining to rainfall, physiography, soil, 

cropping system, and management practices. 

The rainfall-runoff-sediment yield is the 

most complex hydrological phenomenon to 

comprehend. Therefore, accurate modeling 

of these hydrological processes will be 

helpful in land use planning, flood and water 

resource management on watershed basis. 

Since 1930s, a number of models have been 

developed for the simulation of processes of 

rainfall-runoff, runoff-sediment yield, and 

rainfall-runoff-sediment yield in a watershed 

fluvial system. These models have been 

broadly classified into regression, stochastic, 

conceptual or parametric, and system 

(dynamic) models (Agarwal et al., 2006). 

However, use of soft computing and data 

mining tools offers alternative to the 

distributed and physical based modeling 

approaches. The Artificial Neural Network 
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(ANN), a soft computing tool belonging to 

black-box modeling category, has attracted 

researchers due to its capability of 

correlating large and complex multi-

parameter data sets (Rao et al., 2014). 

However, one of the essential steps when 

using any mathematical tool is to determine 

dominant input variables of the process. 

Many researchers have demonstrated the 

potential applications of ANN in different 

hydrological processes and water resources 

by taking different input parameters. It is 

also reported that ANN models are not very 

satisfactory in terms of precision. Most of 

the models available for analyzing and 

simulating the rainfall-runoff and rainfall-

runoff-sediment processes involve 

hydrological time series with the original 

data only. From a time-frequency 

perspective, each hydrological time series 

includes several frequency components that 

satisfy various rules and constraints. Using 

the components without resolution to model 

hydrological process makes the internal 

mechanism difficult to understand. 

Therefore, application of wavelet-based 

multi-resolution analysis can provide 

efficient tools to increase the precision for 

modeling hydrological processes at various 

resolution levels.  

Many researchers have demonstrated the 

potential applications of ANN and wavelet 

analysis to hydrology and water resources 

(Agarwal and Singh, 2003; Wang and Ding, 

2003; Cannas et al, 2005; Agarwal et al., 

2006; Tewari, 2007; Sachan, 2008; 

Rathinasamy and Khosa, 2012). Although 

the ANN has the advantage of being able to 

establish the linear as well as the non-linear 

relationships, the ANN models are limited in 

their ability to deal with non-stationary data. 

The wavelet transform, developed in the 

mathematics community, appears to be an 

effective tool in analyzing non-stationary 

time series (Partal and Kisi, 2007; 

Adamowski and Chan, 2011). It is an 

important derivative of the Fourier transform 

and consists of a multi-resolution analysis in 

the time and frequency domains (Tiwari and 

Chatterjee, 2010). Wavelet transforms 

provide a useful decomposition of a time 

series for better revealing and handling by 

data-driven models (Murtagh et al., 2004; 

Rathinasamy and Khosa, 2012). Several 

studies have shown that data preprocessing 

using wavelet transforms improves ANN 

performance e.g. for monthly reservoir 

inflow (Coulibaly et al., 2000); drought 

forecasting (Kim and Valdés, 2003); 

precipitation forecasting (Partal and Kisi, 

2007); suspended sediment forecasting 

(Partal and Cigizoglu, 2008); river flow 

forecasting (Sivakumar et al., 2002; 

Adamowski, 2008; Adamowski and Sun, 

2010), and groundwater level forecasting 

(Adamowski and Chan, 2011, Taormina et 

al., 2012). Remesan et al. (2009) used the 

wavelet transform in runoff prediction. 

Tiwari and Chatterjee (2010) developed a 

hybrid Wavelet–Bootstrap–Artificial Neural 

Network (WBANN) model to explore the 

potential of wavelet and bootstrapping 

techniques for developing an accurate and 

reliable ANN model for hourly flood 

forecasting. Nourani et al. (2011) introduced 

two hybrid artificial intelligence approaches, 

including wavelet-Adaptive Neuro-Fuzzy 

Inference System (ANFIS) model for 

developing a rainfall–runoff model. 

Selection of the most relevant and 

appropriate wavelet- based features is an 

important step in modeling of the above 

processes when various data sources are 

available over the watershed. Liu et al. 

(2013) used Wavelet-artificial Neural 

Network model (WNN) to predict suspended 

sediment concentration in a hyper-

concentrated river of China by simulating 

daily Suspended sSediment Concentration 

(SSC) and water discharge data. Muttil and 

Chau (2006) used ANN and genetic 

programming for modeling algal biomass by 

taking different water quality, rainfall and 

other climatological parameters as input. 

