Genetic Relationship among Fusarium oxysporum f. sp. melonis Vegetative Compatibility Groups and Their Relatedness to Other F. oxysporum formae speciales

M. Mirtalebi¹, and Z. Banihashemi¹*

ABSTRACT

Fusarium wilt of melon is a destructive fungal disease throughout the world. In this study, the evolutionary relationships among isolates of different formae speciales of Fusarium oxysporum was examined, with a special emphasis on the forma specialis melonis. Bootstrapped maximum likelihood analysis of the elongation factor- 1α (EF- 1α) sequence was conducted on 16 Iranian and 11 foreign isolates of F. o. melonis that included representatives of different vegetative compatibility groups (VCGs 0130-0136). The tree inferred from the dataset resolved five evolutionary lineages that were correlated with the F. o. melonis VCGs, with the exception of VCGs 0130 and 0131, which could not be differentiated with EF- 1α sequences. Furthermore, based on EF- 1α sequences, specific associations were found between F. o. melonis VCGs and the other formae speciales whose sequences were obtained from the GenBank. Taken together, these results support a polyphyletic origin for F. o. melonis, meaning that the ability of this forma specialis to cause disease on melon has emerged multiple times.

Keywords: Cucumis melo, Iran, Polyphyletic, VCG.

INTRODUCTION

Fusarium oxysporum Schlechtend. Fr. is a major vascular wilt pathogen of many economically important crops (Snyder and Hansen, 1940). Within the species, however, there is a high level of host specificity with over 120 described formae speciales and races (Gordon and Martyn, 1997). Each forma specialis consists of isolates with the ability to cause wilt on a unique host or set of plant host species. Because the hosts of a given forma specialis usually are closely related, it has been assumed that members of a forma specialis are also closely related and may have arisen from a common ancestor (Correll, 1991; Kistler, 1997).

Additional characterization of sub-specific groups in *F. oxysporum* was reported by

Puhalla (1985), who developed the method, based on the genetic of the fungus rather than on the host-pathogen interaction, to identify vegetative compatibility groups (VCGs) within this species. He found that isolates in the same VCG belonged to the same forma specialis and isolates in different formae speciales were in different VCGs, and they may represent genetically isolated populations. Molecular and genetic analyses have shown that isolates within a VCG are genetically more similar than isolates in different VCGs, and it has been suggested that each VCG may represent a clonal population (Gordon and Martyn, 1997).

An understanding of the evolutionary history of the *formae speciales* and races within *F. oxysporum* requires knowledge of the phylogenetic relationships among

¹ Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.

^{*}Corresponding author; e-mail address: Ziabani@shirazu.ac.ir

isolates (Apple and Gordon, 1996). Phylogenetic analyses based on DNA sequences of genes such as the elongation factor- 1α (EF- 1α) have helped to reveal the genetic and evolutionary relationships within and among formae speciales of F. oxysporum (O'Donnell et al., 1998; Baayen et al., 2000; Mbofung et al., 2007). Such studies showed that a limited number of F. oxysporum formae speciales monophyletic such as formae speciales lilii and tulipae (Baayen et al., 2000), while many others were found to be polyphyletic such as formae speciales cubense, asparagi, dianthi, lycopersici and vasinfectum (O'Donnell et al., 1998; Baayen et al., 2000; Skovgaard et al., 2001, Cai et al., 2003). These findings suggest that pathogenicity towards a specific crop has evolved several times independently.

One of the economically important and destructive *formae speciales* is the causal agent of Fusarium wilt of melon (*Cucumis melo*) (Armstrong and Armstrong, 1978). This *forma specialis* is known to contain four races (0, 1, 2, and 1, 2), which differ in pathogenicity to differential melon cultivars described by Risser *et al.* (1976). In *F. o. melonis* nine VCGs have been identified worldwide (Jacobson and Gordon, 1990a; Katan *et al.*, 1994). In Iran, races 1 and 1, 2 and VCG 0134 have been reported (Banihashemi, 1968b, 1982, 1989; Sarpeleh and Banihashemi, 2000).

Understanding genetic heterogeneity within the F. oxysporum group is important understanding the evolution of pathogenic forms, especially polyphyletic formae speciales. Although the previous study based on restriction digest analyses of mtDNA provided knowledge concerning the diversity between different VCGs of F. o. melonis (Jacobson and Gordon, 1990b), the genetic relatedness among the lineages identified in this study remains uncertain. It is also not clear how the different VCGs of F. o. melonis are related to one another and to other formae speciales of F. oxysporum. Therefore, the main objective of this study was to elucidate the relationships among the F. o. melonis VCGs based on EF-1 α sequences and determine their relationships with other $formae\ speciales$ based on sequences of EF- 1α gene obtained from the GenBank.