Rao et al. (2014) used ANN and WNN for 

daily stream flow forecasting by taking 

runoff with lag values of five days as input 

parameter. Agarwal et al. (2006) used ANN 

for rainfall-runoff and rainfall-runoff-

sediment modeling using lag values of three 
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for daily, weekly, ten-daily and monthly 

forecasting. It was reported that the feed 

forward ANN, without time-delayed input, 

did not provide a significant improvement 

over other regression techniques. A detail 

explanation of different properties of ANN 

and WNN is beyond the scope of this paper 

which has already been discussed by the 

above researchers. Again, Kisi (2011), and 

Tiwari and Chatterjee (2010) discussed in 

detail the application of ANN and WNN for 

river stage and flood forecasting. Kumar 

(1993) also discussed the importance of 

regression models (linear and non-linear) 

taking watershed memory based runoff and 

sediment as input for prediction of sediment 

yield in mountainous watersheds. The 

review showed that the models have been 

built by using runoff and sediment yield 

only; however, other factors like rainfall and 

vegetation should be adopted to improve the 

model performance (Liu et al., 2013). 

Again, little research has been reported to 

estimate daily runoff and sediment yield by 

taking watershed memory based rainfall and 

runoff, and rainfall-runoff and sediment, 

respectively, and particularly for large 

mountainous watersheds. 

Keeping in view the above points, the 

work reported in this paper was for the large 

mountainous watersheds, in which the 

hydrologic processes are really conspicuous 

and also the rainfall-runoff-sediment process 

was highly dynamic in nature. To model 

these processes, consideration of antecedent 

status of input and output variables is 

important, and this status depends to a great 

extent on the memory content of watershed 

system which is generally non-linear 

(Kumar, 1993). Therefore, it necessitates a 

testing of data mining approach and its 

utility in prediction of surface runoff and 

sediment yield. In order to improve the 

prediction accuracy, the aim of this study 

was to develop a rainfall-runoff and rainfall-

runoff-sediment yield model using Non-

Linear Dynamic (NLD), Artificial Neural 

Network (ANN) and hybrid Wavelet Neural 

Network (WNN) models considering runoff 

and sediment yield for a specified time 

delayed inputs, taking whole time-series and 

peak values separately, and further 

evaluating their effectiveness in 

mountainous watershed.  

MATERIALS AND METHODS 

Study Area and Data Used 

The study was conducted at Bino Watershed 

under River Ramganga, a major tributary of 

the River Ganga, which originates in the outer 

Himalayas of Uttarakhand and drains into 

River Bino. It is situated at 79
° 
6′ 14.4″ to 79

° 

17′ 16.8″ E longitude and 29
° 
47′ 6″ to 30

° 
02′ 

9.6″ N latitude in Almora and Pauri Garhwal 

districts (Figure 1) having geographical area of 

296.75 km
2
. Climate of the watershed varies 

from Himalayan sub-tropical to sub-temperate 

with mean annual maximum and minimum air 

temperature of 30 and 18
°
C, respectively, and 

mean annual rainfall of 931.3 mm. The daily 

mean temperature remains high during months 

of May and June, and minimum in December 

and January. The daily rainfall in the 

watershed was measured by non-recording 

rain gauge at four raingauge stations viz. 

Bungidhar, Jaurasi, Tamadhaun and Kedar, 

runoff at the outlet by stage level recorder, and 

sediment yield (suspended) were collected 

from Divisional Forest Office, Ranikhet, 

Uttarakhand. Weighted average values of daily 

rainfall for the watershed were estimated by 

Thiessen polygon method using ArcGIS 9.3 

software. The runoff and sediment yield 

collected have been reported in hectare-meter 

(ham). Further, runoff was converted into 

millimetre (mm) by dividing with the area of 

the watershed and sediment load into kg sec
-1
 

by multiplying with bulk density of silt as 1.4 

gm cm
-3
. 

Model Development 

Three models, namely, Non-Linear 

Dynamic model (NLD), Artificial Neural 

Network (ANN) model, and Wavelet 
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Figure 1. Location map of the study area. 

 

artificial Neural Network (WNN) model 

were developed for predicting runoff and 

sediment yield using daily data of rainfall 

(P), runoff (Q) and sediment yield (S) of 

monsoon period (June1
st
 to September 30

th
) 

from 1983 to 2008. The functional 

presentations of dynamic- invariant models 

for rainfall-runoff [Equations (1) and (2)] 

and rainfall-runoff-sediment yield 

[Equations (3) and (4)] are as follows:  

Qt= f (Pt, Pt-1, Pt-2,…, Pt-n. Qt-1, Qt-2,…, Qt-n)

       (1) 

In the logarithmic form, 

( ) ( )∑

=

∑

=
−− ++=

n

i

n

i
itiQitiPt QKPKKQ

0 1
0 lnlnlnln

       (2) 

Syt= f (Pt, Pt-1, Pt-2… Pt-n. Qt, Qt-1, Qt-2… Qt-

n, Sy(t-1), Sy(t-2), …, Sy(t-n))   (3) 

In the logarithmic form, 

( )0

0

ln ln ln
i

n

t P t i

i

S K K P
−

=

= + +∑   

( ) ( )
0 1

ln ln
i i

n n

Q St i t i

i i

K Q K S
− −

= =

+∑ ∑  (4)  

Where, K is the respective coefficient 

representing the lumped effects of the 

watershed parameters. The subscript ‘t’ 

represents the present time value of the 

parameter, and t-1, t-2…, t-n are the 

previous values of the parameters at the 1, 

2…, n time lags in days. For finding the 

sensitivity of the variables, the values of 

these K coefficients were determined by the 
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multiple step-wise regression analysis and 

variables found significant at 5% level were 

only retained in the model. Any model 

development means it should be used by the 

end-users. In India particularly, most of the 

watershed managers are Departmental 

organizations. The employees are not well 

versed with modern tools which needs skill. 

But, non-linear dynamic models can be run 

by simply using statistical software SPSS 

and/or also excel sheet. Therefore, in this 

study, a greater emphasis was given to 

simple non-linear dynamic method. For 

ANN and WNN, the predictor variables 

were chosen by taking different 

combinations of number of input parameters 

equal or less than the maximum number of 

model parameters determined through step-

wise regression tried in non-linear dynamic 

model. Then, the two models were 

compared with non-linear dynamic model 

for both rainfall-runoff and rainfall-runoff-

sediment processes to get a better option.  

An ANN is an information-processing 

system composed of many nonlinear and 

densely inter-connected processing elements 

or neurons. The main function of the ANN 

paradigms is to map a set of inputs to a set 

of outputs. Sigmoid function is the most 

commonly used non-linear activation 

function in ANN. In the present study, 

multilayer feed-forward networks which 

are made up of multiple layers of neurons 

with supervised learning using Back-

Propagation (BP) were used due to its 

simplicity and effectiveness. The Haar-A-

Trous wavelet transform based Multi-

Resolution Analysis (MRA), which helps in 

an efficient modeling of hydrological 

processes, was used in this study 

(Maheswaran and Khosa, 2012). It provides 

a convincing and computationally very 

straightforward solution while, at the same 

time, avoiding the troublesome boundary 

effects (Rathinasamy and Khosa, 2012); 

Murtagh et al., 2004) and Wang and Ding, 

2003). Wavelet transform was used to 

decompose the rainfall and runoff time 

series at level 3 into four sub-series (one 

approximation and three details). This 

appropriate decomposition level was 

determined using the formula:  

 L= int (log(N))    (5) 

Where, L indicates decomposition level 

and N refers to the number of time series 

data (Nourani et al., 2011; Adamowski and 

Chan, 2011), which is 6,403 in this case 

study. Due to proportional relationship 

between amount of rainfall, runoff and 

sediment load, they are supposed to have the 

same seasonality levels. Therefore, all the 

time series were decomposed at the same 

level.  