MATERIALS AND METHODS

Fungal Isolates

Melon plants with typical Fusarium wilt symptoms were collected from various melon fields in the major melon-producing regions of Iran. Diseased stems were washed under tap water, surface disinfested with 1% sodium hypochlorite for 5 minutes, rinsed in distilled water and air dried. Stems were cut aseptically into 2-3 mm segments and plated in rows on acidified TMN-PDA medium (trimethylnonanol-potato dextrose agar) (Banihashemi, 1968a). **Plates** were incubated at 25°C for 4-6 days and colonies exhibiting the characteristic morphology of F. oxysporum were transferred to Petri plates containing acidified PDA (pH 4.2). Single spore cultures were prepared from most of the isolates and identified according to standard keys (Nelson et al., 1983; Leslie and Summerell, 2006). One F. o. melonis recovered 1966 isolate, in (Banihashemi, 1968a), from the collection of Plant Protection Department (Shiraz University, Iran) was included in this study. Eleven isolates of F. o. melonis from the USA, France, Japan, and Israel (provided by T. R. Gordon, G. Risser and T. A. Zitter) were also included as reference isolates.

Pathogenicity and Race Determination

Seeds of differential melon cultivars used by Risser *et al.* (1976), including 'CM 17187' (*Fom* 2), 'Doublon' (Fom 1) and 'Charantions-T' (no resistance gene), as well as the local cultivars 'Shahd-e-Shiraz' (resistant to race 1 but not to race 0) and 'Kharboze-Mashhad' (resistant to races 0 and 2) (Banihashemi 2010), were surface-

disinfested with 1% sodium hypochlorite for 5 min, rinsed twice using sterile distilled water and planted in plastic trays filled with autoclaved vermiculite. Plant seedlings were grown in vermiculite at room temperature for ten days until the third true leaf began to emerge.

Single spore cultures of F. oxysporum were grown on acidified PDA (pH 4.2). After 5 days, mycelial blocks were taken from the actively growing colony margins of each isolate and transferred into a 250 ml flask containing 50 ml of Potato Dextrose Broth (PDB). Cultures were incubated at room temperature on a rotary shaker at 60 rpm for 3-4 days. The content of each flask was filtered through two layers of sterile cheesecloth to remove the mycelia mats. The conidia were centrifuged down at low speed and washed three times with sterile distilled water and the conidial concentration was adjusted to 10⁶ conidia ml⁻¹ using a haemocytometer (Banihashemi and deZeeuw, 1975).

The ten days old melon seedlings were removed and their roots were washed with tap water to clean excess vermiculite. Virulence test of all isolates was performed using the root dip method described by Wellman (1939). The roots of melon seedlings were dipped in a conidial suspension for 1 min and the inoculated seedlings were transferred to plastic pots filled with sterilized soil and incubated under greenhouse conditions (25- 28°C, 14hour photoperiod). For each isolate, ten seedlings of each cultivar were inoculated. Seedlings dipped in water served as control. Both the Iranian and foreign reference isolates were used in the inoculation trials to provide controls for race determination. Yellowed, wilted, and dead plants were recorded daily up to 21 days after inoculation and the pathogen was re-isolated from the stem of inoculated plants to confirm Koch's postulates. Isolates that did not induce wilt were tested twice more in three replicates of five seedlings. If no wilt occurred, such isolates were categorized as nonpathogenic to melon. Based on the reaction of the differential hosts, races were assigned to individual isolates.

Vegetative Compatibility Tests

Vegetative compatibility tests with the Iranian isolates of F. o. melonis were conducted following the protocols described by Puhalla (1985) and Correll et al. (1987). Nitrate nonutilizing (nit) mutants were generated on potato sucrose agar containing 1.5-4% KClO₃ and were assigned to different physiological phenotypes (nit1, NitM and nit3) on the basis of their growth on basal medium amended with different nitrogen sources (nitrate, nitrite, hypoxanthin, uric acid or ammonium tartrate). The formation of heterokaryons was recognized as a line of aerial mycelium where two complementary nit mutants grew together on MM (Correll et al., 1987). Nit mutants were generated from each isolates until two complementary nit mutants found that formed a vigorous heterokaryon when paired in MM. These nit mutants were used as heterokaryon tester nit mutants for that isolate in subsequent interisolate pairings. Furthermore, tester nit mutants were paired with tester mutants of each of the established VCGs obtained from T. R. Gordon (University of California, Davis, USA). When testers from two different isolates successfully formed a heterokaryon, they were placed in the same VCG. Before complementation tests among vegetative self-incompatibility of each isolate was examined (Jacobson and Gordon, 1988).

DNA Extraction

For DNA extraction, single-spored culture of *F. oxysporum* isolates were grown in PDB medium for 7 days at 25°C and then the mycelia were harvested through filtration. The fungal mycelia were thoroughly and repeatedly washed with sterilized distilled water, frozen, lyophilized and stored at -20°C. Lyophilized mycelia were ground in liquid nitrogen to a fine powder. Total genomic DNA

was extracted using Genomic DNA Purification kit (Fermentas) according to the manufacturer's instructions.

PCR Amplification and Sequencing

The $EF-1\alpha$ gene of F. o. melonis isolates was targeted. For this purpose, primer set EF1 and EF2 (O'Donnell et al., 1998) was used. Each 20 µl amplification reaction mixture contained 5-10 ng of total DNA, 2 µl of 10 × reaction buffer, 0.2 mM dNTP, 2.5 mM MgCl₂, 1 U of Taq polymerase (CinnaGen) and 0.8 µM of each primer. Amplification conditions consisted of 34 cycles denaturation at 94°C for 40 seconds, annealing at 60°C for 90 seconds, and extension at 72°C for 2 minutes. Each PCR reaction included an initial denaturation step at 95°C for 2 minutes and final extension step at 72°C for 5 minutes. The amplification products were purified with GeneJet PCR Purification Kit (Fermentas) to remove excess of primers and nucleotides. Subsequently, purified products sequenced in both directions using the primers used for PCR amplification and the sequencer.