Input-Output Data Preparation and 

Selection of Network Architecture 

Daily rainfall, runoff, and sediment flow 

data were used for training and testing of the 

models. Analysis of daily surface runoff and 

sediment yield revealed that past hydrologic 

values of more than five days have no 

significant effect on present day runoff or 

sediment yield. Therefore, in this study a 

maximum value of lag was taken as five and 

multiple regression equations were 

developed for runoff and sediment 

prediction, respectively. The data in multiple 

layer networks is divided into training, 

validation, and testing (Liu et al., 2013) and 

the ratio of partitioning taken as 60, 20, and 

20%, respectively (Tiwari and Chatterjee, 

2010). Therefore, 21 years’ (1983-2003) 

daily records of the rainfall, runoff, and 

sediment yield data were used for non-linear 

dynamic model calibration and 5 years’ 

(2004-2008) data for testing. However, daily 

data of 16 years (1983-1998), 5 years (1999-

2003), and 5 years (2004-2008) were used 

for the training (calibration), validation, and 

testing of ANN and WNN models, 

respectively. For resolving daily data of 

rainfall, runoff, and sediment yield, a 

program developed in C++ language 

(Tewari, 2007) and individual wavelet and 

scale coefficients were calculated and used 

for further analysis. 

One of the most important attribute of a 

layered neural network design is the 
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architecture. The size of the hidden layer(s) 

is the most important consideration when 

solving the actual problems using multilayer 

feed-forward neural networks. However, 

Shu and Ouarda (2007) recommended that 

the number of hidden nodes should be less 

than twice the number of input nodes. In this 

study, the number of hidden nodes was 

determined based on a trial-and-error 

process that involved varying the number of 

nodes from one to double the number of 

input variables. There are several types of 

ANNs but the major advantage of feed 

forward back propagation ANN is that it is 

less complex than other ANNs (Tiwari and 

Chatterjee, 2010). Therefore, here sigmoid 

feed forward activation function was used 

for training ANN and WNN (Khalil et al., 

2011; Kisi, 2011). The Levenberg–

Marquardt methodology was used for 

adjusting weights of the models due to its 

being more powerful than conventional 

gradient descent technique (Hagan and 

Menhaj, 1994; Nakhaei and Nasr, 2012). 

The training of ANN and WNN models is 

similar to the calibration of conceptual 

models. In the present study, input-output 

pairs in the training and validation data sets 

were applied to the network of a selected 

architecture and training was performed. 

Validation data set was used to apply an 

early stopping approach related to epoch 

size in order to avoid over training or over 

fitting of the training data sets. Epoch is the 

number of sets of training data and it is 

recommended that the number of epochs 

should be less than the number of input data 

sets. Various networks of single and two 

hidden layers were trained up to maximum 

iterations or epochs of 2000, with different 

combinations of hidden neurons and the best 

suited network was selected based on the 

minimum values of Root Mean Square Error 

(RMSE), Akaike’s Information Criterion 

(AIC) and maximum value of Coefficient of 

determination (R
2
) (Agarwal et al., 2006). 

Once the training process was satisfactorily 

completed, the network was saved, the test 

data sets were used for studying the best 

performed model by the observed and 

simulated values of runoff and sediment 

yield. The normalized output values were 

reconverted to give the predicted values of 

runoff and sediment yield for comparison 

with the corresponding observed values. The 

analysis of ANN and WNN was performed 

for predicting the runoff and sediment yield 

by using NeuroSolutions 5.0 software. The 

performance of the developed models was 

assessed in terms of their R
2
, (RMSE) 

(Agarwal, 2007), and model Efficiency (E) 

(Nash and Sutcliffe, 1970; Rao et al., 2014). 

In hydrological modeling, one of the major 

concerns is estimating the flow or sediment 

in extreme cases. Therefore, the models in 

estimating the extreme values were 

evaluated using Percent Error in Peak Flow 

(PEPF) which measure only the magnitude 

of peak flow and does not account for total 

volume or timing of the peak (Asadi, 2013).  

      

     (6) 

Where, Qo= Observed, Qs= Simulated 

peak values. 

RESULTS AND DISCUSSION 

For rainfall-runoff modeling, based on the 

step-wise regression, the Non-Linear 

Dynamic (NLD) model with highest R
2
 

(0.676) was built as follows:  

( )

( ) ( ) ( )

1

1 2 3

ln 0.338 0.117 ln 0.044 ln

0.575ln 0.07955ln 0.124 ln

t t t

t t t

Q P P

Q Q Q

−

− − −

= + − +

+ +

      (7) 

Where, Q and P are in mm. It was 

observed that, independent variables of 

rainfall of present and previous day and 

runoff of first, second, and third previous 

days as the input to predict runoff on any 

day was the best among the lag days tried. 