Phylogenetic Analyses

isolates listed in For all Table phylogenetic analyses were performed using DNA sequences of the *EF-1* α gene (~ 640 bp) that were either retrieved from published EF-1α sequences in the GenBank or determined in this study (Table 1). DNA sequences were edited with DNASTAR (Seq Man II) and aligned with ClustalX 1.8 (Larkin et al., 2000). Manual adjustment of sequence alignments performed accommodate insertions/deletions. Phylogenetic analyses were conducted in MEGA 5 (Tamura et al., 2011) by using the maximum likelihood method based on the Kimura 2-parameter model (Kimura, 1980). The tree with the highest log likelihood (-932.3905) is shown (Figures 1-2). The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically as follows. When the number of common sites was < 100 or less than one fourth of the total number of sites, the maximum parsimony method was used; otherwise BIONJ (Gascuel, 1997) method with MCL distance matrix was used. A discrete Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, Parameter= 0.3994)). The tree is drawn to scale, with branch lengths measured in the number of substitutions per The sequence of Fusarium sp. (NRRL28378) (obtained from the GenBank) was used as outgroup. All EF-1α sequences have been submitted to the GenBank (Table 1).

RESULTS

Pathogenicity and Race Classification

Fifteen of the 17 isolates of F. oxysporum, which were collected from different melon fields in Iran, were virulent on all hosts including 'CM17187', differential 'Doublon'. 'Charentais-T', 'Shahde-Shiraz' 'Kharboze-Mashhad,' and and were classified as F. o. melonis race 1, 2 (Table After symptoms development, the inoculated pathogens were re-isolated from randomly selected plants to confirm Koch's postulates. The remaining two isolates induced no symptoms on any seedling and were classified as nonpathogenic.

Vegetative Compatibility

All isolates were self-compatible and formed a zone of wild-type growth with aerial mycelium where the complementary *nit* mutant colonies met. Of the 15 isolates of *F. o. melonis*, nine were assigned to VCG 0134 (Table 1). The remaining *F. o. melonis* isolates were incompatible with *nit* mutants of any of the isolates from known VCGs of *F. o. melonis* (0130-0136). These isolates were compatible with each other and were therefore

Table 1. Fusarium oxysporum isolates used in this study and associated sequences with GenBank accession number noted^a. Isolate's vegetative compatibility group and race are indicated where known.

Isolate	Species, Formae speciales	Geographic	Race/VCG ^b	GenBank
Isolate	Species, Formae speciales	origin	Race/ VCG	accession
I-17	F. oxysporum f. sp. melonis	Iran	1/0134	KF548147
Yazd2	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548158
KT2a				KF548156
	F. oxysporum f. sp. melonis	Iran	1,2/0134	
MT13-3a	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548145
Seif3a	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548144
K109b	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548159
gh30	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548157
P13	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548146
2Ma18-4a	F. oxysporum f. sp. melonis	Iran	1,2/0134	KF548148
660A/1	F. oxysporum f. sp. melonis	France	0/0134	KF548166
Sample65	F. oxysporum f. sp. melonis	USA	1/0134	KF548160
NYFom62	F. oxysporum f. sp. melonis	USA	1/0134	KF548161
P2/6	F. oxysporum f. sp. melonis	USA	2/0130	KF548164
18L	F. oxysporum f. sp. melonis	USA	2/0130	KF548165
PT3/1	F. oxysporum f. sp. melonis	USA	2/0131	KF548163
Sample37	F. oxysporum f. sp. melonis	USA	2/0131	KF548162
T61/1	F. oxysporum f. sp. melonis	Japan	2/0132	KF548168
R12/13	F. oxysporum f. sp. melonis	France	1,2/0133	KF548167
I1/1	F. oxysporum f. sp. melonis	Israel	0/135	KF548170
Taik9a	F. oxysporum f. sp. melonis	Iran	$1,2/\text{GNA}^c$	KF548151
Taipb1	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548152
Khaf76a	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548149
MZ16a	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548154
Nasr 8	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548153
Tai3	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548150
MaH2-3a	F. oxysporum f. sp. melonis	Iran	1,2/GNA	KF548155
K419/5	F. oxysporum f. sp. melonis	Mexico	1/0136	KF548169
2Ma4-5a		Iran	nonpathogen	KF548171
701	F. oxysporum			
	F. oxysporum	Iran NA	nonpathogen NA ^d	KF548172
NRRL22518	F. oxysporum f. sp. melonis			FJ985265
NRRL36472	F. oxysporum f. sp. melonis	NA	NA	FJ985357
NRRL26406	F. oxysporum f. sp. melonis	NA	NA	AF008504
CAV343	F. oxysporum f. sp. melonis	Israel	NA	FJ664912
NRRL26178	F. oxysporum f. sp. melonis	USA	NA	AF008503
NRRL22519	F. oxysporum f. sp. melonis	NA	NA	FJ985266
TX388	F. oxysporum f. sp. melonis	USA	NA	DQ837696
NRRL26871	F. oxysporum f. sp. spinaciae	Japan	NA	DQ837687
NRRL26874	F. oxysporum f. sp. spinaciae	USA	NA/0330	AF246849
NRRL26875	F. oxysporum f. sp. spinaciae	USA	NA/0331	AF246850
NRRL26876	F. oxysporum f. sp. spinaciae	USA	NA/0332	AF24685
FOV14	F. oxysporum f. sp. vasinfectum	USA	NA	DQ837695
BBA69716	F. oxysporum f. sp. vasinfectum	China	7/NA	AF362163
BBA69521	F. oxysporum f. sp. vasinfectum	India	4/NA	AF362139
BBA69711	F. oxysporum f. sp. vasinfectum	China	8/NA	AF362161
BBA65655	F. oxysporum f. sp. vasinfectum	USA	2/NA	AF362149
BBA65634	F. oxysporum f. sp. vasinfectum	USA	1/NA	AF362145
BBA69712	F. oxysporum f. sp. vasinfectum	China	3/NA	AF362162
BBA65650	F. oxysporum f. sp. vasinfectum	Sudan	5/NA	AF362154
BBA62374	F. oxysporum f. sp. vasinfectum	Egipt	3/NA	AF362142
		Israel		FJ790383