As explained earlier, these five independent 

variables are selected as the maximum 

number of input to ANN and WNN models 

(Tiwari and Chatterjee, 2010). Therefore, 

different combinations of inputs viz. (i) Pt, 

Pt-1, Qt-1, Qt-2, Qt-3 i.e., 5 inputs+1 output for 

ANN and resolved 20 inputs+1 output for 

WNN, (ii) Pt, Pt-1, Qt-1, Qt-2 i.e., 4 inputs+1 

)(

)()(
100

peakQo

peakQspeakQo
PEPF

−
=
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output for ANN and resolved 16 inputs+1 

output for WNN, and (iii) Pt, Qt-1, Qt-2 i.e., 3 

inputs+1 output for ANN and 12 inputs+1 

output for WNN were tried to get another 

option of better combinations with minimum 

inputs. A few of the networks with single 

layer having very low values of RMSE, AIC, 

and higher value of R
2
 are shown in Table 1. 

Inclusion of two hidden layers increased the 

model running time significantly and also 

had higher value of RMSE and low value of 

R
2
, hence, not considered and the results are 

not shown here. In ANN model, it was 

observed that among 5 inputs, network 

structure 5-6-1 (i.e. 5 inputs, 1 hidden layer 

with 6 neurons and 1 output) with epochs of 

1,000 was better as compared to the other 

networks based on the performance criteria. 

Similarly, among 4 inputs, networks, 4-8-1 

and among 3 input, 3-4-1 networks with 

epochs of 2000 were better having higher R
2 

and minimum RMSE and AIC. Out of these 

ANN network structures; 5-6-1 network 

structure was selected as the best performing 

ANN model for prediction of daily runoff. 

However, in case of WNN model, on the 

basis of overall performance of the 

attempted network structures, 20-21-1, 16-

19-1 and 12-14-1 were found to be 

performing better at epochs of 355, 304 and 

325, respectively. From these better 

performing network structures, the 20-21-1 

was finally selected as the best WNN model 

with higher R
2
 and minimum RMSE and AIC 

during training and testing periods at epoch 

355 (Table 1). 

 For rainfall-runoff-sediment modeling, 

the NLD model with highest R
2
 (0.872) was 

built as: 

( ) ( ) ( )1 2 1

ln 0.427 0.056ln 0.949ln

0.420ln 0.231ln 0.824ln

t t t

t t t

S P Q

Q Q S
− − −

= − + + −

− +

      (8) 

Where, Q and P are in mm and S in kg s
-1

. 

In the development of ANN and WNN 

models for sediment prediction, the input 

status was kept the same as in the above 

dynamic sediment model. As explained 

earlier, various inputs parameters (i) Pt, Qt, 

Qt-1, Qt-2, St-1 i.e., 5 inputs and 1 output for 

ANN and resolved 20 inputs and 1 output 

for WNN, (ii) Pt, Qt, Qt-1, St-1 i.e., 4 inputs 

and 1 output for ANN and resolved 16 

inputs and 1 output for WNN were used for 

prediction of sediment load. Different 

combinations of input and hidden layer 

neurons were tried for developing the model 

after selection of the best network 

architecture. On the basis of overall 

performance of the attempted network 

structures, 5-6-1 and 4-5-1 network 

structures with epochs 375 and 564, 

respectively, were found to be performing 

better. From these better performing 

network structures, the 5-6-1 network 

structure was finally selected as the best 

ANN model having maximum R
2
 and 

minimum RMSE and AIC (Table 1). In case 

of WNN, among 20 inputs, the maximum 

R
2
, minimum RMSE and AIC were observed 

in 20-15-1 with epochs of 172 during both 

training and validation period, whereas 

among 16 inputs, the maximum R
2
, 

minimum RMSE and AIC were observed in 

16-15-1 during training, and higher R
2
 and 

minimum RMSE in 16-14-1 were observed 

at epochs of 79 during validation period. 

Therefore, 16-14-1 was selected among 16 

inputs. After comparison with the maximum 

R
2
, minimum RMSE and AIC during both 

training and validation periods, 20-15-1 

network was found to be better. 

 All R
2
 and model Efficiency (%E) from 

the ANN and WNN for runoff prediction 

during testing period were much higher than 

those from the NLD. Whereas, RMSE value 

(1.287) from the NLD model during this 

testing period was much lower than those for 

the ANN and WNN, and the respective R
2 

(0.834) and E (83.113%) values were higher 

in case of sediment yield prediction (Table 

2). A visual assessment of the predicted and 

observed runoff (Figure 2) shows that the 

ANN predicted runoff had the best fit, 

followed by WNN, and that the NLD fit was 

the worst. Figure 3 shows the scatter plot 

between the observed and predicted values 

of NLD, ANN and WNN for sediment yield 

and shows that the prediction of daily
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(a) Scatter plot for Calibration period 

  of NLD (5-1) model. 

(b) Scatter plot for Testing period 

 of NLD (5-1) model. 

 
 

 

(c) Scatter plot for Calibration period 

 of ANN (5-6-1) model. 

(d) Scatter plot for Testing period 

 of ANN (5-6-1) model. 

 
 

 

 

(e) Scatter plot for Calibration period 

 of WNN (20-21-1) model. 

(f) Scatter plot for Testing period 

 of WNN (20-21-1) model. 

Figure 2. Scatter plot between observed and predicted daily runoff. 

 
sediment from NLD model was close to the 

observed values, whereas ANN and WNN 

under-predicted the sediment loads. In case 

of runoff prediction, the developed models 

performed well, but they under-predicted 

sediment yield in all cases. This under-

prediction might be due to unexpected 

(random) heavy sediment outflow caused by 

sudden landslides. This randomness in 

sediment outflow was not taken into account 

by the developed models and, hence, it 

resulted in under-prediction. Again, negative 

values predicted by the ANN and WNN 

model are obviously not realistic, for the 

observed runoff and sediment may be close 

to zero but can never be negative. The 

occurrence of negative values with this type 

of model is not unusual (Kisi, 2010). But as 
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(a) Scatter plot for Calibration period 

  of NLD (5-1) model. 

(b) Scatter plot for Testing period 

 of NLD (5-1) model. 

 
 

 

(c) Scatter plot for Calibration period 

 of ANN (5-6-1) model. 

(d) Scatter plot for Testing period 

 of ANN (5-6-1) model. 

 

 

(e) Scatter plot for Calibration period 

 of WNN (20-15-1) model. 

(f) Scatter plot for Testing period 

 of WNN (20-15-1) model. 

Figure 3. Scatter plot between observed and predicted daily sediment load. 

 

predictions, they serve no purpose. 

Therefore, here, negative values change to 

zero values which increase the R
2
 of the 

ANN and WNN by 2.43% and 3.54%, 

respectively. Thus, an appropriate way of 

dealing with negative values remains a 

challenge for future ANN and WNN-based 

model construction (Liu et al., 2013). Again, 

the decomposition level for WNN was taken 

as 3 by using the formula, but criteria for 

successful selection of a useful sub-

component need to be developed. 

Though many researches have proved that 

WNN model predicted better than simple 

ANN model, but in this analysis, both of the 

models gave almost on par predictions for 
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runoff and sediment yield. This may be due 

to the fact that large mountainous catchment 

runoff and the sediment yield generated are 

discontinuous for so many days and again 

the lag values were fixed for both of the 

models, taking into account the resulting lag 

values through simple and easily computable 

non-linear dynamic model by simple 

software or excel sheet. Peak value is a key 

point in the time series modeling. The 

results reported here are based on the whole 

time series data. Since the WNN model is a 

multi-scaled and seasonal model and ANN 

is autoregressive model, it is expected that 

WNN has a better ability to capture peak 

values. Therefore, analysis was done for 

peak flows. PEPF values of 20.024 and 

12.094 were observed for runoff and 

sediment yield, respectively, which are less 

than that of ANN and NLD (Table 2). This 

indicates the greater capturing power of 

WNN for simulating extreme flows (Rao et 

al., 2014; Tiwari and Chatterjee, 2010). This 

under-prediction may be due to unexpected 

(random) heavy sediment outflow due to 

sudden landslides. This randomness in 

sediment outflow is not taken into account 

by the developed models and, hence, it 

results in under-prediction. 