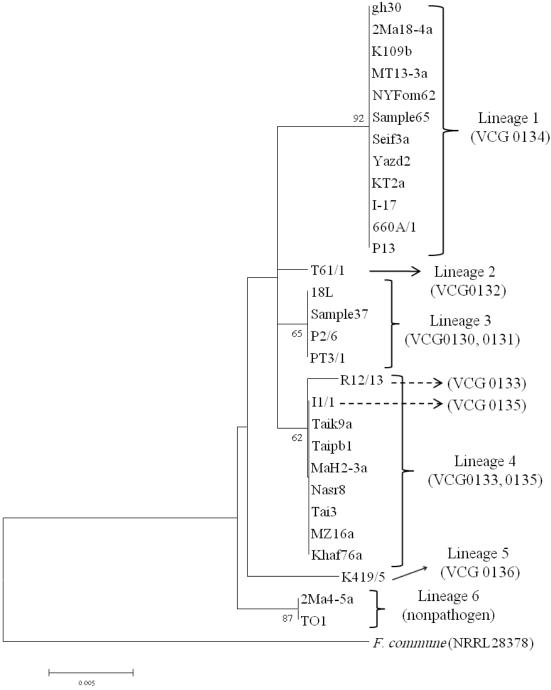
^a All elongation factor-1α (EF-1α) sequences were determined in this study, with the exception of those with accession numbers in bold; ^b VCG= Vegetative Compatibility Group; ^c GNA= Group Not Assigned, ^dNA= Not Available.

Table1 continued...

Table 1. continued

Isolate	Species, Formae speciales	Geographic	Race/VCG ^b	GenBank
		origin		accession
CA92/95	F. oxysporum f. sp. lycopersici	USA	3/0030	FJ790387
14844	F. oxysporum f. sp. lycopersici	Australia	3/0030	FJ790386
FOL-93H	F. oxysporum f. sp. lycopersici	Israel	2/0030	FJ790385
281	F. oxysporum f. sp. lycopersici	Spain	2/0030	FJ790384
NRRL26037	F. oxysporum f. sp. lycopersici	NA	NA	AF008498
NRRL26200	F. oxysporum f. sp. lycopersici	NA	NA	AF008499
FOL-MM59	F. oxysporum f. sp. lycopersici	USA	2/0030	FJ790388
FOLR2	F. oxysporum f. sp. lycopersici	USA	NA	DQ837692
OSU-451	F. oxysporum f. sp. lycopersici	USA	2/0031	FJ790392
E175	F. oxysporum f. sp. lycopersici	Netherlands	1/0031	FJ790391
NRRL26203	F. oxysporum f. sp. lycopersici	Italy	NA	AF008501
NRRL26437	F. oxysporum f. sp. lycopersici	USA	3/0033	AF008502
NRRL26437	F. oxysporum f. sp. cucumerinum	USA	NA	AF362168
NRRL29870	F. oxysporum f. sp. pisi	USA	NA	AF362170
NRRL36471	F. oxysporum f. sp. niveum	NA	NA	FJ985356
NRRL36331	F. oxysporum f. sp. niveum	NA	NA	FJ985346
NRRL36275	F. oxysporum f. sp. niveum	NA	NA	FJ985340
NRRL38552	F. oxysporum f. sp. niveum	NA	NA	FJ985410
NRRL22546	F. oxysporum f. sp. medicaginis	SE Asia	nd	DQ837690
CAV786	F. oxysporum f. sp. cubense	Australia	NA/0124	FJ664959
CAV009	F. oxysporum f. sp. cubense	South	NA/0120	FJ664940
		Africa		
NRRL26379	F. oxysporum f. sp. radicis-lycopersici	NA	NA	AF008508
FOA50	F. oxysporum f. sp. asparagi	Australia	NA	DQ837691
NRRL26954	F. oxysporum f. sp. tulipae	Netherlands	NA	AF246838
BMP1307	F. oxysporum f. sp. lactucae	USA	1/NA	DQ837661
F9501	F. oxysporum f. sp. lactucae	Japan	2/NA	DQ837693
NRRL26411	F. oxysporum f. sp. fabae	USA	NA	DQ837684
NRRL22538	F. oxysporum f. sp. cepae	Germany	NA	DQ837681
NRRL26622	F. oxysporum f. sp. albedinis	Morocco	NA	DQ837688
NRRL26445	F. oxysporum f. sp. phaseoli	USA	NA	DQ837686
NRRL28378	F. commune	Netherlands	NA	AF246832

^a All elongation factor-1α (EF-1α) sequences were determined in this study, with the exception of those with accession numbers in bold; ^b VCG= Vegetative Compatibility Group; ^c GNA= Group Not Assigned, ^dNA= Not Available.


designated in a separate unassigned VCG. The oldest Iranian isolate I-17, which was previously reported to be in VCG 0134, was confirmed to be vegetatively compatible with *nit* testers of VCG 0134. The two nonpathogenic isolates, TO1 and 2Ma4-5a, were compatible with each other but not with any of the *F. o. melonis* testers.

Phylogenetic Analyses

In this study, ~ 640 bp of the region encoding the $EF-1\alpha$ gene was sequenced

from 27 Iranian and foreign isolates of *F. o. melonis* belonging to different VCGs (0130-0136), as well as two nonpathogenic isolates.

Based on EF-1 α sequences, the *F. o. melonis* isolates in this study were divided into six lineages (Figure 1). Lineage 1 included all of the Iranian and foreign isolates belonging to VCG 0134; lineage 2 consisted of one isolate from Japan within VCG 0132; and lineage 3 consisted of four isolates from USA belonging to VCGs 0130 and 0131. One isolate from France within VCG 0133, although not identical to,

Figure 1. Maximum likelihood phylogenetic tree inferred from EF-1 α sequences of different vegetative compatibility groups of *Fusarium oxysporum* f. sp. *melonis*. *F. commune* isolate NRRL28378 is included as outgroup. Bootstrap values (> 60%) are shown as percentages of 1,000 replicates.

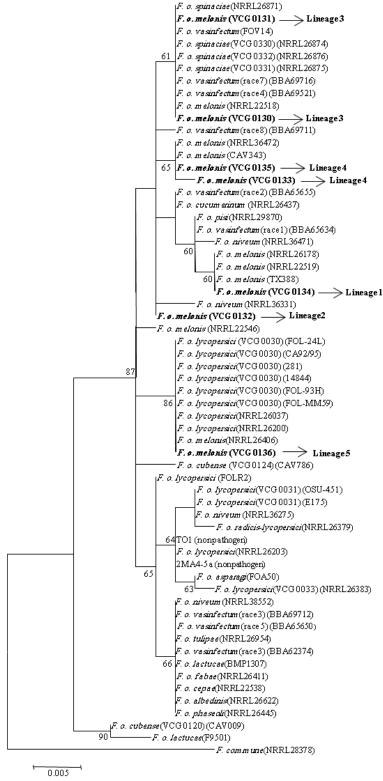
clustered together with the seven Iranian isolates belonging to a separated unassigned VCG and with an isolate from Israel (VCG 0135) in lineage 4. Lineage 5 was constituted by a single isolate from Mexico within VCG 0136, and lineage 6 included the two nonpathogenic isolates to melon from Iran.

To assess the relationships of different F. o. melonis VCGs with the other formae speciales, the EF-1 α gene sequences from the representative of all seven VCGs of F. o. melonis and the two nonpathogenic isolates were compared with 51 $EF-1\alpha$ gene sequences obtained from the GenBank (Table1, Figure 2). These sequences were from isolates of 17 different formae speciales (melonis, spinaciae, vasinfectum, cucumerinum, pisi, niveum, medicaginis, cubense, lycopersici, radicis-lycopersici, asparagi, tulipae, fabae, cepae, albedinis, phaseoli, lactucae) and were chosen to represent the main lineages of F. oxysporum (O'Donnell et al., 1998; Baayen et al., 2000; Skovgaard et al., 2001; Cai et al., 2003; Mbofung et al., 2007; Fourie et al., 2009; Lievens *et al.*, 2009)

As shown in Figure 2, races 4 and 5 of *F. o. vasinfectum* were grouped with *F. o. melonis* VCGs 0130 and 0131. Lineage 1 of *F. o. melonis* corresponding to VCG 0134 had close relationships with *F. o. vasinfectum* race 1 and 2. *F. o. melonis* VCG 0136 and races 1, 2, 3 belonging to *F. o. lycopersici* VCG 0030 were grouped together. Nonpathogenic isolates in lineage 6 were identical to *F. o. lycopersici* (NRRL26203) and closely related to *F. o. lycopercisi* VCGs 0031 and 0033.