CONCLUSIONS 

In this work, performance of feed forward 

ANN and Wavelet based ANN (WNN) has 

been reported, taking the input parameters 

obtained through step-wise regression done 

for Non-Linear Dynamic (NLD) model for 

predicting daily runoff and sediment yield 

considering the memory system of a 

Himalayan Mountainous Watershed in 

Uttarakhand, India. Twenty-six years’ of 

daily rainfall, runoff and sediment yield data 

of monsoon period of Bino Watershed under 

Ramganga catchment were used for the 

analysis. The performance of a developed 

model was assessed in terms of its 

coefficient of determination, root mean 

square error, and model efficiency. The 

results revealed superior performance of 

the ANN and WNN models in comparison 

to the NLD model in case of rainfall-

runoff process, whereas NLD model 

performed well compared to ANN and 

WNN models in case of rainfall-runoff-

sediment process. The comparison 

revealed that, for runoff modeling, ANN 

and WNN performed at par, whereas for 

sediment yield prediction, NLD model 

performed well. However, the models 

under-predicted sediment yield. This could 

be due to not considering randomness in 

values resulting from sudden landslides and 

flash floods in Himalayan Watersheds. 

Again, criteria for successful selection of a 

useful sub-component in WNN need to be 

developed. Further, the WNN performance 

was evaluated for peak flows, which 

revealed that WNN performed better 

compared to ANN and NLD. Therefore, 

this study suggests that, in mountainous 

watershed, due to more dynamic nature of 

hydrologic events, it is very difficult to 

generalize that WNN is better than ANN 

and/or non-linear models. This indicates the 

capturing power of WNN model for 

simulation for extreme flows in mountainous 

watershed compared to whole time series 

data.  
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ارزيابي تطبيقي مدل هاي شبكه عصبي و مبتني بررگرسيون براي شبيه سازي رواناب 

  و توليد رسوب در يك حوضه آبريز بيرون از هيماليا

  ج. ك. سينك و س. سودهيشري، ا. كومار،

  چكيده

پيچيدگي فرايند هيدرولوژيكي  در پيش بيني رواناب و توليد رسوب در حوضه هاي كوهستاني وسيع،

توليد رسوب همچنان به عنوان يك چالش باقي مانده است.در پژوهش حاضر، يك -انابرو-بارندگي

) براي پيش بيني رواناب و simple non-linear dynamic, NLDمدل ساده وغير خطي پويا (

- توليد رسوب روزانه و با در نظر گرفتن تاريخچه بارندگي و رواناب حوضه آبريز و رابطه بارندگي

) و ANNسوب به كاررفت. نتايج به دست آمده با دو مدل شبكه عصبي مصنوعي (رواناب و توليد ر

ANN) موجكwavelet based ANN, WNN كه رايج هستند مقايسه شدند و اين كار با (

)  maximum input parameters of valuesاستفاده از مقدار حد اكثر پارامترهاي نهاده اي (

) براي بارندگي، رواناب، و توليد رسوب به دست آمده از time memoryمربوط به حافظه زماني (

 feedاز نوع  ANNو از طريق رگرسيون گام به گام انجام شد.مدل هاي  NDLمدل توسعه يافته 

forward ) با الگوريتم تكثير پسينback propagation مورد استفاده قرار گرفت. در اين پژوهش (

درايالت آتاراخند  Bino ساله حوضه 26وليد رسوب يك دوره از آمار روزانه بارندگي، رواناب، و ت

استفاده شد. براي ارزيابي عملكرد مدل ازضريب تبيين، ريشه ميانگين مربعات خطا و كارآيي مدل 
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و  ANNرواناب -استفاده شد. نتايج به دست آمده حاكي از عملكرد بهتر براي مدل هاي بارندگي

WNN  در مقايسه باNLD  كه در حالتي كه تمام داده هاي سري زماني در نظر گرفته شد بود، هرچند

داشت. دليل اين كه  WNNو ANNكارآيي بيشتري از NLDتوليد رسوب -رواناب-مدل بارندگي

ا كم پيش بيني مي كردند وقوع ناگهاني زمين لغزه و سيل هاي شديد در همه مدل ها توليد رسوب ر

بود، كاربرد  NLDو ANNبهتر از WNNحوضه هاي هيماليا بود. نتايج پژوهش نشان داد كه هرچند 

اين مدل را براي همه حوضه هاي كوهستاني نمي توان تعميم داد. مجددا ياد آوري مي شود كه ضوابط 

مي بايست فراهم آيد. همچنين، اين پژوهش چنين اشاره دارد  WNNجزء در -انتخاب موفق يك زير

) توانايي بيشتري براي peak flowبا كمترين درصد اشتباه در مورد جريان اوج (  WNNكه مدل 

  شبيه سازي جريانات فوق العاده را دارد.
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