DISCUSSION

The primary focus of this study was to elucidate phylogenetic relationships among F. o. melonis VCGs. Based on the DNA sequence information of EF- 1α gene, five evolutionary lineages were found among 27 Iranian and foreign isolates of F. o. melonis which were correlated with the F. o. melonis


VCGs (0130-0136), with the exceptions of VCGs 0130 and 0131 which grouped together in EF-1 α lineage 3, as well as one isolate from France within VCG 0133, that clustered together with VCG 0135 and the isolates in the nonassigned VCG in lineage 4. This study did not include isolates of VCG 0137 (of which only one isolate is available) (Jacobson and Gordon, 1990 a) and VCG 0138.

The separation of F. o. melonis VCGs into distinct phylogenetic lineages correlates with previous studies using restriction digest analyses of mtDNA (Jacobson and Gordon, 1990b). The identical mtDNA and EF- 1α gene sequence of VCG 0130 and 0131 may lead to the conclusion that divergence of these VCGs occurred quite recently and that VCG 0130 could have derived from the more widespread 0131 in North America (Jacobson and Gordon, 1990b).

These results support the hypotheses that isolates within a VCG of *F. oxysporum* are genetically more similar than those in different VCGs, regardless of races (Elias and Schneider, 1991; Gordon and Martyn, 1997), and that isolates in each VCG may be clonally derived from a common ancestor (Kistler, 1997).

The present study also provides evidence for multiple evolutionary origins of some formae speciales of F. oxysporum, including vasinfectum, niveum lycopersici. Based on phylogenetic analysis, isolates of F. o. melonis in the current study were found to be more closely related to some isolates of other formae speciales than to isolates of F. o. melonis in the other VCGs. O'Donnell et al. (1998) examined 2 isolates of F. o. melonis and, on the basis of **DNA** sequences of nuclear and mitochondrial genes, found that these isolates nested in two lineages with independent evolutionary origins.

Evidence for a polyphyletic origin was presented for the first time by O'Donnell *et al.* (1998) for *F. o. cubense*. All of the polyphyletic *formae speciales* identified to date, such as *formae speciales cubense*, *vasinfectum* and *lycopersici*, are composed

Figure 2. Maximum likelihood phylogenetic tree of *Fusarium oxysporum* f. sp. *melonis* and other isolates from different *Fusarium oxysporum formae speciales* inferred from EF-1 α sequences. *F. commune* isolate NRRL28378 is included as outgroup. Bootstrap values (> 60%) are shown as percentages of 1,000 replicates. Different lineages of *Fusarium oxysporum* f. sp. *melonis* are indicated in bold.

of two or more VCGs (O'Donnell *et al.*, 1998; Skovgaard *et al.*, 2001, Lievens *et al.*, 2009). By comparison, *formae speciales* with a single VCG, such as *tulipae* and *lilii*, are genetically assumed to be clonal.

In accordance with previous observations (Cai *et al.*, 2003; Kawabe *et al.*, 2005; Lievens *et al.*, 2009), isolates of *F. o. lycopersici* examined in this study were divided into three groups. The first group composed of VCG 0030, the second included VCG 0031, and the third included VCG 0033 isolates.

In this study, Iranian and foreign isolates within races 0, 1, 1, 2 and 2 from VCG 0134 had identical $EF-1\alpha$ gene sequences, that could be explained by the adaptation to host resistance from the same clonal lineage (Jacobson and Gordon, 1991). The race structure within most formae speciales of F. oxysporum is often complex, demonstrates that no particular race defines a genetically homogenous group of isolates (Gordon and Martyn, 1997). A notable exception is F. o. vasinfectum that has a oneon-one relationship between VCG and race (Assigbetse et al., 1994; Katan and Katan, 1988). Using molecular markers such as sequencing of $EF-1\alpha$ gene mitochondrial small subunit (mtSSU) rDNA (Skovgaard et al., 2001), most of the F. o. vasinfectum races could differentiate at different levels. Interestingly, based on EF- 1α gene sequencing, a specific association was found between VCGs belonging to F. o. melonis and some VCGs or races from other formae speciales. For instance, F. o. melonis VCGs 0130 and 0131 were identical to all three VCGs of F. o. spinaciae and race 4 and 7 of F. o. vasinfectum. F. o. melonis VCG 0136 were grouped with F. o. lycopersici VCG 0030 and F. o. melonis VCG 0134 were closely related to F. o. vasinfectum races 1 and 2. For the first time, these specific relationships among F. o. melonis VCGs and the other formae speciales is reported in this study, which supports a polyphyletic origin for this forma specialis, meaning that F. o. melonis could emerge independently multiple times in different areas to yield *F. o. melonis* isolates with an independent genetic background. In addition to co-evolution with the host in their centers of origin, the divergence and evolution of *formae speciales* in *F. oxysporum* complex may be influenced by other factors such as genetic exchange or recombination due to parasexuality or heterokaryosis, which reflects the existence of more recently selected pathogenic forms. (Gordon and Martyn, 1997; Fourie *et al.*, 2009)

The genetic basis of the forma specialis concept in F. oxysporum proposed by Snyder and Hansen (1940) is unknown (Baayen et al., 2000). The categorization of strains by host range may lead to an artificial subdivision within the species, meaning that unrelated isolates could be together. Thus, individuals in a forma specialis may not be closely related or evolved from common a ancestor (O'Donnell et al., 1998). It is, therefore, not surprising that many researchers regard F. oxysporum as a complex of several different species (Kistler, 1997; O'Donnell and Cigelnik, 1997; Baayen et al., 2000). As a result, classification based solely on host range could not commonly reveal genetic diversity and biological differences (Kistler, 1997). Accordingly, detailed knowledge of the genetic variation, evolutionary history and relationships of formae speciales within the F. oxysporum complex is very important for the development of appropriate disease management strategies and effective breeding programs.

REFERENCES

- Apple, D. and Gordon, T. 1996. Pathogenic Relationships among Nonpathogenic Isolates of *Fusarium* oxysporum Based on the Partial Sequence of the Intergenic Spacer Region of the Plant-Microbe Ribosomal DNA. *Mol.* Interact., 9(2): 125-138.
- 2. Armstrong, G. M. and Armstrong, J. K. 1978. *Formae Speciales* and Races of

- Fusarium oxysporum Causing Wilts of Cucurbitaceae. Phytopathology, **68**: 19-28.
- Assigbetse, K. B., Fernandez, D., Dubois, M. P. and Geiger, J. P. 1994. Differentiation of Fusarium oxysporum f. sp. vasinfectum Races on Cotton by Random Amplified Polymorphic DNA (RAPD) Analysis. Phytopathology, 84: 622-626.
- Baayen, R. P., O Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A. and Waalwijk, C. 2000. Gene Genealogies and AFLP Analyses in the *Fusarium oxysporum* Complex Identify Monophyletic and Nonmonophyletic *Formae Speciales* Causing Wilt and Rot Disease. *Phytopathology*, 90: 891-900.
- 5. Banihashemi, Z. 1968a. The Biology and Ecology of *Fusarium oxysporum* f. melonis in Soil and the Root Zones of Host and Non Host Plants. Ph.D. Thesis, Michigan State University, 114p.
- 6. Banihashemi, Z. 1968b. The Existence of Fusarium Wilt of Melon in Iran. *Proc. First Nat. Cong. Plant Med.*, Iran, PP. 47-48.
- 7. Banihashemi, Z. 1982. A New Physiological Race of *Fusarium oxysporum* f. sp. *melonis* in Iran. *Iran. J. Plant. Pathol.*, **18**: 1-6.
- Banihashemi, Z. 1989. The Existence of Race 1 of Fusarium oxysporum f. sp. melonis on Longmelon in Garmsar and Its Virulence to Different Cultivars of Cucumis melo. Proc. 9th. Plant. Prot. Cong., Iran, 91 PP.
- 9. Banihashemi, Z. 2010. Reaction of *Cucumis melo* Cultivars to Races of *Fusarium oxysporum* f. sp. *melonis* the Cause of Melon Vascular Wilt. *Iran. J. Plant Pathol.*, **46**: 5-7.
- 10. Banihashemi, Z. and deZeeuw, D. J. 1975. The Behavior of *Fusarium oxysporum* f. sp. *melonis* in the Presence and Absence of Host Plants. *Phytopathology*, **65**: 1212-1217.
- Cai, G., Gale, L. R., Schneider, R. W., Kistler, H. C., Davis, R. M., Elias, K. S. and Miyao, E. M. 2003. Origin of Race 3 of Fusarium oxysporum f. sp. lycopersici at a Single Site in California. Phytopathology, 93: 1014-1022.
- 12. Correll, J. C. 1991. The Relationship between *Formae Speciales*, Races and Vegetative Compatibility Groups in *Fusarium oxysporum. Phytopathology*, **81**: 1061-1064.
- 13. Correll, J. C., Klittich, C. J. R. and Leslie, J. F. 1987. Nitrate Nonutilizing Mutants of

- Fusarium oxysporum and Their Use in Vegetative Compatibility Tests. Phytopathology, 77: 1640-1646.
- 14. Elias, K. S. and Schneider, R. W. 1991. Vegetative Compatibility Groups in *Fusarium oxysporum* f. sp. *lycopersici*. *Phytopathology*, **81**: 159-162.
- 15. Fourie, G., Steenkamp, E. T., Gordon, T. R. and Viljoen, A. 2009. Evolutionary Relationships among the Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cubense. Appl. Environ. Microb., 75: 4770-4781.
- Gascuel, O. 1997. BIONJ: An Improved Version of the NJ Algorithm Based on a Simple Model of Sequence Data. *Mol. Biol. Evol.*, 14: 685-695.
- 17. Gordon, T. R. and Martyn, R. D. 1997. The Evolutionary Biology of *Fusarium oxysporum*. *Annu. Rev. Phytopathology*, **35**: 111-128.
- 18. Jacobson, D. J. and Gordon, T. R. 1988. Vegetative Compatibility and Self-Incompatibility within *Fusarium oxysporum* f. sp. *melonis*. *Phytopathology*, **78**: 668-672.
- 19. Jacobson, D. J. and Gordon, T. R. 1990a. Further Investigation of Vegetative Compatibility with *Fusarium oxysporum* f. sp. *melonis. Can. J. Bot.*, **68**: 1245-1248.
- Jacobson, D. J. and Gordon, T. R. 1990b. Variability of Mitochondrial DNA as Indicator of Relationships between Populations of Fusarium oxysporum f. sp. melonis. Mycol. Res., 97: 734-744.
- 21. Jacobson, D. J. and Gordon, T. R. 1991. *Fusarium oxysporum* f. sp. *melonis*: a Case Study of Diversity within a Forma specialis. *Phytopathology*, **81**: 1064-1067.
- 22. Katan, T. and Katan, J. 1988. Vegetative-compatibility Ggrouping of *Fusarium oxysporum* f. sp. *vasinfectum* from Tissue and the Rhizospher of Cotton Plants. *Phytopthology*, **78**: 852-855.
- 23. Katan, T., Katan, J., Gordon, T. R. and Pozniak, D. 1994. Physiologic races and vegetative compatibility groups of *Fusarium oxysporum* f. sp. *melonis* in Israel. *Phytopthol.*, **84**:153-157.
- 24. Kawabe, M., Kobayashi, Y., Okada, G., Yamaguchi, I., Teraoka, T. and Arie, T. 2005. Three Evolutionary Lineages of Tomato Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici, Based on Sequences of IGS, MAT1, and pg1, are each Composed of Isolates of a Single Mating

- Type and a Single or Closely Related Vegetative Compatibility Group. *J. Gen. Plant Pathol.*, **71**: 263-272.
- Kimura, M., 1980. A Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol., 16: 111-120.
- 26. Kistler, H. C. 1997. Genetic Diversity in the Plant Pathogenic Fungus *Fusarium oxysporum*. *Phytopathology*, **87**: 474-479.
- 27. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mc Gettigan, P. A., Mc William, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2000. Clustal W and X Version 2.0. Bioinformatics, 23: 2947-2948.
- 28. Leslie, J. F. and Summerell, B. A. 2006. *The Fusarium Laboratory Manual*. Blackwell Professional Publishing, Ames, Iowa, 385 PP.
- Lievens, B., Van Baarlen, P., Verreth, C., Van Kerckhove, S., Rep, M. and Thomma, B. P. H. J. 2009. Evolutionary Relationships between *Fusarium oxysporum* f. sp. *radicislycopersici* Isolates Inferred from Mating Type, Elongation Factor-1α and Exopolygalacturonase Sequences. *Mycol. Res.*, 113: 1181-1191.
- Mbofung, G. Y., Hong, S. G. and Pryor, B. M. 2007. Phylogeny of *Fusarium oxysporum* f. sp. *lactucae* Inferred from Mitochondrial Small Subunit, Elongation Factor-1α, and Nuclear Ribosomal Intergenic Spacer Sequence Data. *Phytopathology*, 97:87-98.
- Nelson, P. E., Tousson, T. A. and Marasas, W. F. O. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park and London, 193 PP.
- 32. O'Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic r DNA ITS2 types within a monophyletic lineage of the fungus

- Fusarium are nonorthologous. *Mol. Phylogenet. Evol.*, 7: 103-116.
- 33. O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple Evolutionary Origin of the Fungus Causing Panama Disease of Banana; Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. *Pro. Natl. Acad. Sci.*, *USA*, **95**: 2044-2049.
- 34. Puhalla, J. E. 1985. Classification of Strains of *Fusarium oxysporum* on the Basis of Vegetative Compatibility. *Can. J. Bot.*, **63**: 179-183.
- 35. Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A Proposed Nomenclature of *Fusarium oxysporum* f. sp. *melonis* Races and Resistance Genes in *Cucumis melo*. *Phytopathology*, **66**: 1105-1106.
- 36. Sarpeleh, A. and Banihashemi, Z. 2000. Vegetative Compatibility Groups within Races of *Fusarium oxysporum* f. sp. *melonis* in Iran and *Fusarium oxysporum* from Weeds in Maharloo Region of Fars Province of Iran. *Iran. J. Plant Pathol.*, **36**: 31-45.
- 37. Skovgaard, K., Nirenberg, H. I., O'Donnell, K. and Rosendahl, S. 2001. Evolution of *Fusarium oxysporum* f. sp. *vasifectum* Races Inferred from Multigene Genealogies. *Phytopathology*, **91**: 1231-1237.
- 38. Snyder, W. C. and Hansen, H. N. 1940. The Species Concept in *Fusarium*. *Am. J. Bot.*, **27**: 64-67.
- Tamura, K., Peterson, D., Peterson N., Stecher, G., Nei, M. and Kumar, S. 2011.
 MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Mol. Biol. Evol.*, 28(10): 2731-2739.
- 40. Wellman, F. L. 1939. A Technique for Studying Host Resistance and Pathogenicity in Tomato Fusarium Wilt. *Phytopathology*, **29**: 945-956.

Fusarium oxysporum f. sp. رابطه ژنتیکی گروه های ساز گاری رویشی F. oxysporum و ار تباط آنها با سایر فرم گونه های melonis

م. ميرطالبي و ض. بني هاشمي

چکیده